Содержание
Введение
1 Физико-химические процессы, протекающие в пищевых продуктах
при их кулинарной обработке
1.1 Гидратация и дегидратация белков
1.2 Денатурация белков
1.3 Деструкция белков
1.4 Агрегирование белков
1.5 Пенообразование
2 Влияние способов и режимов тепловой обработки мяса и мясопродуктов
на изменениеих физико-химических показателей
и биологической ценности
2.1 Изменение белков мяса в процессе нагрева
2.2 Влияние температуры и способа нагрева на скорость
и температуру денатурации белков
2.3 Изменение заряженных групп и рН белков
в процессе тепловой обработки мяса
2.4 Изменение растворимости мышечных белков и дезагрегация белков соединительных тканей в процессе нагрева мяса
2.5 Коагуляция белков и ее влияние на качественные изменения, и структуру мясопродуктов
3 Влияние способов и режимов тепловой обработки рыбы
и нерыбных продуктов моря на изменениеих физико-химических показателей и биологической ценности
4 Влияние процессов изменения белков и других азотистых веществ на качество кулинарной продукции из мяса и рыбы
Заключение
Библиографический список
Приложения
Введение
Белки – это азотистые высокомолекулярные соединения, состоящие из аминокислот, основной пластический материал, из которого строятся ткани организма. Например, в составе скелетных мышц белка содержится более 20%. Белки, из которых построены клетки тела, имеют сложное строение и высокую химическую активность. Они участвуют во всех жизненных основных процессах — обмене веществ, росте, размножении и мышлении. Вступая в разнообразные реакции, они изменяются и разрушаются, а поскольку образующиеся продукты белкового распада не могут быть использованы для обратного синтеза и выводятся из организма, то для восполнения этих потерь необходима доставка новых белковых продуктов извне с пищей.
Белки делятся на простые и сложные. Простые построены только из аминокислот. В состав сложных белков, помимо аминокислот, входят еще и различные безазотистые компоненты (остатки фосфорной кислоты, углеводы и другие вещества). К белковым веществам относятся ферменты — важнейшие ускорители биохимических реакций в организме. Белками являются также и некоторые гормоны — тонкие регуляторы обменных процессов, а также нуклепротеины — регуляторы синтеза белков в организме.
Белки могут использоваться и как источник энергии: при расщеплении белка из безазотистой части его молекулы образуются углеводы, дальнейшее превращение которых и обеспечивает освобождение энергии. Поскольку другая часть молекулы — азотистые компоненты белка — окислению в организме не подвергается, то при окислении 1 г белка в целом освобождается ровно столько же энергии, сколько и при окислении 1 г углеводов, то есть 4,0 ккал. Белковый минимум, то есть количество белка в пище, которое покрывает лишь расходы энергии при основном обмене на обновление тканей, составляет 1,5 г на килограмм массы в сутки, то есть при массе 70 кг человек должен ежедневно получать порядка 100 г белка. В нормальных условиях белки должны составлять 11—13% суточной калорийности. При повышенном обмене веществ, в том числе при большой физической нагрузке, потребление белка увеличивается более чем в 1,5 раза, поэтому необходимо потреблять в сутки до 170—200 г белка, что составляет до 15% суточной калорийности. Недостаток белковых запасов, временно возникающий в организме при длительной и напряженной работе, компенсируется тем, что менее жизненно важные органы отдают свой белок для деятельности других, более важных органов. В первую очередь используются белки крови, печени, скелетных мышц. Масса печени, мышц при недостаточном питании резко снижается. Масса же сердца и мозга остается почти без изменений. Белковая недостаточность приводит к тому, что организм начинает «поедать сам себя», его мышечная масса продолжает уменьшаться. При белковом голодании наблюдаются отеки, расстройство желудка, воспаление кожного покрова, снижение сопротивляемости к заболеваниям.
Биологическая ценность белков определяется содержанием незаменимых аминокислот (НАК), их соотношением и перевариваемостью. Белки, содержащие все НАК (их восемь: триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин, фенилаланин) и в тех соотношениях, в каких они входят в белки нашего организма, называются полноценными. К ним относятся белки мяса, рыбы, яиц, молока. В растительных белках, как правило, недостаточно лизина, метионина, триптофана и некоторых других НАК. Так, в гречневой крупе недостает лейцина, в рисе и пшене – лизина. Незаменимая аминокислота, которой меньше всего в данном белке, называется лимитирующей. Остальные аминокислоты усваиваются в адекватных с ней количествах. Один продукт может дополнять другой по содержанию аминокислот. Однако такое взаимное обогащение происходит только в том случае, если эти продукты поступают в организм с разрывом во времени не более чем 2-3 ч. Поэтому большое значение имеет сбалансированность по аминокислотному составу не только суточных рационов, но и отдельных приемов пищи и даже блюд. Это необходимо учитывать при создании рецептур блюд и кулинарных изделий, сбалансированных по содержанию НАК.
Наиболее удачными комбинациями белковых продуктов являются:
· мука + творог (ватрушки, вареники, пироги с творогом);
· картофель + мясо, рыба или яйцо (картофельная запеканка с мясом, мясное рагу, рыбные котлеты с картофелем и др.);
· гречневая, овсяная каша + молоко, творог (крупеники, каши с молоком и прочее);
· бобовые с яйцом, рыбой или мясом.
Наиболее эффективное взаимное обогащение белков достигается при их определенном соотношении, например:
· 5 частей мяса + 10 частей картофеля;
· 5 частей молока + 10 частей овощей;
· 5 частей рыбы + 10 частей овощей;
· 2 части яиц + 10 частей овощей (картофеля) и т. д.
Усвояемость белков зависит от их физико-химических свойств, способов и степени тепловой обработки продуктов. Белки многих растительных продуктов плохо перевариваются, так как заключены в оболочки из клетчатки и других веществ, препятствующих действию пищеварительных ферментов (бобовые, крупы из цельных зерен, орехи и др.). Кроме того, в ряде растительных продуктов содержатся вещества, тормозящие действие пищеварительных ферментов (фазиолин фасоли). Например, из 18,75 г белка, содержащегося в 100 г мяса, усваивается 18 г, а из 8,68 г белка хлеба — лишь 4 г. Таким образом, белки продуктов животного происхождения в среднем в 1,5 раза эффективнее белков растительного происхождения.
По скорости переваривания на первом месте находятся белки яиц, молочных продуктов и рыбы, затем мяса (говядина, свинина, баранина) и, наконец, хлеба и крупы. Из белков животных продуктов в кишечнике всасывается более 90% аминокислот, из растительных 60-80%.
Размягчение продуктов при тепловой обработке и протирание их улучшает усвояемость белков, особенно растительного происхождения. Однако при избыточном нагревании содержание НАК может уменьшиться. Так, при длительной тепловой обработке в ряде продуктов снижается количество доступного для усвоения лизина. Этим объясняется меньшая усвояемость белков каш, сваренных на молоке, по сравнению с белками каш, сваренных на воде, но подаваемых с молоком. Чтобы повысить усвояемость каш, рекомендуется крупу предварительно замачивать для сокращения времени варки и добавлять молоко перед окончанием тепловой обработки.
Качество белка оценивается рядом показателей (КЭБ – коэффициент эффективности белка, ЧУБ – чистая утилизация белка и др.), которые рассматривает физиология питания.
Цели и задачи работы:
· изучить процессы изменения белков при тепловой обработке мяса и рыбы;
· проанализировать влияние процессов изменения белков и других азотистых веществ на качество кулинарной продукции из мяса и рыбы;
· сделать выводы.
1 Физико-химические процессы, протекающие в пищевых продуктах при их кулинарной обработке
1.1 Гидратация и дегидратация белков
В технологических процессах производства продукция общественного питания белки пищевых продуктов подвергаются гидратации, дегидратации, денатурации и деструкции, а азотистые низкомолекулярные вещества — пиролизу с образованием новых химических веществ. Указанные процессы по-разному влияют на качество, пищевую ценность и безопасность пищи.
Пищевая ценность, вкусовые качества пищевых продуктов, их стойкость при хранении обусловлены входящими в их состав веществами органического и неорганического происхождения. Из всех компонентов продуктов питания наибольшее влияние на их свойства оказывает вода. Во многих пищевых продуктах, и даже в тех, в которых содержание воды было преднамеренно снижено в процессе обработки с целью повышения их стойкости при хранении, на ее долю приходится наибольший удельный вес. Так, в сушеном картофеле, общая влажность которого составляет 6,5 %, на каждые 3,6 моль воды приходится 3,1 моль крахмала и 0,46 моль белка.
Характер воздействия воды на процессы, протекающие при производстве пищевых продуктов, определяется, прежде всего, общим количеством воды и формами связи ее с другими компонентами, в основном с белками.
По количеству влаги пищевые продукты целесообразно разделить на три основные группы: продукты с высокой влажностью (более 40 % воды), со средней, или промежуточной, влажностью (10 .40 % воды), и с низкой влажностью (менее 10 % воды).
Различают четыре формы связи влаги с материалами, и в частности с компонентами пищевых продуктов: химическую, адсорбционную, осмотическую и капиллярно-связанную.
Химически связанную воду подразделяют на воду гидрата в составе гидроксильных групп (ионная связь) и воду молекулярных соединений в виде кристаллогидратов (молекулярная связь). Из всех форм связи химически связанная вода обладает наибольшей энергией.
Адсорбционно-связанная вода характеризуется средней интенсивностью прочности связи. Она образуется в результате притяжения диполей воды полярными молекулами, расположенными на поверхности субстрата. При образовании такой связи молекулы воды могут сохранять свои свойства, в этом случае происходит физическая адсорбция. Если молекула воды расщепляется на ионы, то происходит химическая адсорбция, или хемосорбция.
Одновременно с адсорбцией водяных паров или воды на поверхности молекул продукта возможна диффузия влаги в массу сорбента. В этом случае наблюдается процесс абсорбции.
Увлажнение капиллярно-пористых тел, к которым относится большинство пищевых продуктов, происходит в результате адсорбции влаги, образования раствора и проникания его в клетки пищевого продукта за счет разности концентраций растворенных веществ. Образуется осмотически связанная вода.
Пищевые продукты представляют собой капиллярно-пористые тела с порами различного диаметра, которые могут быть заполнены жидкостью. Капиллярно-связанная влага образуется в результате адсорбции воды стенками капилляров и понижения давления водяного пара над вогнутым мениском жидкости.
Гидратация белков пищевых продуктов в основном обусловлена адсорбционной и химически связанной водой.
Аминокислоты, из которых состоит белок, относятся к амфотерным веществам, обладающим одновременно свойствами кислот и оснований. Это объясняется тем, что все амино- и карбоксильные группы аминокислот заняты в образовании пептидных связей. В молекулах диаминокислот остаются свободными аминогруппы, а в молекулах моноаминодикарбоновых кислот — карбоксильные группы. Например, при растворении белка в воде от карбоксильных групп отщепляются протоны, и белок приобретает свойства слабой кислоты. Появляющиеся в растворе протоны присоединяются к NH2-группам, вследствие чего они переходят в ионизированную форму — NH3. В сильнокислой среде биполярный ион аминокислоты превращается в катион, способный двигаться к катоду в электрическом поле. В щелочной среде биполярный ион аминокислоты превращается в анион. Таким образом, молекула белка несет положительный или отрицательный заряд.
Амфотерность белков определяется не только присутствием свободных карбоксильных или аминогрупп в белке, но и наличием других функциональных группировок. Слабо выраженными кислотными свойствами обладают SH-группа цистеина и ОН-группа тирозина.
Поскольку молекула воды также обладает полярностью, то при контакте белка с водой диполи воды адсорбируются поверхностью белковой молекулы, группируясь вокруг полярных групп. Эти группы называют гидрофильными.
Адсорбционная вода удерживается белком благодаря образованию между их молекулами водородных связей, которые относятся к разряду относительно слабых. Однако это свойство компенсируется значительным их числом: каждая молекула воды способна образовать 4 водородные связи, которые распределяются между полярными группами белка и соседними молекулами воды. В результате адсорбционная вода в белке оказывается довольно прочно связанной: она не отделяется от белка самопроизвольно и не может служить растворителем для других веществ.
На поверхности белковой молекулы имеется два вида полярных групп: связанные и свободные. Связанные полярные группы (пептидные группы главных полипептидных цепей, гидроксильные, сульфгидрильные) присоединяют молекулу воды благодаря молекулярной адсорбции, величина которой постоянна для каждого вида белка и незначительно влияет на изменение степени гидратации белков.
Свободные полярные группы (аминогруппы диаминокислот, карбоксильные группы дикарбоновых кислот), диссоциируя в растворе, определяют суммарную величину заряда белковой молекулы. Адсорбирование воды свободными полярными группами называется ионной адсорбцией.
Среди факторов, обусловливающих степень гидратации белков, следует выделить рН среды, концентрацию белковых растворов, природные свойства белка и др.
Ионизация ионогенных групп в результате ионной адсорбции приводит к тому, что в растворе белковые глобулы ведут себя как макроионы, знак и величина заряда которых зависят от рН и состава растворителя. Величину рН, отвечающую равенству общего числа положительных зарядов общему числу отрицательных, т. е. суммарному или эффективному заряду глобулы, равному нулю, называют изоэлектрической точкой (ИЭТ) белка. Изоэлектрическая точка — основная электрохимическая константа белков. Белки в этой точке электронейтральны, а их набухаемость и растворимость наименьшие. Снижение растворимости белков при достижении электронейтральности их молекул широко используется для выделения их из растворов, например при получении белковых изолятов.
Каждый белок характеризуется своей изоэлектрической точкой (рН): пепсин — 1,0; яичный альбумин — 4,7; сывороточный альбумин — 4,59; желатин — 5,05; лактоглобулин — 5,1; фосфорилаза — 5,8; гемоглобин — 6,87; химотрипсин — 8,6; рибонуклеаза — 9,4; лизоцим — 10,5; цитохром — 10,65.
Значение рН белкового раствора в ИЭТ соответствует прекращению переноса макроионов белка в электрическом поле. Если величина рН раствора будет отклоняться от ИЭТ белка, то его эффективный заряд увеличится. В области рН выше ИЭТ он будет отрицательным в результате подавления диссоциации основных групп в щелочной среде. Напротив, при рН ниже ИЭТ белок будет обладать положительным суммарным зарядом вследствие подавления диссоциации карбоксильных и других кислотных групп.
В ИЭТ наблюдается стабильность белковых пен. С изменением растворимости белка при отклонении рН от ИЭТ, а также с изменением ионной силы белкового раствора хорошо коррелирует изменение эмульгирующей емкости белка. Таким образом, изменяя рН среды в ту или иную сторону от изоэлектрической точки, можно повышать степень гидратации белка за счет адсорбционно-связанной воды.
В растворах небольшой концентрации молекулы белка полностью гидратированы из-за присутствия избыточного количества воды. Такие белковые растворы содержатся в молоке, жидком тесте, в некоторых смесях на основе яичного меланжа и пр.
При высоких концентрациях хорошо растворимых солей в растворе присутствует несравненно больше ионов соли, чем заряженных групп белка. При этом гидратация белка водой может уменьшаться, так как раствор соли становится плохим растворителем для белка. Иначе говоря, снижение активности воды в растворе при введении большого количества диссоциирующих солей соответствует повышению активности белка в растворе и соответствующему снижению его растворимости.
Повышение концентрации солей в растворе соответствует также увеличению гидрофильности растворителя и усилению гидрофобного взаимодействия между молекулами белка. Высаливание (осаждение белка из водных растворов при высоких концентрациях соли) наиболее эффективно при ИЭТ белка. Обратный эффект — увеличение растворимости белка в присутствии солей — называют солевым растворением.
В результате гидратации белки растворяются и набухают. Растворению белка всегда предшествует процесс набухания. Оно характерно для всех высокомолекулярных соединений и никогда не наблюдается у низкомолекулярных веществ.
Процесс растворения условно можно разделить на четыре стадии. В первой стадии до начала растворения система состоит из чистых компонентов: низкомолекулярной жидкости и полимера (белка). Вторая стадия процесса — набухание — заключается в том, что молекулы жидкости проникают в погруженный в нее белок, раздвигают полипептидные цепочки и разрыхляют его. Расстояние между молекулами в белке, а также его масса и объем увеличиваются. Третья стадия растворения заключается в том, что по мере набухания объем белка, и расстояние между макромолекулами увеличивается настолько, что макромолекулы начинают отрываться друг от друга и переходить в слой низкомолекулярной жидкости. В четвертой стадии растворения молекулы полимера равномерно распределены по всему объему системы, образуя гомогенный истинный раствор.
Набухание, как и растворение, носит избирательный характер. Белки (полярные полимеры) хорошо набухают в полярных жидкостях. Например, желатин хорошо набухает в воде.
Скорость набухания зависит от температуры. Однако, существуют определенные температурные интервалы, в которых белок под воздействием тепла денатурирует, а, следовательно, теряет способность к гидратации и набуханию. Скорость набухания увеличивается с увеличением степени измельченности полимера, так как это вызывает увеличение поверхности соприкосновения набухающего вещества с растворителем. На степень и скорость набухания влияет возраст белка: чем он меньше, тем степень и скорость набухания больше. Скорость и степень набухания некоторых белков зависят от рН среды. Например, белки муки набухают лучше при рН Потеря белками связанной воды происходит под влиянием внешних воздействий. Различают необратимую дегидратацию белков, происходящую при тепловой обработке продуктов, при замораживании, хранении в замороженном состоянии и размораживании мяса, мясопродуктов, рыбы, и обратимую дегидратацию, являющуюся составной частью целенаправленного технологического процесса — сублимационной сушки продуктов.
При быстром размораживании мяса дегидратация белков — это результат неполного восстановления белковых систем, нарушенных в период замораживания. Дегидратация белков рыбы связана с денатурацией их при замораживании и последующем хранении. При размораживании этих продуктов часть воды выделяется в окружающую среду в капельно-жидком состоянии. Вместе с водой из продукта удаляются растворимые вещества — экстрактивные, минеральные, витамины, белки и др.
Необратимая дегидратация белков с выделением воды в окружающую среду происходит, например, при варке мяса. В окружающую среду переходит около половины содержащихся в продукте воды и растворимых веществ. Таким образом, необратимая дегидратация белков может быть причиной уменьшения массы продукта, некоторого снижения его пищевой ценности, в том числе и органолептических показателей.
Обратимую дегидратацию белковых веществ можно продемонстрировать на примере сублимационной сушки пищевых продуктов. Метод сублимационной сушки основан на способности льда при определенных условиях возгоняться, т. е. испаряться, минуя жидкую фазу. При обычной тепловой сушке влага с наружной поверхности материала испаряется, а из внутренних слоев непрерывно перемещается к наружным, вызывая перераспределение водорастворимых веществ, солей, витаминов и др. При сублимационной сушке такого перераспределения не происходит.
В процессе сублимационной сушки из продукта удаляется капиллярно-связанная и осмотически связанная вода. Вода, адсорбиионно-связанная белками, удаляется из продукта не полностью, так как ее мономолекулярный слой, располагающийся на поверхности белковых молекул, очень прочно связан с белком. Рентгеноструктурными исследованиями установлено, что каждая полярная группа белка прочно удерживает определенное число молекул воды. Эта вода, получившая название «гидратная», может быть удалена только при нагревании продукта до 1000С и выше, что приводит к денатурации белка. Количество гидратной воды может достигать 5 % массы сухого белка.
Преимущество этого метода сушки заключается в том, что продукт после обработки сохраняет свои исходные свойства (вкус, цвет, аромат, консистенцию, содержание витаминов, ферментов и т. д.) и быстро (за 5 . 15 мин) восстанавливается при добавлении воды. К достоинствам метода относится также то, что масса высушенного продукта составляет 1/4 .1/7 начальной, что выгодно при дальних перевозках; продукт не требует холодильного хранения; сроки хранения продуктов возрастают; имеется возможность реализации продукции через торговые автоматы.
Кроме пищевых продуктов сублимации можно подвергать также готовые к употреблению блюда. Высушенные этим способом блюда обладают рядом достоинств: высокие вкусовые качества и пищевая ценность; минимум времени на приготовление; их можно употреблять в любых условиях, в том числе в условиях космических полетов и чрезвычайных ситуаций.
Блюда, высушенные методом сублимации, восстанавливают двумя способами: продукт заливают кипящей водой и варят при слабом кипении 5 .10 мин с момента закипания, жир добавляют по рецептуре; продукт заливают кипящей водой, оставляют для набухания на 5 .8 мин и кипятят 6 .10 мин при осторожном помешивании.
Восстановление водой продуктов сублимационной сушки называют регидратацией.
В настоящее время разработаны рецептуры, технология производства и режимы сушки методом сублимации некоторых блюд, в том числе щей из свежих овощей с мясом; борща из свежих овощей с мясом; рассольника с фасолью и мясом; рагу овощного с мясом; голубцов ленивых с говяжьим фаршем и др.
1.2 Денатурация белков
Важное свойство белков — их способность к денатурации. Этим понятием обозначают явления, связанные с необратимым изменением вторичной, третичной и четвертичной структур белка под воздействием нагревания, кислот, щелочей, УФ-лучей, ионизирующей радиации, ультразвука и др.
Денатурация — это необратимое нарушение нативной пространственной конфигурации белковой молекулы, сопровождающееся существенными изменениями биологических и физико-химических свойств белков.
Поскольку в образовании вторичной и третичной структур частично участвуют относительно слабые связи, физическое состояние белка в значительной степени зависит от температуры, рН, присутствия солей и других факторов. Нагревание, например, вызывает распрямление полипептидной цепи белковой молекулы; некоторые химические реагенты разрывают водородные связи. Изменение рН также обуславливает разрыв связей, при этом проявляется электростатическая неустойчивость.
Белки под влиянием различных физических и химических факторов теряют свои первоначальные (нативные) свойства. Внешне это выражается в их свертывании и выпадении в осадок. Примером такого явления может служить свертывание альбумина молока при кипячении. Негидролитическое необратимое нарушение нативной структуры белка и называется денатурацией. При этом рвутся в основном водородные связи, изменяется пространственная структура белка, однако разрыва ковалентных связей в белковой молекуле не происходит.
Денатурация приводит к развертыванию молекулы белка, и он переходит в более или менее разупорядоченное состояние (в нем уже нет ни спиралей, ни слоев, ни других каких-либо видов регулярной укладки цепи). В денатурированном состоянии амидные группы пептидной цепи образуют водородные связи с окружающими их молекулами волы; таких водородных связей значительно больше, чем внутримолекулярных.
Взбивание яичного белка, сливок превращает их в пену, состоящую из пузырьков воздуха, окруженных тонкими белковыми пленками, образование которых сопровождается развертыванием полипептидных цепей в результате разрыва связей при механическом воздействии. Таким образом, при образовании пленок происходит частичная или полная денатурация белка. Такой вид денатурации называется поверхностной денатурацией белка.
Для кулинарных процессов особое значение имеет тепловая денатурация белков. Механизм тепловой денатурации белков можно рассмотреть на примере глобулярных белков.
Основная молекула глобулярного белка состоит из одной или нескольких полипептидных цепей, сложенных складками и образующих клубки. Такая структура стабилизируется непрочными связями, среди которых большую роль играют водородные связи, образующие поперечные мостики между параллельными пептидными цепями или их складками.
При нагревании белков начинается усиленное движение полипептидных цепей или складок, что приводит к разрыву непрочных связей между ними. Белок разворачивается и приобретает необычную, неприродную форму, водородные и другие связи устанавливаются в несвойственных данной молекуле местах, и конфигурация молекулы меняется. В результате происходит развертывание и перегруппировка складок, сопровождаемые перераспределением полярных и неполярных групп, причем неполярные радикалы концентрируются на поверхности глобул, понижая их гидрофильность. При денатурации белки становятся нерастворимыми и в большей или меньшей мере утрачивают способность к набуханию.
При тепловой денатурации белков активная роль принадлежит воде, которая участвует в образовании новой конформационной структуры денатурированного белка. Полностью обезвоженные белки не денатурируют даже при длительном нагревании. Денатурирующий эффект внешних воздействий тем сильнее, чем выше гидратация белков и ниже их концентрация в растворе.
При значениях рН среды, близких к ИЭТ белка, происходит максимальная дегидратация белка. Наиболее полно денатурация осуществляется в ИЭТ белка. Смещение рН в ту или иную сторону от ИЭТ белка способствует повышению его термостабильности и ослаблению денатурационных процессов.
Температура денатурации белков повышается в присутствии других термостабильных белков и некоторых веществ небелковой природы, например сахарозы. Это свойство белков используют, когда при тепловой обработке необходимо повышение температуры смеси (например, при пастеризации мороженого, изготовлении яично-масляных кремов), не допуская расслоения или структурообразования в белковой коллоидной системе.
Появление на поверхности белковой молекулы после денатурации ранее скрытых радикалов или функциональных групп изменяет физико-химические и биологические свойства белков. В результате денатурации свойства белков необратимо изменяются. Потеря способности к гидратации объясняется утратой белками нативных свойств, важнейшим из которых является выраженная гидрофильность (большое сродство к воде), и связана с изменением конформации полипептидных цепей в белковой молекуле в результате денатурации.
Способность разных нативных белков пищевых продуктов растворяться в каком-либо растворителе (воде, растворах нейтральных солей, слабых растворах щелочей, спирте и др.) используют для разделения или выделения определенной белковой фракции (для исследовательских или пищевых целей). Денатурированные белки такими различиями не обладают, они все одинаково нерастворимы и не способны набухать в воде. Исключение из этого общего правила составляет фибриллярный коллаген мяса и рыбы, который после тепловой денатурации и деструкции до глютина способен растворяться в горячей воде.
В результате денатурации белки теряют биологическую активность. В растительном и животном сырье, используемом на предприятиях общественного питания, активность большинства белковых веществ сохраняется. В сыром мясе тканевые ферменты также находятся в активном состоянии, участвуя в автолизе мяса (послеубойном созревании). Это их свойство используют для практических целей. Полная инактивация кислой фосфатазы происходит при достижении температуры в геометрическом центре мясного изделия 80°С, что соответствует температуре пастеризации (отмиранию вегетативных форм бактерий). При необходимости проверить достаточность тепловой кулинарной обработки мясного изделия определяют наличие или отсутствие в нем активной кислой фосфатазы.
В нативном белке пептидные группы экранированы внешней гидратной оболочкой или находятся внутри белковой глобулы и таким образом защищены от внешних воздействий. При денатурации белок теряет гидратную оболочку, что облегчает доступ пищеварительным ферментам желудочно-кишечного тракта к функциональным группам. Белок переваривается быстрее.
При денатурации белок теряет гидратную оболочку, в результате чего многие функциональные группы и пептидные связи белковой молекулы оказываются на поверхности и белок становится более реакционно-способным.
В результате тепловой денатурации белка происходит агрегирование белковых молекул. Поскольку гидратная оболочка вокруг молекулы белка нарушается, отдельные молекулы белка соединяются между собой в более крупные частицы и уже не могут держаться в растворе. Начинается процесс свертывания белков, в результате которого образуются новые молекулярные связи.
Взаимодействие денатурированных молекул белка в растворах и гелях протекает по-разному. В слабоконцентрированных белковых растворах при тепловой денатурации агрегация молекул белка происходит путем образования межмолекулярных связей как прочных, например дисульфидных, так и слабых (но многочисленных) — водородных. В результате образуются крупные частицы. Дальнейшая агрегация частиц приводит к расслоению коллоидной системы, образованию хлопьев белка, выпадающих в осадок или всплывающих на поверхность жидкости, часто с образованием пены (например, выпадение в осадок хлопьев денатурированного лактоальбумина при кипячении молока; образование хлопьев и пены из денатурирующих белков на поверхности мясных и рыбных бульонов). Концентрация белков в таких растворах не превышает 1 %.
В более концентрированных белковых растворах при денатурации белков образуется сплошной гель, удерживающий всю воду, содержащуюся в коллоидной системе. В результате агрегации денатурированных молекул белка образуется структурированная белковая система. Денатурация белков в концентрированных растворах с образованием сплошного геля происходит при тепловой обработке мяса, рыбы (белки саркоплазмы), куриных яиц и разных смесей на их основе. Точные концентрации белков, при которых их растворы в результате нагревания образуют сплошной гель, неизвестны. Учитывая, что способность к гелеобразованию у белков зависит от конфигурации (асимметрии) молекул и характера образующихся межмолекулярных связей, надо полагать, что для разных белков указанные концентрации различны.
Некоторые белки, представляющие собой более или менее обводненные гели, при денатурации уплотняются, в результате чего происходит их дегидратация с отделением жидкости в окружающую среду. Белковый гель, подвергшийся нагреванию, как правило, характеризуется меньшим объемом, массой, пластичностью, повышенной механической прочностью и большей упругостью по сравнению с исходным гелем нативных белков. Подобные изменения белков наблюдаются при тепловой обработке мяса, рыбы (белки миофибрилл), варке круп, бобовых, макаронных изделий, выпечке изделий из теста.
1.3 Деструкция белков
При тепловой обработке продуктов изменения белков не ограничиваются их денатурацией. Для доведения продукта до полной готовности необходимо нагревать его при температурах, близких к 100°С, более или менее продолжительное время. В этих условиях белки подвергаются дальнейшим изменениям, связанным с разрушением их макромолекул. На первом этапе изменений от белковых молекул могут отщепляться функциональные группы с образованием таких летучих продуктов, как аммиак, сероводород, фосфористый водород, оксид углерода. Накапливаясь в продукте и окружающей среде, эти вещества участвуют в образовании вкуса и аромата готовой пищи. При длительном гидротермическом воздействии часть белков может гидролизоваться с расщеплением пептидных связей. При этом происходит деполимеризация белковой молекулы с образованием азотистых водорастворимых веществ небелкового характера (свободных аминокислот, пептидов).
Деструкция коллагена мяса и рыбы приводит к образованию глютина — белка, растворимого в горячей воде. Аминокислотный состав глютина аналогичен составу коллагена. Как уже указывалось, размягчение мясных продуктов, птицы, рыбы и нерыбных продуктов моря при тепловой кулинарной обработке связано с деструкцией коллагена соединительной ткани, переходом его в глютин.
На переход коллагена в глютин влияют следующие технологические факторы:
а) температура среды; при жарке мяса, птицы, рыбы, когда температура в толще продукта не превышает 80 .850С, переход коллагена в глютин протекает медленно; в связи с этим кулинарная обработка методом жарки возможна только для таких частей туш, в которых коллагена содержится сравнительно мало и морфологическое строение соединительной ткани простое, коллагеновые волокна тонкие, располагаются параллельно направлению мышечных волокон; коллаген рыб подвергается деструкции значительно легче, чем мяса (говядины), поскольку соединительная ткань рыб имеет сравнительно простое морфологическое строение, в составе коллагена меньше оксипролина, он подвергается денатурации и деструкции при более низких температурах;
б) реакция среды; подкисление среды пищевыми кислотами или продуктами, добавками, содержащими эти кислоты, ускоряя переход коллагена в глютин;
в) измельчение мяса способствует снижению гидротермической устойчивости коллагена; это объясняется тем, что при измельчении мяса в мясорубке или рыхлении порционных кусков мяса волокна коллагена разрезаются на более мелкие фрагменты, поверхность контакта белка с окружающей средой многократно возрастает.
Наряду с перечисленными выше технологическими факторами на устойчивость коллагена к гидротермической дезагрегации влияют анатомо-морфологические признаки: в мясных тушах количество внутримышечной ткани и сложность ее строения возрастают по направлению от задней части к передней, а также сверху вниз. Таким образом, более жесткое мясо имеет и более низкую пищевую ценность, так как белки соединительной ткани являются неполноценными по аминокислотному составу.
1.4 Агрегирование белков
Агрегирование — это взаимодействие денатурированных молекул белка, которое сопровождается образованием более крупных частиц. Внешне это выражается по-разному в зависимости от концентрации и коллоидного состояния белков в растворе. Так, в малоконцентрированных растворах (до 1%) свернувшийся белок образует хлопья (пена на поверхности бульонов). В более концентрированных белковых растворах (например, белки яиц) при денатурации образуется сплошной гель, удерживающий всю воду, содержащуюся в коллоидной системе. Белки, представляющие собой более или менее обводненные гели (мышечные белки мяса, птицы, рыбы; белки круп, бобовых, муки после гидратации и др.), при денатурации уплотняются, при этом происходит их дегидратация с отделением жидкости в окружающую среду. Белковый гель, подвергнутый нагреванию, как правило, имеет меньший объем, массу, большую механическую прочность и упругость по сравнению с исходным гелем нативных (натуральных) белков.
Скорость агрегирования золей белка зависит от рН среды. Менее устойчивы белки вблизи изоэлектрической точки. Для улучшения качества блюд и кулинарных изделий широко используют направленное изменение реакции среды. Так, при мариновании мяса, птицы, рыбы перед жаркой; добавлении лимонной кислоты или белого сухого вина при припускании рыбы, цыплят; использовании томатного пюре при тушении мяса, создают кислую среду со значениями рН значительно ниже изоэлектрической точки белков продукта. Благодаря меньшей дегидратации белков изделия получаются более сочными.
Фибриллярные белки денатурируют иначе: связи, которые удерживали спирали их полипептидных цепей, разрываются, и фибрилла (нить) белка сокращается в длину. Так денатурируют белки соединительной ткани мяса и рыбы.
1.5 Пенообразование
Белки в качестве пенообразователей широко используют при производстве кондитерских изделий (тесто бисквитное, белково-взбивное), взбивании сливок, сметаны, яиц и др. Устойчивость пены зависит от природы белка, его концентрации, а также температуры.
Важны и другие технологические свойства белков. Так, их используют в качестве эмульгаторов при производстве белково-жировых эмульсий, как наполнители для различных напитков. Напитки, обогащенные белковыми гидролизатами (например, соевыми), обладают низкой калорийностью и могут храниться длительное время даже при высокой температуре без добавления консервантов. Белки способны связывать вкусовые и ароматические вещества. Этот процесс обусловливается как химической природой этих веществ, так и поверхностными свойствами белковой молекулы, факторами окружающей среды. При длительном хранении происходит «старение» белков, при этом снижается их способность к гидратации, удлиняются сроки тепловой обработки, затрудняется разваривание продукта (например, варка бобовых после длительного хранения). При нагревании с восстанавливающими сахарами белки образуют меланоидины.
2 Влияние способов и режимов тепловой обработки мяса и мясопродуктов на изменениеих физико-химических показателей и биологической ценности
2.1 Изменение белков мяса в процессе нагрева
Белковая молекула при нагреве подвергается сложным физико-химическим изменениям, прежде всего денатурации и коагуляции, глубина которых зависит от температуры, продолжительности тепловой обработки и некоторых других факторов. При изучении всех классов белков необходимо установить уровни организации их макромолекулярной структуры. Эти уровни принято именовать первичной, вторичной, третичной и четвертичной структурами белка. Под первичной структурой понимают вид, число и последовательность соединения аминокислотных остатков в полипептидной цепи белка, под вторичной — взаимосвязь и характер спирализации полипептидных цепей, под третичной — закономерное свертывание цепей, обладающих вторичной структурой в макромолекуле, под четвертичной — агрегацию макромолекул.
Любое изменение, рассматриваемое как взаимодействие белков друг с другом, предполагает предварительное разрушение этих связей, которыми они удерживаются в системе, и замену их другими. Образование новых случайных структур в сложных белковых системах представляется как следствие замены лабильных связей между белковыми частицами более стабильными связями. Если воздействие тех или иных факторов приводит к разрушению третичной или четвертичной стриктуры, то ослабляется защитное действие гидратационных слоев вблизи полярных группировок и образование новых более прочных структур становится неизбежным. Уменьшение гидрофильной и увеличение гидрофобной способности и, следовательно, снижение защитного (стабилизирующего) действия гидратационных слоев вблизи полярных группировок происходят в результате внутримолекулярной перестройки белковой молекулы при денатурации. В этих условиях происходит агрегирование белковых частиц за счет межмолекулярных сил и коагуляция белка.
В свете подобных представлений рассмотрим вопрос о сущности и механизме денатурации белков. Денатурация, — это любая модификация вторичной, третичной или четвертичной структуры белковой молекулы, за исключением разрыва ковалентных связей.
2.2 Влияние температуры и способа нагрева на скорость и температуру денатурации белков
Скорость тепловой денатурации зависит от температуры, влажности, способа нагрева и других факторов.
Денатурация тормозится при добавлении определенных веществ, таких, как пирофосфат, многоатомные спирты, сахара и Р-актин, хотя механизмы торможения различны. Скорость денатурации АТФазы увеличивается при расщеплении мышечного протеина в результате уменьшения размера, плотности и симметрии молекул. Скорость денатурации белков зависит и от некоторых других факторов. Например, денатурация фибриногена мочевиной ускоряется при увеличении концентрации мочевины и при понижении рН ниже 7, однако в интервале рН 7,0 .8,6 скорость реакции почти постоянна.
Присутствие тяжелой воды стабилизирует нативную структуру ферментов, обусловленную наличием водородных связей, уменьшая скорость инактивации.
В настоящее время установлено, что белки, входящие в состав мяса, денатурируют по мере достижения определенной для каждого белка температуры. Наиболее чувствителен к нагреву миозин. Температура денатурации, 0С: миозина 45 .50, актина 50, актомиозина 42 .48, миоальбуминов 45 .47, глобулина 50, миогена 50 .60, коллагена 58 .62, миопротеидов около 100. В интервале температур 45 .500С денатурирует основная часть структурных белков мышц. Саркоплазматические белки (миоген и миоглобин) денатурируют при более высоких температурах 55 .65°С. Наиболее устойчивы к денатурации миопротеиды (большая часть ферментов), а также гемоглобин, сывороточный альбумин, коллаген.
Установлено, что денатурация происходит ступенчато, т. е. при достижении белком определенной температуры он приобретает соответствующую структуру с определенными свойствами. Денатурация сывороточного альбумина кролика осуществляется через три ступени. Денатурация кристаллического альбумина проходит через 4 ступени: первая ступень наступает при температуре 60°С, вторая 61 .65°С, третья лежит между 65°С и 80°С, четвертая при температуре выше 85 °С.
2.3 Изменение заряженных групп и рН белков в процессе тепловой обработки мяса
В процессе тепловой денатурации и последующей коагуляции происходят структурные изменения белков, разрыв прежних и образование новых связей при участии водородных связей, сульфгидрильных, дисульфидных, кислых и основных групп белков и гидрофобных взаимодействий.
Р. Гамм показал, что нагрев мяса в воде от 20 до 70°С вызывает ступенчатое уменьшение числа карбоксильных групп в белках миофибрилл при существенно не изменяющемся количестве основных групп. Достоверные изменения кислых групп начинаются при температуре 400С. В интервале 40 .50°С количество их снижается, при 50 .55°С оно остается неизменным. При температуре выше 55°С число кислых групп продолжает уменьшаться, а при температуре около 60°С оно уменьшается очень значительно. Общее снижение числа кислых групп при нагревании до 70°С составляет 85 %. При температуре от 70 до 120 °С наряду с дальнейшим сокращением числа кислых групп начинается уменьшение числа основных.
Изменение соотношения заряженных (кислых и основных) групп в результате денатурации и постденатурационных превращений связано с изменением рН. В то же время установлен факт прямой корреляционной зависимости между значением рН сырья, водоудерживающей способностью и выходом готового продукта. Чем выше исходное значение рН сырья, тем лучше качество (сочность) готового продукта. Величина изменений рН зависит от температуры и способа нагрева, исходного значения рН сырого мяса.
На величину смещения рН влияет также анатомическое происхождение мышц.
С повышением температуры нагрева изменяется водоудерживающая способность и сдвигается изоточка фибриллярных белков к более высоким значениям рН, увеличивается число основных групп. При тепловой денатурации происходит также сдвиг изоточки к более высоким значениям рН, видимо, вследствие расщепления водородных связей и освобождения положительных дополнительных зарядов.
2.4 Изменение растворимости мышечных белков и дезагрегация белков соединительных тканей в процессе нагрева мяса
Растворимость белков — один из показателей, характеризующих их денатурационные изменения. Известно, что нагрев сопровождается уменьшением растворимости белков. Разорвавшиеся при денатурации внутримолекулярные связи взаимодействуют межмолекулярно, в результате чего происходит агрегирование частиц. Иными словами, денатурационные изменения макромолекул белка, изменяя поверхностный слой молекулы, ведут к нарушению соотношения гидрофильных и гидрофобных группировок в сторону повышения последних, что и приводит к уменьшению растворимости.
При традиционных методах нагрева выпадение саркоплазматических белков наблюдается при температуре около 40°С. причем наиболее сильно — при рН 5,5. Основная масса этих белков коагулирует в интервале 55 .65°С.
Имеются сведения о наличии термостойких белков: например, аденилкиназа выдерживает температуру около 100 °С.
Изменение коллагена под воздействием тепла — сложный процесс, складывающийся из двух этапов: сваривания и гидролиза коллагена. Коллаген является гликопротеидом, в котором содержание углеводов, связанных ковалентно, варьирует в зависимости от источника получения белка.
Растворимая часть коллагена — проколлаген, и нерастворимая — колластромин различаются температурами денатурации и характером денатурационных превращений. Денатурация проколлагена протекает в двух стадиях и заканчивается при температуре 36,5°С, образуя при этом гомогенную прозрачную массу, переходящую в раствор. Колластромин переходит в гомогенное состояние при более высокой температуре или при более длительном тепловом воздействии.
В интервале температур 62 .64°С при нагреве в воде происходит мгновенное сморщивание коллагеновых волокон, которые, складываясь втрое по отношению к своей первоначальной длине, превращаются в резиноподобную массу. В процессе сморщивания трехспиральная структура пептидных цепей отдельных молекул коллагена приобретает форму клубка. Однако неструктурированные пептидные цепи еще связаны ковалентными связями и не могут перейти в раствор.
В результате влажного нагрева коллагенсодержащих тканей образуются полидисперсные продукты распада. При медленном нагреве преобладают высокомолекулярные соединения, при интенсивном — соединения с меньшей молекулярной массой. При сваривании коллагена в раствор переходит около 60% содержащихся в ткани мукоидов.
На дезагрегацию коллагена в процессе нагрева влияют и некоторые другие факторы. Смешение рН мяса от изоэлектрической точки усиливает дезагрегацию, увеличение возраста животных от одного до полутора лет снижает ее примерно в 2 раза.
Таким образом, степень дезагрегации коллагена и образование продуктов распада зависят не только от температуры, до которой нагревается продукт, состояния и состава мяса, но и от скорости, а, следовательно, и способа нагрева.
2.5 Коагуляция белков и ее влияние на качественные изменения, и структуру мясопродуктов
Процесс нагрева белков сопровождается развертыванием глобул и высвобождением свободных радикалов, в связи с чем возникает возможность образования межмолекулярных связей, агрегации частиц и их осаждения, что ведет к уменьшению растворимости белков.
Внутренняя перестройка белковой молекулы — собственно денатурация— проявляется в агрегировании полипептидных цепей. Процесс агрегирования протекает в две стадии: укрупнение размеров частиц без выхода из раствора и последующая коагуляция. Агрегация денатурированных белковых молекул, или изменение их четвертичной структуры, являющаяся следствием предшествующей перестройки вторичной и третичной структур, сопровождается сокращением лиофильных центров белковой молекулы и снижением водоудерживающей способности мяса. Агрегация и коагуляция белков определяют образование непрерывного пространственного каркаса готового продукта.
Перестройка белковой молекулы при денатурации ухудшает гидрофильные и усиливает гидрофобные свойства ткани. Внутримолекулярные связи заменяются межмолекулярными, образуется нерастворимый сгусток, т. е. происходит коагуляция белков (из разбавленных растворов выпадают хлопья, из концентрированных — коагель). В результате денатурации и коагуляции мышечных белков прочностные свойства мяса возрастают, а сваривание коллагена и последующий его гидролиз, напротив, их ослабляют.
3 Влияние способов и режимов тепловой обработки рыбы и нерыбных продуктов моря на изменениеих физико-химических показателей и биологической ценности
При тепловой кулинарной обработке в мясе рыб протекают сложные физико-химические процессы: денатурация белков, образование новых вкусовых и ароматических веществ, разрушение некоторой части витаминов, превращения пигментов, выплавления жира и выход части его в окружающую среду.
Тепловая денатурация мышечных белков сопровождается уплотнением мышечных волокон, отделением некоторой части воды вместе с растворенными в ней экстрактивными и минеральными веществами. Тепловая денатурация коллагена и последующая за ней дезагрегация этого белка приводят к разрыхлению структуры мяса рыб. В отличие от мяса теплокровных животных коллаген мяса рыб менее устойчив к гидротермическому воздействию, денатурация его происходит при 40 °С. В соответствии с этим и переход коллагена в глютин происходит более быстрыми темпами и в более низком температурном интервале.
Формирование своеобразного вкуса и аромата рыбы, подвергнутой тепловой кулинарной обработке, связано со своеобразным составом экстрактивных, минеральных веществ и липидов. Специфический вкус приготовленной рыбы обусловлен сравнительно высоким содержанием азотистых экстрактивных веществ (9 .18 % общего азота мышц) и своеобразием их состава. В мясе морских рыб, как правило, содержится больше экстрактивных веществ, чем в мясе пресноводных рыб. Среди свободных аминокислот в мясе рыб мало глутаминовой кислоты, обладающей вкусом, свойственным говяжьему мясу, и очень много циклических аминокислот — гистидина, фенилаланина, триптофана. Гистидин в значительных количествах содержится в темном мясе морских рыб: в скумбрии до 280 мг/100 г, в тунцах до 400, в сайре до 500 мг/100 г. В процессе посмертного автолиза рыбы в результате ферментативного декарбоксилирования гистидин превращается в гистамин, обладающий высокой биологической активностью и токсичностью. В малых концентрациях (до 100 мг/кг) гистамин оказывает сосудорасширяющее действие на организм человека, одновременно стимулирует деятельность желудочно-кишечного тракта. В более высоких концентрациях гистамин может вызывать тяжелые пищевые отравления. В связи с этим океанических рыб, содержащих повышенное количество темного мяса (сайру, сардину, скумбрию и др.), после вылова сразу направляют на промышленную переработку (консервы, копчение).
Креатин и креатинин в мясе рыб содержатся в сравнительно небольших количествах. В мясе морских рыб из веществ этой группы обнаружен метилгуанидин, которого нет в мясе пресноводных рыб и теплокровных животных. Метилгуанидин в больших концентрациях токсичен.
В мясе большинства рыб содержится мало пуриновых оснований, производных имидазола и холина. Так, карнозина в мясе пресноводных рыб содержится 3 мг/100 г, а в говядине — 300 мг/100 г, холина — соответственно 2,5 и ПО мг/100 г.
В составе экстрактивных веществ мяса рыб содержатся значительные количества азотистых оснований. Они подразделяются на летучие и триметиламмониевые. Среди летучих оснований преобладают моно-, ди- и триметиламин и аммиак. В свежевыловленной морской рыбе триметиламина содержится 2 .2.5 мг/100 г, в пресноводной — 0.5 мг/100 г. Аммиака в морской рыбе содержится 3 .9 мг/100 г, в пресноводной — до 0,05 мг/100 г. При хранении охлажденной рыбы под действием микроорганизмов количество летучих оснований в мясе рыб может возрастать. Среди триметиламмониевых оснований преобладают триметиламиноксид и бетаины, в морской рыбе они содержатся в количествах соответственно 100 .1080 и 100 . 150 мг/100 г.
При варке на переход экстрактивных и минеральных веществ из рыбы в бульон оказывают влияние не только денатурация мышечных белков и их постденатурационные изменения, но и диффузия. Количество растворимых веществ, переходящих из рыбы 1 в бульон в результате диффузии, зависит от гидромодуля. В связи с этим порционные куски рыбы ценных пород обычно готовят припусканием с добавлением жидкости в количестве, не превышающем 30 % к массе рыбы. Образующийся при этом бульон используют для приготовления соусов.
В рыбных бульонах содержится в среднем 28 % экстрактивных и 24 % минеральных веществ. 48 % глютина. В бульонах, приготовляемых из рыбных отходов (голов, плавников, костей, кожи), содержание экстрактивных веществ не превышает 4 %, минеральных — 11%. Остальная часть сухого остатка бульона состоит из глютина (74 %) и эмульгированного жира. Существенные различия в составе бульонов из рыбы и рыбных отходов объясняются тем, что экстрактивные и минеральные вещества сосредоточены в основном в мышечных волокнах. Минеральные вещества костей представлены нерастворимыми в воде фосфатами и карбонатами кальция.
По качественному составу азотистых экстрактивных веществ рыбные бульоны существенно отличаются от мясных. В рыбных бульонах преобладают циклические (гистидин, триптофан, фенилаланин) и серосодержащие (цистин, цистеин, метионин, таурин) свободные аминокислоты. В бульонах из океанических рыб содержится метилгуанидин — сильное основание, в больших концентрациях оказывающее токсическое действие на живые организмы. К особенностям рыбных бульонов относится содержание в них значительных количеств аминов, среди которых важная роль принадлежит метиламинам и гистамину.
Содержащийся в мясе рыб креатин при тепловой кулинарной обработке частично превращается в креатинин, который вступает в химические реакции с продуктами карбониламинных реакций, свободными аминокислотами и сахарами с образованием гетероциклических ароматических аминов, обладающих сильным мутагенным и канцерогенным действием на живые организмы. В мясе беспозвоночных, не содержащем креатина, при тепловой кулинарной обработке гетероциклические ароматические амины не образуются.
Динамика выделения воды мясом крупного рогатого скота и рыбы при одних и тех же параметрах тепловой кулинарной обработки выглядит по-разному. В интервале температур 45 .75°С обезвоживание говядины и мяса рыбы идет интенсивно, причем в говядине — более быстрыми темпами. При температурах выше 75°С потери рыбой воды прекращаются, в то время как говядина теряет воду вплоть до достижения температуры 90 .95°С, что указывает на более низкие температурные границы денатурации и свертывания белков рыбы по сравнению с мышечными белками теплокровных животных.
Сравнительно небольшие потери воды мясом рыб при тепловой кулинарной обработке объясняются особенностями его химического состава и гистологического строения: высоким содержанием белков актомиозинового комплекса в миофибриллах мышечных волокон; простым строением перимизия мышц; сравнительно низкой температурой денатурации и деструкции коллагена внутримышечной соединительной ткани. Тепловая денатурация мышечных белков сопровождается слабой их дегидратацией. Вода, отделяемая белковыми гелями мышечных волокон и поступающая в пространство между пучками мышечных волокон, слабо выпрессовывается в окружающее пространство из-за незначительной деформации внутримышечных соединительнотканных образований мышц рыбы и сравнительно быстрой желатинизации коллагена. В результате этого мясо рыб при тепловой обработке теряет не более 25 % содержащейся в ней воды.
При варке, жарке и при СВЧ-нагреве потери массы рыбы практически одинаковые. При жарке рыбы ИК-лучами потери массы снижаются на 4 .5 % благодаря повышенной проникающей способности инфракрасного излучения и сокращению продолжительности тепловой обработки.
Исследования белков мышечной ткани сырой и подвергнутой тепловой кулинарной обработке рыбы показало, что изменения направлены на значительное уменьшение растворимости миофибриллярных белков по сравнению с белками саркоплазмы, возрастание в 3 .3,5 раза количества денатурированных белков и азотистых растворимых веществ, в том числе белковой природы, в связи с переходом коллагена в глютин.
4 Влияние процессов изменения белков и других азотистых веществ на качество кулинарной продукции из мяса и рыбы
Тепловая денатурация белков оказывает большое влияние на качество готовой продукции. При прочих равных условиях реологические характеристики белковых гелей, подвергнутых нагреванию, зависят от рН среды, температуры и продолжительности теплового воздействия.
При значениях рН среды, близких к изоэлектрической точке белка, денатурация происходит при более низкой температуре и сопровождается максимальной дегидратацией белка. Смещение рН среды в ту или иную сторону от изоэлектрической точки белка способствует повышению его термостабильности. Так, выделенный из мышечной ткани рыб глобулин X, имеющий изоэлектрическую точку при рН 6, в слабокислой среде (рН 6,5) денатурирует при 50°С, а в нейтральной (рН 7,0) — при 80°С.
Активная кислотность среды оказывает большое влияние на гидратацию и денатурацию белков, поэтому в технологии производства продуктов общественного питания направленное изменение реакции среды широко используют для улучшения качества блюд и кулинарных изделий. Так, при припускании мяса, птицы, рыбы и нерыбных продуктов моря, тушении мяса птицы, рыбы, мариновании мяса (перед жаркой) путем добавления приправ, содержащих кислоту, создают более кислую среду со значениями рН, лежащими значительно ниже изоэлектрической точки белков продукта. В этих условиях при тепловой обработке дегидратация белковых гелей уменьшается, и готовый продукт получается более сочным.
В кислой среде деструкция коллагена ускоряется, вследствие чего сокращается продолжительность тепловой обработки, а готовый продукт становится более нежным. Хорошее качество кулинарной продукции достигается при использовании лимонного сока или сухого виноградного вина, смешанных с водой в соотношении 1:1. При мариновании мясных и рыбных полуфабрикатов указанную смесь используют в количестве 5 .10% к массе сырья, а при припускании и тушении — до 30%. При замене натуральных продуктов кристаллической кислотой (лимонной или винной) используют 0.3%-ный водный раствор этих кислот. Кислая среда ускоряет деструкцию коллагена и способствует получению сочных мясных и рыбных продуктов благодаря их меньшему обезвоживанию.
Нагревание продуктов до более высоких температур и увеличение продолжительности их тепловой обработки способствуют усилению постденатурационных изменений содержащихся в них белков. Важное практическое значение в технологии приготовления пищи имеют верхние температурные пределы стабильности белков. Знание этих пределов позволяет точно определить, до какой температуры можно нагревать продукт, не допуская денатурации содержащихся в нем белков. Содержащиеся в мясе рыб белки начинают денатурировать при более низких температурах, чем белки убойного скота.
Температура денатурации белков повышается в присутствии других, более термостабильных белков и некоторых веществ небелковой природы, например сахарозы. Это свойство используют в технологических процессах, когда при тепловой обработке необходимо повысить температуру смеси (например, для пастеризации мороженого), не допуская расслоения или структурообразования в белковой коллоидной системе. Тепловая денатурация некоторых белков может происходить без видимых изменений белкового раствора. Это наблюдается у белков, содержащихся в продуктах в связанном состоянии (например, казеин молока), а также в очень кислой и очень щелочной средах.
В результате денатурации увеличивается атакуемость белков пищеварительными ферментами, а, следовательно, и их усвояемость. В пищевых продуктах, доведенных тепловой обработкой до готовности, всегда содержится большее или меньшее количество нативных, неденатурированных белков, в том числе некоторых ферментов.
Продукты деструкции белков придают пище соответствующие вкус и аромат. Например, в образовании вкуса и запаха некоторых продуктов принимают участие серо- и фосфорсодержащие соединения. Серосодержащие аминокислоты, входящие в состав белка, при деструкции выделяют сероводород, образуются и другие соединения — меркаптаны (при тепловой обработке мяса, яиц, картофеля, капусты) и дисульфиды (при варке капусты, картофеля, брюквы). Серосодержащие соединения играют ведущую роль в формировании запаха вареного мяса. Так, в летучих компонентах вареного мяса обнаружено более 25 серосодержащих веществ. При тепловой обработке мяса, яиц, картофеля, капусты фосфатиды и фосфопротеиды при деструкции расщепляются с образованием фосфина (РН3).
В некоторых случаях деструкцию белков с помощью протеолитических ферментов используют специально для интенсификации технологического процесса, улучшения качества готовой продукции, получения новых продуктов питания. Примером может служить применение препаратов протеолитических ферментов (порошкообразных, жидких, пастообразных) для размягчения жесткого мяса, ослабления клейковины теста, получения белковых гидролизатов.
Заключение
В меню предприятий общественного питания входит группа блюд из мяса и рыбы. Они обладают высокой пищевой ценностью, так как содержат белки, жиры, витамины и минеральные вещества, участвующие в обмене веществ.
При приготовлении блюд из мяса и рыбы следует правильно выбирать вид тепловой обработки, так как именно при тепловой обработке пищевые вещества, входящие в состав мяса и рыбы, подвергаются ряду изменений, формирующих вкус, аромат и качество блюд. Белки подвергаются гидратации, дегидратации, денатурации, деструкции, агрегированию.
На органолептические показатели качества кулинарных изделий из мяса и рыбы, кроме вида тепловой обработки, влияют температура, продолжительность тепловой обработки, механическая и гидромеханическая обработка сырья, применение различных способов маринования, использование специй, приправ и ферментов.
Библиографический список
1. Технология продукции общественного питания. В двух томах. Том 1. Физико-химические процессы, протекающие в пищевых продуктах при их кулинарной обработке / А.С. Ратушный, В.И. Хлебников, Б.А. Баранов и др. – М.: Мир, 2003. – 351с: ил.
2. Технология приготовления пищи / Н.И. Ковалев, М.Н. Куткина, В.А. Кравцова – М.: Издательский Дом «Деловая литература», Издательство «Омега-Л», 2005. – 480 с.
3. Пищевая химия / А.П. Нечаев, С.Е. Траубенберг, А.А. Кочеткова и др. – СПб.: ГИОРД, 2004. – 640 с.
4. Профессиональные кулинарные журналы: «Питание и общество», «Шеф», «Гастроном».
5. www.izosoft.ru
6. www.daler.ru
Приложения