Проектирование режущего инструмента Оглавление. 1. Задание – 2. Расчет фасонного резца – 2.1 Расчет диаметра заготовки. 2.2 Расчет координат узловых и промежуточных точек фасонного профиля резца – 3. Технология изготовления детали на шести шпиндельном токарном автомате модели 1265-6 – 4. Установка фасонного резца на станке – 10. 4.1
Спецификация – 5. Проектирование спирального сверла – 6. Проектирования зенкера – 7. Проектирование зенковки – 8. Проектирования развртки – 9. Проектирование резца – 10. Проектирование фрез – 1. Проектирование торцевой насадной фрезы – 2. Проектирование концевой фрезы – 19. 10.3.
Проектирование дисковой трхсторонней фрезы – 11. Литературные источники – 21. Рассчитать размер фасонного профиля и конструктивные размеры резца для обработки детали 79168 в условиях массового производства. Сталь А12, HB 207, проектирование режущего инструмента. 2. Расчет фасонного резца. Деталь изготавливаем из сортового проката круглого поперечного сечения по
ГОСТ 2590-2.1 Расчет диаметра заготовки. dзаг dдет max2zmin , где dзаг диаметр заготовки dдет max максимальный диаметр обрабатываемой детали zmin – минимальный припуск на обработку. Расчет минимального припуска на обработку. 2Zmin2Rzhi-1 2i-12i, где Rzi-1 – высота неровностей профиля на предшествующем переходе Hi-1 – глубина дефектного поверхностного слоя на предшествующем переходе i-1 – суммарные отклонения
расположения поверхностей на предшествующем переходе i -погрешность установки заготовки на выполненном переходе. Расчет слагаемых входящих в формулу минимального припуска. Качество поверхности сортового проката. Rz 160 мкм h 250 мкм Суммарное отклонение расположения поверхности 2к2ц, где к общее отклонение оси от прямолинейности ц смещение оси заготовки в результате погрешности центрирования стр.41 таб.12 к l к , 2к0.25 где к кривизна профиля сортового проката 1, стр.180, таб.4 к 0.5 мкм к 600.50.5 60 мкм ц 20 мкм, 63,2 мкм. Погрешность установки заготовки 1, стр.42, таб.13 280 мкм тогда min припуск на обработку равен 2zmin 2Rzhi-12i-12i 2160250287.1 1394мкм1.39 мм тогда диаметр заготовки равен dзаг401.3941.39 мм. В качестве заготовки выбираем сортовой прокат диаметром 42мм по 1, стр.69 таб.62 ГОСТ 2590-71. Обоснование типа фасонного резца. Выбираю призматический резец с базовой точкой на высоте
линии центров, так как на обрабатываемой детали есть протяженная сферическая поверхность. Призматический радиальный резец с базовой точкой на линии центров имеет меньшую погрешность по сравнению с круглыми резцами. Обоснование выбора материала режущей части и корпуса фасонного резца 2, стр.115 таб.2. При обработке сталей экономически выгодно использовать резцы из следующих марок быстрорежущих сталей Р18, Р6М5Ф3, Р6М5, Р9К10, Р10К5Ф5 и т.д. Выбираем марку быстрорежущей стали,
Р6М5. Для экономии быстрорежущей стали, резец делаем составным неразъемным, сваренным, с помощью контактной сварки оплавлением. Крепежную часть призматического резца изготавливают из стали – 40Х. Обоснование выбора геометрических параметров фасонного резца. Принимаем по таблице для стали – А12 твердостью НВ207 4, стр.112,113 10, 23 т.к. 812о, 2025о. Расчет координат узловых и промежуточных точек фасонного профиля детали.
Определим координаты точки 3. Для этого запишем уравнения окружности l-282r2202 и уравнения прямой r18. Совместное решение этих уравнений дат координаты точки l3 9.2822 r318. Определим координаты точки 4. Они получаются из уравнений окружности l-282r2202 и уравнения наклонной прямой rklb r-tg165o27, где b27 из уравнения для точки 5 1160tg165оb. Совместное решение этих уравнений дат координаты точки l4 16.415 r439.191. Скорость резания VVтаблК1К2К3 К1 коэффициент, зависящий от обрабатываемого материала К2 коэффициент, зависящий от стойкости инструмента К3 коэффициент, зависящий от диаметра обрабатываемого прутка для фасонных резцов Vтабл 73 К1 0.75 К2 0.75 К3 1.0 V 730.750.751.041.1 ммин. Частота вращения n 1000Vрd 278 обмин, по паспорту станка 270 обмин.
Основное технологическое время tо tо LnS 19,442700.03 2,4 мин. l максимальная глубина профиля, l 19,44мм. Количество деталей на один резец К1 ТЕto 40802,4 1700 детали. Количество деталей на программу Кп ПКаК1 10 1.151700 676 резца Ка коэффициент аварийного запаса, Ка1,15 2. Технология изготовления детали на шести шпиндельном токарном автомате модели 1265-6. 1. Подрезка торца и зацентровка. рис.
1 2. Сверлить отверстие 12, обработка черновым фасонным резцом профиля. рис. 2 3. Зенкеровать отверстие . рис. 3 4. Развртывание Н7. рис. 4 5. Обработка зенковкой фаски, изготовление чистовым фасонным резцом профиля детали. рис. 5 6. отрезка детали. рис. 6 4. Установка фасонного резца на станок. Фасонные резцы для обработки наружных поверхностей с радиальным направлением подачи устанавливают в
специальных державках на поперечных суппортах станков. Конструкция державки должна обеспечивать возможность смены и регулеровки резца и минимально допустимый вылет прутка из зажимной цанги. На листе 1 данного курсового проекта показана державка призматического резца для позиций 2 и 5 шести шпиндельного автомата 1265 – 6. Регулировка размера 65-0.02 осуществляется при помощи ослабления винтов 15 и регулировки вылета
резца винтом 16, а затем затягиванием винтами 15. Осевая регулировка резца осуществляется следующим образом отпускаются крепжные винты 12 и 13, винтом 7 регулируется осевой размер, и затем затягиваются крепжные винты. При регулировки резца в радиальном направлении отпускаются крепжные винты 12, а положение опоры фиксируется винтом 13. Для более точной регулировки предусмотрен винт 6 см. спецификацию. Фасонные резцы для обработки наружных поверхностей с радиальным направлением подачи устанавливают в специальных державках на поперечных суппортах станков. Конструкция державки должна обеспечивать возможность смены и регулировки резца и минимально допустимый вылет прутка из зажимной цанги. 5. Проектирование спирального сверла. Обоснование использования инструмента. Спиральное сверло 12 предназначено для сверления глухого отверстия диаметра 12 мм на глубину 65мм в заготовке детали 79168.
Обоснование выбора материала режущей и хвостовой части сверла. Для экономии быстрорежущей стали все сверла с цилиндрическим хвостовиком диаметром более 8 мм и сверла с коническим хвостовиком более 6 мм изготовляются сварными. В основном, сверла делают из быстрорежущих сталей. Твердосплавные сверла делают для обработке конструкционных сталей высокой твердости 45 56HRC, обработке
чугуна и пластмасс. Исходя из твердости обрабатываемого материала 207 НВ, принимаем решение об изготовлении сверла из быстрорежущей стали Р6М5 ГОСТ 19265-73. Крепежную часть сверла изготовим из стали 40Х ГОСТ 454-74. Обоснование выбора геометрических параметров сверла. Задний угол . Величина заднего угла на сверле зависит от положения рассматриваемой точки режущего лезвия.
Задний угол имеет наибольшую величину у сердцевины сверла и наименьшую величину – на наружном диаметре. Рекомендуемые величины заднего угла на наружном диаметре приведены в 2, стр.151, табл.44. По этим рекомендациям выбираем . 8. Передний угол. Также является величиной переменной вдоль режущего лезвия и зависит, кроме того, от угла наклона винтовых канавок и угла при вершине 2. Передняя поверхность на сверле не затачивается и величина переднего угла
на чертеже не проставляется. Угол при вершине сверла. Значение углов 2для сврл, используемых для различных обрабатываемых материалов приведены в 2, стр.152, табл.46. По этим рекомендациям принимаем 2118. Угол наклона винтовых канавок. Угол наклона винтовых канавок определяет жесткость сверла, величину переднего угла, свободу выхода стружки и др. Он выбирается в зависимости от обрабатываемого материала и диаметра сверла. По 6,табл.5 назначаем 30. Угол наклона поперечной кромки. При одном и том же угле определенному положению задних поверхностей соответствует вполне определенная величина угла и длина поперечной кромки и поэтому угол служит до известной степени критерием правильности заточки сверла. По рекомендациям 2, стр152, табл.46 назначаем 45. Расчет, назначение конструктивных размеров сверла.
Спиральные сверла одного и того же диаметра в зависимости от серии бывают различной длины. Длина сверла характеризуется его серией. В связи с тем, что длина рабочей части сверла определяет его стойкость, жесткость, прочность и виброустойчивость, желательно во всех случаях выбирать сверло минимальной длины. Серия сверла должна быть выбрана таким образом, чтобы lо ГОСТ lо расч. Расчетная длина рабочей части сверла lо , равна расстоянию от вершины сверла до конца
стружечной канавки, может быть определена по формуле lо lр lвых lд lв lп lк lф, где lр – длина режущей части сверла lр 0.3dсв 0.312 3.6 мм lвых – величина выхода сверла из отверстия lвых 0 т.к. отверстие глухое lд – толщина детали или глубина сверления, если отверстие глухое lд 65 мм lв – толщина кондукторной втулки lв 0 lп – запас на переточку lп l i 1, где l – величина, срезаемая за одну переточку, измеренная в направлении оси, l 1 мм. i – число переточек i 40 lп 1401 41 мм lк – величина, характеризующая увеличение
длины сверла для возможности свободного выхода стружки при полностью сточенном сверле lф – величина, характеризующая уменьшение глубины канавки, полученной при работе канавочной фрезы lк lф 1.5dсв 1.512 18 мм, тогда l0 3.6 0 65 0 41 18 127.6 мм. В соответствии с ГОСТ 12121-77 Сверла спиральные из быстрорежущей стали с коническим хвостовиком уточняем значения l0 и общей длины L l0 ГОСТ 140 мм L 220 мм. Положение сварного шва на сверле lс l0 2 3 143 мм. Диаметр сердцевины сверла dс выбирается в зависимости от диаметра сверла и инструментального материала 6, стр.12 dс 0.15dсв 0.15 12 1.8 мм. Ширина ленточки fл 0.45 0.32sqrtdс 0.7 мм. Высота ленточки hл 0.05 0.025dс 0.4 мм. Хвостовик сверла выполняется коническим – конус Морзе 1 АТ8 ГОСТ 2848 – 75 6, табл.2 и 3. Центровые отверстия на сверлах изготовляются в соответствии с ГОСТ 14034-74 6, рис.5. Определение количества переточек.
Общая длина стачивания lо lk – lвых – Д – lр, где lвsх величина, характеризующая увеличение длины сверла для возможности свободного выхода стружки при полностью сточенном сверле lр длина режущей части сверла lр 0.3dсв 0.312 3,6 мм lк длина стружечной канавки 10 мм lо 130-30-10-3,686,4 мм. Число переточек n lol 86,40,8 108 переточка. l величина стачивания за одну переточку. 6. Проектирования зенкера. Обоснование использования инструмента.
Зенкер предназначен для обработки отверстия в литых деталях или штампованных деталей, а также предварительно просверленных отверстий с целью повышения точности и увеличения шероховатости поверхности отверстия. В техническом процессе зенкер, как правило, выполняет промежуточную операцию между сверлением и развртыванием. Зенкерованием получают отверстие точностью Н11 с шероховатостью до Rz2,5мкм. Зенкерованием можно исправить искривление оси отверстия.
Обоснование выбора материала режущей части резца. В металлообработке используется большое количество различных типов зенкеров. Рассмотри зенкер из быстрорежущей стали, с коническим хвостовиком, диаметр D17.9мм, ГОСТ12489-71, тип зенкера 1 7, Табл.2. Выбора материала режущей части и хвостовика зенкера 2, стр.115 таб.2, при обработке сталей, экономически выгодно использовать зенкер из следующих марок быстрорежущих сталей Р18, Р6М5Ф3, Р6М5, Р9К10, Р10К5Ф5 и т.д. Выбираем марку быстрорежущей стали Р6М5, ГОСТ 19256-73. Для экономии быстрорежущей стали, зенкер делаем составным неразъемным, сваренным, с помощью контактной сварки оплавлением. Хвостовик изготавливают из стали 40Х ГОСТ 454-74. Геометрические параметры режущей части. Задний угол переменный, увеличивается с уменьшением радиуса.
Вспомогательный задний угол 8o, что обуславливает неблагоприятные условия резанья для вспомогательной режущей кромки. Передний угол . Передний угол на рабочих чертежах зенкеров обычно не указывается, поскольку он определяется конструктивной формой режущей части Главный угол в плане 60o. Угол наклона канавок . Рекомендуемый угол наклона стружечной канавки у цельного хвостового быстрорежущего зенкера 20o Угол наклона главной режущей кромки обычно задается на рабочих
чертежах на торцевом виде. Для быстрорежущих хвостовых зенкеров угол 10 12. Назначаем угол 10. Расчет, назначение конструктивных размеров зенкера. Конструкция зенкера имеет много общего с конструкцией сверла, особенно это, относится к зенкерам типа 1, 3. Более высокая жсткость конструкции, увеличение по сравнению со сверлом числа зубьев и соответственно центрующих ленточек обеспечивают лучшее направление зенкера в процессе работы и более высокое качество
обработанной поверхности. Количество зубьев зенкера Z зависит от типа зенкера и его диаметра, в данном случае Z3 7, Табл. 3. Хвостовые зенкеры изготавливаются сварными, положение сварного шва задатся размером lc60мм. Хвостовик для зенкеров типа 1, 3 и 6 состоит из конической базовой поверхности, служащей для центрирования зенкера и передачи крутящего момента, и лапки. Лапка предохраняет хвостовик зенкера от проворачивания в шпинделе станка в случае, когда момент сил трения на конической поверхности оказываются меньше сил резанья. Такая ситуация возникает при врезание зенкера в заготовку. Хвостовик выполнен в форме конуса Морзе 2 7, Табл.5, его размер выбирается по АТ8 ГОСТ 2848-75. Для изготовления последующих переточек хвостовой зенкер снабжн центровым отверстием формы В по ГОСТ 14034-75. Допуск на изготовление конических базовых поверхностей зенкера выбираются
по ГОСТ 2848-75. Исполнительный размер диаметра зенкера D устанавливается с ГОСТ 12509-75. Предельные отклонения для D17,9мм верхнее -0,210, нижнее – -0,237 7, Табл.6. Допуск на диаметр зенкера рассчитывается из условия обработки отверстия по одиннадцатому квалитету. Dd0T0-P, где D диаметр зенкера d0 номинальный диаметр отверстия
T0 допуск изготовление отверстия Р разбивка отверстия Tз допуск на изготовление зенкера. Длина стружечной канавки lк l1 l2 l3 l4 l5, где l1- допустимое стачивание l1 l n где l – стачивание за одну переточку l 1.3 7,табл.4 n – количество переточек n 45 7,табл.4, тогда l1 1.3 45 58.5 мм l2 – выход зенкера из обрабатываемого отверстия l2 3 мм 7,стр.8 l3 – длина отверстия l3 40 мм l4 – длина кондукторной втулки l4 0 l5 – минимально допустимая длина канавки для свободного
выхода стружки 7,стр.8 l5 1.5 d 1.5 20 30 мм lк 58.5 3 40 30 131.5 мм. Уточняем lк по ГОСТ 12489-71 lк lк ГОСТ 80 мм, а общая длина сверла L 174мм. Положение места сварки lс 60мм. Профиль стружечных канавок. Форма и размеры стружечных канавок зенкеров должны, с одной стороны, обеспечивать размещение и свободный отвод стружки, а с другой достаточную жесткость зенкеров.
Кроме того, форма и расположение стружечной канавки, определяют форму передней поверхности и значение переднего угла. При выборе стружечной канавки необходимо учитывать ее технологичность. По рекомендациям 7, стр.24-25 выбираем трех радиусную форму канавки. Этот профиль обеспечивает благоприятные условия для образования и завивания стружки, он также достаточно технологичен. 7. Проектирование зенковки. Одной из разновидностей операции зенкерования является операция образования цилиндрических ступенчатых, конических и торцевых поверхностей, выполняемых специальным осевым инструментом зенковками. Зенковка коническая предназначена для изготовления фаски 2х45 в отверстии 18. Обоснование выбора геометрических параметров зенковки. Геометрические параметры режущей части заданы в сечении перпендикулярном режущей кромке величиною заднего угла шириной фаски f и углом заострения зуба . По рекомендациям 7, стр.30 выбираем 12 f 1.2 40.
Исходя из назначения зенковки, угол при вершине 2 90. Число зубьев зенковки 7, стр.22 z 8. Берм зенковку типа 9, ГОСТ 14253-80 с углом при вершине 90о, с коническим хвостовиком в форме конуса Морзе 3 7, Табл.5, его размер выбирается по АТ8 ГОСТ 2848 – 75. Обоснование выбора материала режущей и крепежной части.
Выбора материала режущей части и хвостовика зенковки 2, стр.115 таб.2, при обработке сталей, экономически выгодно использовать зенковки из быстрорежущей стали Р6М5 ГОСТ 19256-73. Для экономии быстрорежущей стали, зенковки делают составным неразъемным, сваренным, с помощью контактной сварки оплавлением. Хвостовик изготавливают из стали 40Х ГОСТ454-74. Хвостовик выполнен в форме конуса Морзе 2 7,
Табл.5, его размер выбирается по АТ8 ГОСТ 2848-75. Для изготовления последующих переточек хвостовой зенкер снабжн центровым отверстием формы В по ГОСТ 14034-75. Допуск на изготовление конических базовых поверхностей зенкера выбираются по ГОСТ 2848-75. 8. Проектирования развртки. Обоснование использования инструмента. Развертка предназначена для обработки отверстия с целью повышения его точности до 7 квалитета и уменьшения
шероховатости до Ra 2.5. Обоснование выбора материала режущей и крепежной части. Исходя из твердости обрабатываемого материала – 207НВ, принимаем решение об изготовлении развертки из быстрорежущей стали Р6М5 ГОСТ 19265-73. Крепежную часть развертки изготовим из стали 40х ГОСТ 454-74. Обоснование выбора геометрических параметров развертки. Передний угол . Передний угол для подавляющего большинства разверток . Это способствует укреплению режущего лезвия, уменьшает радиус округления режущего и увеличивает стойкость разверток. Задний угол . Задний угол измеряется в плоскости перпендикулярной режущему лезвию. Величина заднего угла 6 10. Учитывая, что меньшие значения соответствуют окончательному развертыванию, принимаем 10. Главный угол в плане По рекомендациям 8, стр.9 выбираем 15. Угол наклона канавок. Большинство типов разверток изготовляются прямозубыми с 0 8, стр.9.
Расчет и назначение конструктивных размеров развертки. Количество зубьев развертки принимается обычно четным. Количество зубьев можно определить по формуле z 1.5sqrtd 2 4 1.5sqrt24 2 4 8. Для получения высокого класса шероховатости обработанной поверхности рекомендуется угловой шаг делать неравномерным 6,стр.4. Исполнительный размер диаметра развертки.
Исполнительный размер диаметра развертки устанавливается в зависимости от допуска на развертываемое отверстие. Установление допуска на развертку производится в соответствии со схемой на рис.11. р 0 domin рис.11 Наибольший диаметр развертки dmax определяется по формуле dmax domin – а, где domin – наименьший диаметр отверстия р – допуск на изготовление отверстия а – максимальная величина разбивки а1 – минимальная величина разбивки – допуск на износ и перешлифовку развертки 0 – допуск на изготовление развертки.
В соответствии с ГОСТ 13779-77, устанавливающим допуски на исполнительный диаметр разверток, получим 0,015 0,008 Профиль стружечных канавок. Форма и размеры стружечных канавок не играют особенно большой роли, поскольку объем снимаемого металла незначителен. Форму заточки и профиль стружечных канавок принимаем в соответствии с 8, стр.10. Хвостовик развертки выполняется коническим – конус Морзе 3 АТ8 ГОСТ 2848 – 75. 8, табл.2 и 3. Центровые отверстия в развертке изготовляются в соответствии с ГОСТ 14034-74 8, рис.4. 9. Проектирование резца. Обоснование использования инструмента. Подрезной резец с пластиной из тврдого сплава ГОСТ 18893-73 предназначен для подрезки торца на заготовке детали. Обоснование выбора материала резца. Режущая часть резца выполнена из тврдого сплава Т15К6 для более долгого использования резца. Крепежную часть изготовлена из стали 40х
ГОСТ 454-74. Пластинка припаяна к основанию с помощью припоя маки Пр. МНМц68-4-2, толщина которого равна 0,1мм. Разрыв слоя припоя не должен превышать 20 его длинны. Расчет, назначение конструктивных размеров резца. Конструктивные размеры резца выбираются по ГОСТ 18893 73, т. е. 25X20X140, высота режущей кромки от базы резца h 0,71H 0,7125 25мм 11,
Резцы. Обоснование выбора геометрических параметров резца. Задний угол . Для тврдосплавного резца важно знать правильное значение угла по сравнению с резцами из быстрорежущей стали примерно в 3 раза меньше 68 11, Лекция 7, принимаем 8. Для более точного определения угла необходимы дополнительные исследования. Задняя поверхность инструмента выполняется из 3-х поверхностей первая плоскость рабочая, длинной l 3мм,
с углом 8 следующая плоскость выполнена с углом 210 треть плоскость выполнена с углом 412 11, Лекция15. Такое расположение плоскостей сделано для различных шлифовальных кругов, чтобы каждый круг работал по своему назначению и не выходил из строя. Передний угол . Передний угол зависит от механических свойств материала инструмента и влияет на износостойкость, чем больше , тем меньше износостойкость. С другой стороны угол влияет на силу резанья, чем больше угол
,тем меньше сила резанья. Так же как и для задней поверхности, переднюю поверхность делают из трх частей с углами 8, 28, 412 11, Лекция15. Главный угол в плане Для подрезного резца выбираем угол 15. Вспомогательный угол . Вспомогательный угол определяет шероховатость обработанной поверхности, по этому берут 010, принимаем 5. Радиус закругления режущей кромки 0,05мм. Переточка резца. Переточка резца осуществляется шлифовальными кругами по задней поверхности. В первую очередь затачивается дополнительный задний угол по державке шлифовальным кругом с основой из электрокорунда белого. Затем затачивается дополнительный задний угол по пластине шлифовальным кругом на алмазной основе с металлической связкой М5. И в конце затачивают задний угол по фаске шириной 1.5 мм. на отрезном резце и 3 мм. на подрезном резце алмазным кругом на бакелитовой связке
Б156 без охлаждения. Заточка дополнительных задних углов производится с СОЖ. 10. Проектирование фрез. Фрезой называется лезвийный инструмент для обработки с вращательным движением резания инструмента Dг без возможного изменения радиуса траектории этого движения и хотя бы с одним движением подачи Ds, направление которого не совпадает с осью вращения. Название фрез устанавливается исходя из какого-либо наиболее определяющего признака или области применения,
или конструктивной особенности. 10.1. Проектирование торцевой насадной фрезы. Обоснование использования инструмента. Торцевая насадная фреза предназначена для обработки плоской поверхности корпуса поз.1 державки фасонного резца шириной В 60мм. Обоснование выбора материала фрезы. Исходя из твердости обрабатываемого материала – 207НВ, принимаем решение об изготовлении фрезы из быстрорежущей стали
Р6М5 ГОСТ 19265-73. Расчет, назначение конструктивных размеров фрезы. Диаметр фрезы D 1,2 B 1,2 60 75мм, где В – ширина обрабатываемой поверхности, Уточняем значение D по ГОСТ 9304 69 2, стр.187, табл.92 D DГОСТ 80 мм. dо – диаметр базового отверстия dо 32мм, h – высота зуба фрезы. Примем одно-угловую форму зуба для которой h 2 2 16мм.
Уточняем значение h по ГОСТ 9304-69 h 16мм. hс – толщина стенки. Принимаем hс 10 мм, Число зубьев фрезы z 0,12 D 0,12 80 9,6, уточняем значение z ГОСТ 9304-69 Z10. Обоснование выбора геометрических параметров фрезы. Для одно-угловой формы зуба принимаем следующие значения геометрических параметров 16, 10, 25, r 0.8мм, f 2, fл 0.1мм. У торцевых насадных фрез периферийные зубья винтовые с углом 1025. 10.2. Проектирование концевой фрезы. Обоснование использования инструмента. Фреза предназначена для обработки пазов в детали поз.4 державке фасонного резца рейки под болты поз.12. D14мм, уточняем значение D по ГОСТ 17025-71 2, стр.174, табл.65 D DГОСТ 14 js9. Обоснование выбора материала фрезы. Исходя из твердости обрабатываемого материала – 207НВ, принимаем решение об изготовлении фрезы из быстрорежущей
стали Р6М5 ГОСТ 19265-73. Расчет, назначение конструктивных размеров фрезы. Диаметр фрезы определяется из назначения. Придельные отклонения фрезы не должны быть более наружного диаметра js 9, диаметра цилиндрического хвостовика h8. Число зубьев Z берм по ГОСТ 17025-71 Z 4 10, стр. 25. Высота зуба H 1, 1, 3,85мм Посадочный диаметр цилиндрического хвостовика равен рабочему диаметру фрезы,
т.е. D 14h8. Обоснование выбора геометрических параметров фрезы. Угол наклона стружечной канавки 3045о, берм о 10, стр. 27. Концевая фреза бертся нормально заточенной 16, 10, fл 0,05мм. 10.3. Проектирование дисковой трхсторонней фрезы. Обоснование использования инструмента. Дисковая, трхсторонняя фреза предназначена для изготовления паза
в державке фасонного резца шириной В18мм с посадкой H9h8. Обоснование выбора материала фрезы. Исходя из твердости обрабатываемого материала – 207НВ, принимаем решение об изготовлении фрезы из быстрорежущей стали Р6М5 ГОСТ 19265-73. Расчет, назначение конструктивных размеров фрезы. Длина фрезы 0,021 Lф В 18мм, с точностью по 8 квалетету 18 0,5 мм.
Диаметр фрезы Dф 17Вt0,28 1718180,28 68,36мм, принимаем Dф 63мм ГОСТ 3755 75, 2, стр. 181. Диаметр посадочного отверстия d 0,33Dф 0,3363 20,79мм, принимаем 0,023 d 22 – 0,5 мм ГОСТ 3755 75, 2, стр. 181. Число зубьев Z 2,9Dф0,42 2,9 630,42 16,52, принимаем Z 16 ГОСТ 3755 75, 2, стр. 181. Высота зубьев Н 1,82 1,82 7,75мм. Обоснование выбора геометрических параметров фрезы. Пазовые дисковые трхсторонние фрезы имеют прямые зубья0о, 10, стр. 26. Дисковая трхсторонняя фреза бертся двух угловой 16, 30, 10, fл 2мм. 11. Литературные источники. 1. Справочник технолога-машиностроителя. В 2-х Т. Т.1 Под ред. А.Г. Косиловой и Р.К. Мещерекова 4-е изд. перераб. и доп М. Машиностроение, 1986, 656с. 2. Справочник технолога-машиностроителя.
В 2-х Т. Т.2 Под ред. А.Г. Косиловой и Р.К. Мещерекова 4-е изд. перераб. и доп М. Машиностроение, 1985, 496с. 3. Проектирование металлорежущих инструментов. Под ред. И.И. Семенченко М. Машгиз, 1963 952с. 4. Фасонные резцы. Г.И. Грановский и К.П. Панченко – М. Машиностроение, 1975 309с. 5. Расчт и конструирование режущих инструментов.
Часть 1. Общие конструктивные элементы металлорежущих инструментов. Простые и фасонные резцы. Конспект лекций Г. И. Грановский. Москва 1952. 6. Проектирование фасонных резцов. Н. П. Малевский, В. С. Булошников, А. И. Овчинников. Издательство МГТУ им. Баумана. 7. Зенкеры и зенковки.
Учебное пособие по курсу Расчт и конструирование режущих инструментов, Н. П. Малевский, Б. Д. Даниленко, Москва 1985г. 8. Развртки, методическое руководство по курсу Проектирование металлорежущего инструмента, Фрунзе 1985 год. 9. Проектирование сврел 10. Проектирование фрез общего назначения, Н. П. Малевский, Р. В. Разыков, издательство МГТУ 1993год.
11. Курс лекций Основы проектирования инструментальных систем, Древаль А. Е МГТУ им. Баумана, 1997год.