Риски в экологии

–PAGE_BREAK–

Рис. 1. Индивидуальный риск смерти, отнесенный к одному году

(по статистическим данным Англии).

Сплошная кривая — для мужчин, штриховая — для женщин. Горизонтальные линии указывают средний риск смерти в результате: 1 — загрязнения воздуха; 2 — транспортной аварии; 3 — удара молнии. Заштрихована область между уровнями приемлемого (А) и недопустимого (Б) рисков.

На рис. 1 представлены уровни недопустимого (10–3) и допустимого (10–6) рисков вместе с возрастной зависимостью индивидуального риска смерти, отнесенного к одному году жизни.

Эта зависимость отражает статистические данные по населению Англии, значения недопустимого и допустимого рисков усреднены по возрастам и считаются и одинаковыми для мужчин и женщин. На этом же рисунке показаны уровни аналогичным образом усредненные значения индивидуальных рисков смерти в результате загрязнения воздуха, транспортной аварии и удара молнии.

На рис. 2 показано, как зависят установленные правительством Нидерландов предельные значения социального риска от числа возможных жертв в результате техногенных аварий. Напомним, что социальный риск выражается величиной f — отнесенной к одному году частотой таких аварий на одном объекте, количество жертв которых не превышает значение N.

 

 

Рис. 2. Уровни предельно допустимого и пренебрежимого рисков, принятые в Нидерландах.

График относится к социальному риску, а левая вертикальная ось — к индивидуальному; все значения отнесены к одному году.

Значения допустимого риска используются в качестве критериев в процессе управления экологическими рисками. Цель этого процесса — снизить уровень риска до приемлемого. На рис.3 представлены стадии процесса управления риском.

Рис. 3. Схема процесса управления риском

 

Процесс управления риском базируется на результатах количественного оценивания риска, которое позволяет

·      сопоставлять альтернативные проекты потенциально опасных объектов и технологий

·      выявлять наиболее опасные факторы риска, действующие на данном объекте

·      создавать базы данных и базы знаний для экспертных систем поддержки принятия технических решений и разработки нормативных документов

·      определять приоритетные направления инвестиций, направленных на снижение риска и уменьшение опасности.

Как следует из рис. 3, сначала осуществляется сравнение результатов  оценки  риска  для  рассматриваемой  ситуации  и соответствующих критериев. После этого сравнения находятся варианты снижения риска, каждый из которых оценивается с учетом затрат на его реализацию. Оценка вариантов является итеративной  операцией, она  повторяется  до  тех  пор,  пока  не будет выбрано оптимальное решение.

 

Прогнозирование и моделирование чрезвычайных ситуаций с целью управления рисками

 

Существенным этапом процесса поиска вариантов снижения  риска  (см. рис. 3)  является  прогнозирование  изменения параметров имеющейся ситуации и моделирование поведения рассматриваемого объекта. Под научным прогнозом понимают высказывание в виде вероятностного утверждения о зависящем от неопределенных или неизвестных факторов поведении некоторой системы в будущем, сделанное на основании изучения и обобщения опыта прошлого с использованием интуитивных представлений о развитии данной системы в будущем. Научные прогнозы делаются экспертами — специалистами в рассматриваемой области. В основе прогнозных экспертиз лежит особая научная  дисциплина  —  прогностика.  Часто  вместо  термина “научный прогноз” употребляют термин “экспертные оценки”.

Сущность метода экспертных оценок заключается в том, что специалистам предлагают ответить на вопросы о будущем поведении объектов или систем, характеризующихся неопределенными параметрами или неизученными свойствами. Экспертные оценки оформляются в виде качественных характеристик или количественных значений вероятностей рассматриваемых событий или процессов, отнесенных к определенному отрезку времени. Важное значение при этом придается формированию оценочной шкалы, используемой экспертами. Установлено, что оптимальная оценочная шкала должна иметь сравнительно небольшое число градаций (от 3 до 8), каждой градации приписывается определенный вероятностный интервал или некоторое значение  вероятности.  Кроме  того,  каждая  градация  должна сопровождаться краткой качественной характеристикой (вербальным или лингвистическим пояснением).

Методы экспертных оценок с использованием вероятностей составляют часть вероятностного анализа безопасности технологических объектов с труднопредсказуемым поведением, обусловленным неизвестными значениями определяющих это поведение факторов. Вероятностный анализ безопасности может охватывать десятки и сотни различных сценариев (например, при использовании метода деревьев), но может и быть ограничен рассмотрением единичных событий или процессов.

В настоящее время известно несколько десятков методов экспертных оценок, наиболее известный из них — коллективное обсуждение и согласование по методу Дельфи. Можно сказать, что создателями метода экспертных оценок были дельфийские оракулы,  то  есть  жрецы  храма  Аполлона  у  подножия  горы Парнас в Греции. Их предсказание о том или ином событии в античной Греции сообщалось народу только после того, как все члены совета мудрецов ознакомились со всеми обстоятельствами дела и обсудили их со всех сторон.

Принятие экспертных решений по методу Дельфи проводится в следующем порядке:

1.      Формирование группы экспертов — крупных специалистов в той области, в которой находится данная проблема.

2.      Первичное заполнение экспертами подготовленных опросных листов, сопровождаемое предоставлением им всей име-ющейся информации по проблеме (первый тур);

3.      Обработка опросных листов и письменное изложение ее основных результатов.

4.      ознакомление экспертов с результатами обработки опросных листов и вторичное заполнение ими аналогичных листов (второй тур) с указанием о том, что на те же вопросы должны быть даны новые ответы с учетом результатов первого тура. Таких туров может быть два или больше, в зависимости от степени согласованности ответов.

Метод Дельфи применялся, в частности, при анализе возможных нарушений целостности емкостей в хранилище радиоактивных отходов в ядерном центре Хэнфорд США. Каждый из многочисленных сценариев возникновения аварийной ситуации в течение заданного интервала времени эксперты характеризовали одной из трех градаций оценочной шкалы с соответствующими интервальными значениями вероятности осуществления данной ситуации:

1. “Представляется возможным, может считаться предвидимым в разумных пределах” (reasonably foreseeable): вероятность P > 10–2.

2. “Очень неправдоподобен” (very unlikely): 10–4 P 10–2.

3. “В высшей степени неправдоподобен” (extremely unlikely): P

Более детализированной является оценочная шкала, предложенная Хантером и представленная в табл.1.

 

Таблица  1.   Связь  между  количественными  характеристиками

возможности события и значениями соответствующей вероятности (шкала Хантера)

 

1
10–1
10–2
10–3
10–4
10–5
10–6

    продолжение
–PAGE_BREAK–
 

Таким образом, метод экспертных оценок применяется для решения задач, связанных с управлением риском (например, по планированию систем обеспечения технологической, экологической и социальной безопасности некоторого объекта) в тех случаях, когда строгий расчет невозможен из-за наличия принципиальных неопределенностей. Ниже рассматриваются  примеры  его  конкретного  использования  в сочетании с другим методом, называемым методом деревьев. Этот метод широко используется при принятии связанных с риском решений. К числу его достоинств относятся удобство и наглядность графического представления, а также существенное облегчение расчетов на компьютерах. Метод деревьев особенно эффективен в тех случаях, когда сложная проблема может быть расчленена на то или иное  количество  сравнительно  простых  задач,  каждая  из которых решается отдельно, после чего производится своеобразный синтез сложного решения. В процессе прогнозирования чрезвычайных ситуаций и их моделирования использование метода деревьев позволяет рассчитать вероятность реализации определенного сценария, включающего несколько событий. Структура дерева основывается на основных теоремах теории вероятности — теоремы сложения и теоремы умножения.

Первый  пример  связан  с  моделированием  аварии  на магистральном газопроводе (МГП), которая может привести к  конкретной  чрезвычайной  ситуации (ЧС) — выбросу  газа в атмосферу и его последствиям. Сотрудниками Института ВНИИГАЗ была разработана вероятностная модель такой аварии, которая представляет собой дерево сценариев развития ЧС с учетом ее возможных последствий (см. рис. 4.). Группа экспертов оценивала вероятность отдельных событий, формирующих рассматриваемое дерево. Вероятность возникновения моделируемой ЧС условно принята равной единице. Экспертное оценивание вероятностей последствий производилось путем попарного рассмотрения каждого разветвления на дереве. Для каждой пары совокупностей событий (процессов) определялась условная вероятность, причем каждая такая пара рассматривалась как полная группа событий, поэтому сумма соответствующих условных вероятностей равнялась единице. Так, разветвление на “одностороннее истечение” и “двустороннее истечение” было охарактеризовано условными вероятностями, равными соответственно 0,78 и 0,22. Вероятность осуществления цепи событий определяется путем перемножения  вероятностей событий, составляющих эту цепь. Так, вероятность того, что выброс газа будет характеризоваться односторонним истечением, и при этом произойдут возгорание и взрыв, определяется произведением 0,78×0,40×0,66 и равна 0,21.

Рис. 4. Дерево сценариев развития чрезвычайной ситуации (ЧС) — разрыва магистрального газопровода  (МГП) с выбросом газа и вызываемыми последствиями (вероятностная модель)
Роль человеческого фактора в оценках риска  и в управлении им
В процессе количественного оценивания риска и управления им значительные трудности вызываются наличием неопределенностей в характеристиках надежности персонала, занятого на потенциально опасных объектах. Такие техногенные катастрофы, как взрыв ядерного реактора на Чернобыльской АЭС или утечка токсичных газов на заводе по производству пестицидов в Бхопале (Индия), показали, что с помощью чисто инженерных, технологических или организационных методов решить проблему снижения риска не удается. В значительной степени это связано с тем, что в подобных чрезвычайных ситуациях возникают не предусмотренные сценарии развития событий, в которых реакция персонала является неадекватной, вследствие чего выполняются ошибочные действия. Проведенный в США анализ около 30 тысяч инцидентов на объектах ядерной энергетики показал, что примерно в половине из них складывалась уникальная комбинация технологических отказов и человеческих ошибок. Расширение сферы применения автоматизированных средств приводит к новым проблемам, поскольку при этом появляются новые типы отказов и ошибок. Компьютеризация приводит к опасным ошибкам, связанным с программным обеспечением. Кроме того, в этих условиях непредсказуемым образом меняется весь комплекс отношений между человеком, с одной стороны, и машиной или компьютером, с другой. Исследования, выполненные в экономически развитых странах, свидетельствуют о необходимости всестороннего изучения роли человеческого фактора в сопряженных с риском технологиях и на потенциально опасных объектах.

В течение последних двух десятилетий методы количественной оценки человеческой надежности существенно изменились, сейчас они резко отличаются от подходов, традиционно используемых в расчетах показателей надежности оборудования. Для изучения человеческого фактора создаются специальные технические средства — моделирующие взаимодействие человека с машиной комплексы, имитационные установки и исследовательские тренажеры. Они используются для всестороннего изучения действий персонала, анализа стратегии поведения операторов, выявления основных ошибок. Одним из направлений изучения роли человеческого фактора является выявление причин ошибочных действий людей, обслуживающих сложные технологические установки. Чтобы определить характеристики различных по природе ошибок, психологи разрабатывают их классификацию. Одна из таких классификаций была предложена в 1990 г. Ризоном в его книге «Человеческие ошибки», она представлена на рис. 6.

 

Рис.6. Классификация причин опасных действий персонала, могущих привести к техногенным чрезвычайным ситуациям (по Ризону)

 

Приведенная классификация используется в моделировании взаимодействия человека с машиной. Схема на рис. 6. показывает, что все опасные действия, которые могут вызвать техногенную чрезвычайную ситуацию или катастрофу, можно разделить на ненамеренные и намеренные. Первые из них, в свою очередь, подразделяются на промахи и упущения, а вторые — на оплошности и нарушения. Причинами промахов выступают недостатки внимания (например, перепутан порядок выполнения двух последовательных операций), в то время как причинами упущений являются недостатки памяти (например, оператор забыл об одном звене в цепи необходимых операций). Причинами оплошностей могут быть неправильное выполнение действующих правил (например, неверное выполнение правила, необходимого в данной ситуации, или действие по такому правилу, которое вообще неприменимо в сложившейся обстановке) или же недостаточные знания о действиях как в штатных, так и в нештатных ситуациях. Нарушения представляют собой сознательные действия, ведущие к отклонениям от нормального функционирования объекта. 

Моделирование человеческого фактора стало неотъемлемой частью вероятностного анализа безопасности (ВАБ) потенциально опасных объектов. Эта часть ВАБ является наиболее сложной, она позволяет учитывать лишь сравнительно простые ошибки персонала. Серьезную проблему представляет собой учет действий персонала в стрессовых условиях аварии при неизбежном дефиците времени. Сложные ошибки, число которых может быть весьма велико, очень трудно промоделировать, а множественные ошибки (подобные совершенным на Чернобыльской АЭС) практически вообще не поддаются анализу.

Несмотря на создание современных моделей, позволяющих в определенных рамках описывать взаимодействие оператора с машиной, проблемы, обусловленные ролью человеческого фактора, еще далеки от решения. Актуальность этих проблем привела к возникновению новой отрасли знания — культуры безопасности. Термин “культура безопасности” был введен в 1986 г. экспертами Международной консультативной группы по ядерной безопасности (МКГЯБ) Международного Агентства по атомной энергии (МАГАТЭ) в итоговом документе по рассмотрению причин и последствий аварии в Чернобыле. В последующем документе МКГЯБ МАГАТЭ «Основные принципы безопасности атомных электростанций», опубликованном в 1990 г, культура безопасности была охарактеризована в качестве “фундаментального управленческого принципа”. Согласно принятому МАГАТЭ определению, культура безопасности — это такой набор характеристик и особенностей деятельности организаций и отдельных лиц, который устанавливает, что проблемам безопасности ядерного объекта как обладающим высшим приоритетом уделяется внимание, определяемое их значимостью. Впоследствии определение культуры безопасности было распространено на любые потенциально опасные объекты и связанные с высоким риском технологии. Так, по определению Меррита-Хельмрейха (1996), культура безопасности — это больше, чем просто группа индивидуумов, соблюдающих набор правил по безопасному ведению работ; это группа таких людей, которые в своем поведении руководствуются общей уверенностью в важности обеспечения безопасности и понимают необходимость того, чтобы каждый член коллектива сам с готовностью поддерживал нормы коллективной безопасности и помогал другим членам коллектива стремиться к этой общей цели.

 

Цена риска и принцип оптимизации вариантов  его снижения

 

Считается, что социально-экономический ущерб Y, обусловленный воздействием на людей присутствующих в среде обитания опасных веществ, прямо пропорционален риску угрозы здоровью R:

Y = aR,                                        (1)

где a — коэффициент пропорциональности, называемый ценой риска. Риск R измеряется числом случаев смерти на 1 млн человек, проживающих в течение всей жизни (70 лет) в условиях данного риска, или же — количеством лет сокращения продолжительности жизни.

Цена риска a определяется количеством денег, приходящимся на одну дополнительную смерть или — на один человеко-год сокращения продолжительности жизни. Использование цены риска позволяет перейти к монетарным показателям, то есть выражать социально-экономический ущерб, определяющий потери общества вследствие нанесенного ущерба здоровью, в денежных единицах.

Средний суммарный риск смерти для населения развитых стран считается равным приблизительно 10-2 год-1. Значительную долю (около 10%) от этой величины составляют вклады техногенных факторов (загрязнение среды обитания). В зарубежных публикациях цену риска часто нормируют на единицу социального риска, равную 1, и называют ценой жизни (точнее, одной среднестатистической жизни). К настоящему времени сформировались следующие концепции измерения цены человеческой жизни [4]:

·      оценивание с позиций теории человеческого капитала (“human capital” approach);

·      косвенное оценивание, с учетом немонетарных общественных затрат;

·      оценивание по готовности физических лиц платить за устранение риска смерти;

·      оценивание на основе определения страховых премий и компенсаций по суду;

·      оценивание по инвестициям общества, направленным на снижение риска преждевременной смерти отдельного индивидуума.

Ни одна из этих концепций не может считаться совершенной и не может служить в качестве рабочего инструмента. Рассмотрим вкратце сущность концепция использования теории человеческого капитала. Эта концепция базируется на предположении о том, что степень полезности  индивидуума для общества зависит главным образом от его продуктивности, поскольку в этой теории каждое физическое лицо рассматривается с точки зрения его способности участвовать в процессе общественного производства и зарабатывать при этом деньги. Потеря жизни, по этой теории, приводит к снижению производительного потенциала общества, которое должно проявиться уже в ближайшем будущем. В качестве меры стоимости жизни предлагается использовать суммарную заработную плату лица, неполученную им по причине преждевременного ухода из жизни. Поэтому рассматриваемый подход называют еще концепцией способности индивидуума заработать предназначенные ему на всю жизнь деньги (“lifetime earning power of the individual” concept) или просто концепцией предстоящей зарплаты (“foregone ear-nings” approach). Теория человеческого капитала обещала простые количественные оценки жизни, поэтому на первых порах она получила сравнительно широкое распространение. Однако вскоре выяснилось, что на пути ее применения возникают существенные трудности.

Во-первых, оказалось необходимым уточнять, кому в первую очередь причиняется ущерб от преждевременной смерти данного лица — либо самому этому лицу, либо членам его семьи, либо тому обществу, членами которого являются это лицо и его семья. Иными словами, речь идет о приоритете результатов труда индивидуума, о соотношении микроуровня (повышение благосостояния семьи) и макроуровня (развитие общества), на которых фиксируются эти результаты. Для прояснения ситуации были введены “нетто” и “брутто” оценки жизни — первая из них учитывает только ущерб, наносимый обществу, а вторая принимает во внимание полный ущерб. Оба вида ущерба, разумеется, зависят от размера оплаты труда уходящего из жизни работника.

Во-вторых, использование как “нетто”, так и “брутто” оценок жизни вызвало дополнительные трудности, обусловленные неполной занятостью населения, характерной для ряда индустриально развитых стран, и действием в этих странах системы социальной защиты. Потеря жизни работника создает вакансию на рынке труда, заполнение которой приводит к сокращению на единицу количества лиц, получающих пособие по безработице. Последнее означает сокращение расходов общества на выплату пособий и, следовательно должно считаться положительным эффектом потери работника, сопутствующим явно негативному непосредственному эффекту от этой потери. Чтобы скорректировать проводимые оценки, необходимо использовать алгебраические величины.

В-третьих, критики концепции оценивания с позиций теории человеческого капитала указывают на ее дискриминационный характер в отношении возраста работника. Действительно, эта концепция придает больший вес несчастному случаю на производстве, вызвавшему смерть молодого рабочего, нежели неизлечимому профзаболеванию пожилого рабочего, трудившегося в сходных условиях. Отсюда следует, что жизнь молодого работника должна оцениваться выше.

В-четвертых, рассматриваемый подход ставит в неравные условия лиц, получающих разную оплату за свой труд — это приводит к занижению оценки жизни бедных слоев общества. Напротив, жизнь людей, относящихся к сверхвысокооплачиваемым, получает чрезмерную оценку.

Несмотря на недостатки существующих теорий, оценки одной среднестатистической жизни в условиях действия рыночной экономики оказываются необходимыми. В зависимости от различных методов оценок, получаемые и публикуемые значения попадают  в  широкий  диапазон  значений.  Для  США  и  стран Европейского сообщества этот диапазон составляет от 0,5 до 7 млн долларов. В качестве среднего (медианного) значения часто используется величина 3,2 млн долларов за статистическую жизнь (70 лет) или приблизительно 45 тыс. долларов за один человеко-год.

Монетарная оценка одной среднестатистической жизни используется при оценках затрат на мероприятия по снижению экологического риска, ориентированных как раз на сохранение определенного количества человеческих жизней. Такого рода оценки выполнены в США на основе анализа достаточно большого объема исходных данных [34]. В табл. 2 приведены оценки ежегодных затрат на сохранение одной среднестатистической  жизни  в  результате  проведения  экологических мероприятий, ориентированных на улучшение качества среды обитания (рассматриваются меры по снижению содержания в биосфере токсикантов и источников излучений).

Таблица 2. Оценки затрат на некоторые экологические мероприятия с целью сохранения одной человеческой жизни в год (по Т.Тенгсу и др.)

 

Данные таблицы обнаруживают значительный разброс величин с проявлением как внутригрупповой, так и межгрупповой дисперсии. При этом четко выражена обратная корреляция между величиной риска и затратами на его снижение. Например, расходы на снижение выбросов мышьяка при выплавке меди малы на предприятиях с относительно высоким уровнем загрязнения окружающей среды этим элементом и напротив, возрастают более чем в десять тысяч раз, если этот уровень сравнительно низок. Применение медиан дает следующую усредненную оценку отнесенной к одному году стоимости сохранения одной жизни в США в результате осуществления различных экологических мероприятий: 4,2 млн долларов. Это примерно в 200 раз больше, чем усредненные затраты, связанные с реализацией медицинских мер по спасению одной среднестатистической жизни в США. Привлечение медианных значений позволяет сделать усредненные оценки затрат для спасения одной жизни в год по мероприятиям, направленным на снижение бытового травматизма (36 тыс. долларов), повышение безопасности использования транспортных средств (56 тыс. долларов) и снижение уровня профзаболеваний (350 тыс. долларов) [34]. Рассмотренные  данные  свидетельствуют  о  том,  что  снижение экологического  риска  обходится  дорого.  Это  подчеркивает необходимость принятия заблаговременных мер по сохранению состояния среды обитания и предотвращению экологического риска, связанного с планируемым вводом в эксплуатацию потенциально опасных объектов.

В процессе управления риском важно провести оптимизацию безопасности и риска, которая сводится к поиску экстремума некоторой функции. Эту функцию называют целевой, она характеризует экономический эффект, получаемый, с одной стороны, при определенных ограничениях, налагаемых требованиями по обеспечению безопасности, а с другой стороны, путем использования дополнительных приемов управления риском.

Одним из основных экономических методов, применяемых в процессе управления риском угрозы здоровью со стороны техногенных факторов, является анализ затрат и получаемых в результате выгод (анализ “затраты-выгоды”). Суть этого метода состоит в следующем. Сначала рассматриваются все варианты (сценарии) возможных действий и мер по снижению риска. Для каждого i-го сценария (i = 1, 2, …, n) вычисляются затраты Wi на его реализацию и планируемая при этом выгода Vi. Кроме того, для каждого сценария оцениваются значения так называемого остаточного риска Ri, к которому приведет осуществление i-го сценария. Чистый экономический эффект Еi для каждого сценария определяется разностью выгод и затрат:

                                    Е
i= Vi — Wi.                                    (2)

Затраты Wi на реализацию мероприятий по i-му сценарию рассчитываются как приведенная стоимость осуществления этих мероприятий (проекта), усредненная по времени экономической жизни проекта:

                     (3)
где t — время жизни  проекта, Сj и Dj — капитальные и текущие затраты соответственно, rj — среднегодовая процентная ставка j-го года.

При осуществлении затрат в конце года суммирование в этой формуле следует проводить от j = 1 до j = t.

Выгоду от реализации i-го сценария можно определять различными способами, унифицированного метода оценки выгод не существует. Наиболее употребительным является способ оценки выгоды через предотвращенный социально-экономичес-кий ущерб [3]. Для этого нужно сначала рассчитать остаточный социально-экономический ущерб после реализации i-го сценария.

Остаточный экономический ущерб Yi определяется произведением цены риска и остаточного риска (напомним, что риск в рассматриваемом случае измеряется числом случаев смерти на 1 млн человек, проживающих в течение всей жизни в условиях данного риска, или же — количеством лет сокращения продолжительности жизни). Остаточный среднегодовой приведенный социально-экономический ущерб вычисляется по формуле:

                            (4)
где  aj — цена риска для j-го года,  Ri
i — остаточный риск j-го года для i-го сценария.

Выгода как предотвращенный ущерб оценивается следующим образом. Если Yo — социально-экономический ущерб, имевшийся до принятия каких-либо действий по возможным сценариям, а Yi — остаточный социально-экономический ущерб после реализации i-го сценария, то предотвращенный ущерб DYi определяется разностью:

DYi= Yo — Yi.                                 (5)

Эта разность и используется  в качестве меры выгоды от реализации i-го сценария:

Vi = DYi.                                  (6)

Чистый экономический эффект Еi определяется выражением:

Е
i= DYi — Wi= Yo — (Yi + Wi).               (7)

Сумму (Yi + Wi) называют обобщенными приведенными затра-тами. Формула (7) показывает, что чистый экономический эффект будет максимален при минимуме обобщенных приведенных затрат:

max Е
i  ®  min (Yi + Wi).                   (8)

Полученное соотношение отражает сущность принципа оптимизации вариантов (сценариев) снижения риска.

Общие принципы критериев, устанавливающих приемлемость риска, наиболее полно разработаны для защиты людей от воздействия ионизирующего излучения (радиационного риска).  Концепция о преобладании пользы над издержками выступает первым общим принципом радиационной защиты и выработки критериев приемлемого радиационного риска. Для краткости его называют принципом обоснованности, он требует проведения расчетов затрат и ожидаемой прибыли в каждом конкретном случае. Применение принципа обоснованности призвано оценивать предварительные условия, необходимые для внедрения в практику рассматриваемого вида деятельности.

Тот способ, с помощью которого будет реализован получивший свое обоснование и спланированный вид деятельности, составляет предмет второго общего принципа радиационной защиты и определения критериев приемлемого риска. Он называется принципом оптимизации и заключается в нахождении минимума затрат, на которые может пойти общество с целью реализации данного вида деятельности. В случае радиационного риска минимальные расходы получают путем суммирования двух слагаемых: стоимости вреда для здоровья людей, который может быть причинен облучением при данном уровне радиационной защиты, и расходов на эту защиту. Очевидно, что таким вредом являются злокачественные новообразования и генетические заболевания. Можно допустить, как это делает Международная комиссия по радиационной защите (МКРЗ), что между полученной дозой и вероятностью возникновения злокачественных опухолей и наследственных нарушений существует прямая зависимость (линейная связь). Тогда стоимость компенсации ожидаемого вреда для здоровья (эту стоимость можно назвать “ценой здоровья”) выразится в виде некоторой функции коллективной дозы, складывающейся из тех индивидуальных доз, которые будут получать отдельные лица в результате реализации рассматриваемого вида деятельности.

Принцип оптимизации позволяет обрести уверенность в том, что данная деятельность будет внедрена в практику при достаточно низком и оптимальном уровне облучения. При этом уровне любое дополнительное снижение дозы (выраженное в виде коллективной дозы) не будет оправданным с точки зрения новых затрат, нужных для такого снижения. В научной литературе вместо термина “принцип оптимизации” иногда используют другой — так называемый принцип АЛАРА. Его происхождение связано с формулировкой “as low as reasonably achievable”, первые буквы этих слов образуют сокращение ALARA. Сама формулировка входит в разработанный МКРЗ критерий, который гласит: при любой ситуации дозы облучения должны поддерживаться на таких низких уровнях, каких только можно разумно достичь с учетом экономических и социальных факторов.

На рис. 7 представлены три зависимости от коллективной дозы, отмеченные индексами А, В и А+В. Прямая А показывает зависимость от коллективной дозы цены здоровья, как было сказано выше, эта зависимость линейна. Кривая В характеризует зависимость затрат на радиационную защиту (т.е. на снижение риска) от величины коллективной дозы. Затраты на радиационную защиту весьма велики при обеспечении малых коллективных доз и становятся меньше, если допускаются большие приемлемые дозы.

 

 

Рис. 7. Зависимость цены здоровья (прямая А), затрат на радиационную

защиту  (кривая В)  и  суммы  общих  издержек  (А + В)  от  величиныколлективной дозы

 

Как показывает рис. 7, суммарная кривая А+В имеет единственный минимум,  который и соответствует оптимальным величинам цены здоровья и затрат на радиационную защиту (снижение риска). В установлении этого минимума заключается алгоритм практического применения принципа АЛАРА. Нетрудно видеть, что показанный на рис. 7 минимум соответствует рассмотренным выше результатам анализа “затраты-выго-ды”, согласно которым чисто экономический эффект достигает максимума при минимизации обобщенных приведенных затрат.

Конечно, расчеты по оптимизации не могут считаться универсальными. Они должны быть проведены для каждого конкретного случая и для определенных условий, характерных для данной страны. Наклон прямой А и форма кривой В не будут одинаковыми в разных ситуациях и сферах работы с излучениями. Самым трудным этапом расчетов по оптимизации является определение наклона прямой А. Трудности здесь вызваны необходимостью установления денежного эквивалента единицы коллективной дозы облучения, которой соответствует определенная вероятность возникновения злокачественных новообразований и наследственных заболеваний.

При изложенном подходе к процедуре оптимизации принимается во внимание состояние здоровья всего общества в целом, т.е. ставится задача обеспечить коллективную защиту от риска, но не защиту отдельных индивидуумов. Могут сложиться условия, в которых оптимальная коллективная доза включает в себя в качестве отдельных слагаемых достаточно большие индивидуальные дозы. В подобных случаях требуется обеспечить защиту отдельных лиц, подвергаемых риску наибольшего облучения. Предотвращение облучения индивидуумов чрезмерно высокими дозами является содержанием третьего принципа радиационной защиты и критериев приемлемого риска, его называют принципом ограничения индивидуальных доз.

Рекомендации МКРЗ по соблюдению сформулированного принципа заключаются в следующем. Безопасными и приемлемыми могут считаться такие дозы облучения, при которых вероятность образования злокачественных новообразований и генетических дефектов близка к аналогичной вероятности, связанной с воздействием естественного фона радиации. Для профессиональных работников рекомендованы более высокие пределы допустимых доз, чем для населения в целом, так как допустимый уровень производственного риска выше приемлемого риска в обычной жизни. На практике принцип ограничения индивидуальных доз осуществляется в следующей форме. Комиссия по ядерному регулированию США установила предельную индивидуальную дозу облучения, которая может быть получена любым человеком в результате нормальной работы АЭС. Эта доза не должна превышать 0,05 мЗв в год, причем термин “любой” означает, что указанная величина не должна зависеть от того, где живет человек — близко от станции или далеко. Доза 0,05 мЗв/год составляет менее 2% от чисто естественного радиационного фона. В России в 1996 г. были введены индивидуальные дозовые пределы, согласно которым эффективная эквивалентная доза, установленная для населения и обусловленная всеми источниками излучения, не должна превышать 1 мЗв/год.

Рассмотренные три принципа имеют общее значение и применимы на разных уровнях радиационной защиты. Более того, они пригодны также и при оценке защитных мер в случае сходных опасных ситуаций, не связанных с защитой от ионизирующих излучений.

 
    продолжение
–PAGE_BREAK–