Электрические измерения Измерения как

КОНТРОЛЬНАЯ РАБОТА
НА ТЕМУ:
«ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ»
Введение
Развитие науки и техники всегда было тесно связано с прогрессом в области измерений. Большое значение измерений для науки подчёркивали некоторые учёные.
Г. Галилей: «Измеряй всё доступное измерению и делай доступное всё недоступное ему».
Д.И. Менделеев: «Наука начинается с тех пор, как начинают измерять, точная наука немыслима без меры».
Кельвин: «Каждая вещь известна лишь в той степени, в какой её можно измерить».
Измерения являются одним из основных способов познания природы, её явлений и законов. Каждому, новому открытию в области естественных и технических наук предшествует большое число различных измерений. (Г. Ом – закон Ома; П. Лебедев – давление света).
Важную роль играют измерения в создании новых машин, сооружений, повышении качества продукции. Например, во время испытания стендового крупнейшего в мире турбогенератора 1200 МВт, созданного на Ленинградском объединении «Электросила», измерения производились в 1500 различных его точках.
Особо важную роль играют электрические измерения как электрических так и не электрических величин.
Первый в мире электроизмерительный прибор «указатель электрической силы» был создан в 1745 году, академиком Г.В. Рохманом, соратником М.В. Ломоносова.
Это был электрометр – прибор для измерения разности потенциалов. Однако только со второй половины XIX века в связи с созданием генераторов электрической энергии остро встал вопрос о разработке различных электроизмерительных приборов.
Вторая половина XIX века, начало XX века, – русский электротехник М.О. Доливо-добровольский разработал амперметр и вольтметр, электромагнитный системы; индукционный измерительный механизм; основы ферродинамических приборов.
Тогда же – русский физик А.Г. Столетов – закон изменения магнитной проницаемости, её измерение.
Тогда же – академик Б.С. Якоби – приборы для измерения сопротивления электрической цепи.
Тогда же – Д.И. Менделеев – точная теория весов, введение в России метрической системы мер, организация отделения по проверке электроизмерительных приборов.
1927 год – Ленинград построен первый отечественный приборостроительный завод «Электроприбор» (сейчас – Вибратор выпуск счётчиков).
30 годы – построены приборостроительные заводы в Харькове, Ленинграде, Москве, Киеве и в других городах.
С 1948 по 1967 год объём продукции приборостроения возрос в 200 раз.
В последующих пятилетках развитие приборостроения идёт неизменно опережающими темпами.
Основные достижения:
Аналоговые приборы непосредственной оценки улучшенных свойств;
Узко профильные аналоговые сигнализирующие контрольные приборы;
Прецизионные полуавтоматические конденсаторы, мосты, делители напряжения, другие установки;
Цифровые измерительные приборы;
Применение микропроцессоров;
Измерительный компьютер.
Современное производство немыслимо без современных средств измерений. Электроизмерительная техника постоянно совершенствуется.
В приборостроении широко используется достижения радиоэлектроники, вычислительной техники, и другие достижения науки и техники. Всё чаще применяют микропроцессоры и микро ЭВМ.
Изучение курса «Электрических измерений» ставит цель:
Изучение устройства и принцип действия электроизмерительных приборов;
Классификация измерительных приборов, знакомство с условными обозначениями на шкалах приборов;
Основные методики измерений, подбор тех или иных измерительных приборов в зависимости от измеряемой величины и требования к измерению;
Ознакомление с основными направлениями современного приборостроения.
1. Основные понятия, методы измерений и погрешностей
Измерением называется нахождение значений физической величины опытным путём с помощью специальных технических средств.
Измерения должны выполняться в общепринятых единицах.
Средствами электрических измерений называются технические средства, использующиеся при электрических измерениях.
Различают следующие виды средств электрических измерений:
– Меры;
– Электроизмерительные приборы;
– Измерительные преобразователи;
– Электроизмерительные установки;
– Измерительные информационные системы.
Мерой называется средство измерений, предназначенное для воспроизведения физической величины заданного размера.
Электроизмерительным прибором называется средство электрических измерений, предназначенное для выработки сигналов измерительной информации в форме доступной непосредственного восприятия наблюдателя.
Измерительным преобразователем называется средство электрических измерений, предназначенное для выработки сигналов измерительной информации в форме удобной для передачи, дальнейшего преобразования, хранения, но не поддающейся непосредственному восприятию.
Электроизмерительная установка состоит из ряда средств измерений и вспомогательных устройств. С её помощью можно производить более точные и сложные измерения, поверку и градуировку приборов и т.д.
Измерительные информационные системы представляют собой совокупность средств измерений и вспомогательных устройств. Предназначены для автоматического получения измерительной информации от ряда её источников, для её передачи и обработки.
Классификация измерений:
а). В зависимости от способа получения результата прямые и косвенные:
Прямыми называются измерения, результат которых получается непосредственно из опытных данных (измерение тока амперметром).
Косвенные называются измерения, при которых искомая величина непосредственно не измеряется, а находится в результате расчёта по известным формулам. Например: P=U·I, где U и I измерены приборами.
б). В зависимости от совокупности приёмов использования принципов и средств измерений все методы делятся на методы непосредственной оценки и методы сравнения.
Метод непосредственной оценки – измеряемая величина определяется непосредственно по отсчётному устройству измерительного прибора прямого действия (измерение тока амперметром). Этот метод прост, но отличается низкой точностью.
Метод сравнения – измеряемая величина сравнивается с известной (например: измерение сопротивления путём сравнения его с мерой сопротивления – образцовой катушкой сопротивления). Метод сравнения подразделяют на нулевой, дифференциальный и замещения.
Нулевой – измеряемая и известная величина одновременно воздействуют на прибор сравнения, доводя его показания до нуля (например: измерение электрического сопротивления уравновешенным мостом).
Дифференциальный – прибор сравнения измеряет разность между измеряемой и известной величиной.
Метод замещения – измеряемая величина заменяется в измерительной установке известной величиной.
Этот метод наиболее точен.
Погрешности измерений–PAGE_BREAK–
Результаты измерения физической величины дают лишь приближённое её значение вследствие целого ряда причин. Отклонение результата измерения от истинного значения измеряемой величины называется погрешностью измерения.
Различают абсолютную и относительную погрешность.
Абсолютная погрешность измерения равна разности между результатом измерения Аи и истинным значением измеряемой величины А:
ДА=Аи А
Поправка: дА=А–Аи
Таким образом, Истинное значение величины равно: А=Аи+дА.
О погрешности можно узнать, сравнивая показания прибора с показаниями образцового прибора.
Относительная погрешность измерения гА представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины, выраженное в %:
/>%
Пример: Прибор показывает U=9,7 В. Действительное значение U=10 В определить ДU и гU:
ДU=9,7–10=–0,3 В гU=/>%=3%.
Погрешности измерений имеютсистематическую и случайную составляющие. Первые остаются постоянными при повторных измерениях, они определяются, и влияние её на результат измерения устраняется введением поправки. Вторые изменяются случайным образом, и их нельзя определить или устранить.
В практике электроизмерений чаще всего пользуются понятием приведённой погрешности гп:
Это отношение абсолютной погрешности к номинальному значению измеряемой величины или к последней цифре по шкале прибора:
/>%
Пример: ДU=0,3 В. Вольтметр рассчитан на 100 В. гп=?
гп=0,3/100·100%=0,3%
Погрешности в измерениях могут быть в следствии:
а). Неправильной установки прибора (горизонтальная, вместо вертикальной);
б). Неправильного учёта среды (внешней влажности, tє).
в). Влияние внешних электромагнитных полей.
г). Неточный отсчёт показаний и т.д.
При изготовлении электроизмерительных приборов применены те или иные технические средства, обеспечивающие тот или иной уровень точности.
Погрешность, обусловленная качеством изготовления прибора, называется – основной погрешностью.
В соответствии с качеством изготовления все приборы подразделяются на классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.
Класс точности указывается на шкалах измерительных приборов. Он обозначает Основную наибольшую допустимую приведённую погрешность прибора:
гД=/>%.
Исходя из класса точности при поверке прибора, определяют, пригоден ли он к дальнейшей эксплуатации, т.е. соответствует ли своему классу точности.
Сравнение точности прибора с образцовым – называется поверкой.
Для поверки применяют образцовые приборы на 2 класса точности выше поверяемого. Так для поверки прибора класса точности 0,5 пригодны приборы класса точности 0,1; 0,05.
Перед поверкой вычисляют наибольшую допустимую погрешность ДА наиб для поверяемого прибора, или определяют его истинный класс точности.
Меры основных электрических величин
В зависимости от степени точности и области применения меры подразделяются на эталоны, образцовые и рабочие меры.
Эталоны – средство измерения, обеспечивающее воспроизведение и хранение единицы физической величины для передачи её размера другим средствам измерений.
Образцовые меры – предназначены для поверки и градуировки рабочих мер измерительных приборов. Они могут непосредственно использоваться для точных измерений.
Рабочие меры– изготовляются для широкого диапазона номинальных значений величин и используются для поверки измерительных приборов и для измерений на предприятиях.
Для изготовления приборов в целях обеспечения высокой точности измерений применяют меры электрических величин: мера ЭДС; I; R; L; взаимной индуктивности; С.
а). Мера ЭДС– в качестве мер ЭДС, как образцовых так и рабочих, применяют нормальные элементы различных классов точности.
/>
Положительный электрод – ртуть.
Слой пасты (смесь сернокислой ртути Hg2SO4 и сернокислого кадмия Cd SO4)
Кристаллы сернокислого кадмия.
Электролит – насыщенный раствор сернокислого кадмия.
отрицательный электрод – амальгама кадмия.

Бывают трёх классов точности 0,001; 0,002; 0,005
ЭДС для элемента Класса точности 0,005 составляет 1,0185 – 1,0187 В.
Допустимое изменение ЭДС за год для элементов класса точности 0,005 составляет 50 мкВ
б). Меры электрических сопротивлений: образцовые и рабочие меры выполняются в виде катушек сопротивлений, которые выполняются из манганиновой проволоки или ленты (Cu 84%, Ni 4%, Mn 12%). Он обладает малым температурным коэффициентом сопротивления (0,00001 1/єС), большим удельным сопротивлением (0,45 Ом·мм2/м) и малой термо-э.д.с. при контакте с медью (2 мкВ на 1 єС).
Образцовые резисторы изготовляются на номинальные сопротивления 0,00001; 0,0001; 0,001; 0,01; 0,1; 1,0; 10; 100; 1000; 10000; 100000 Ом. Класс точности измерительных резисторов (катушек сопротивлений): 0,0005; 0,001; 0,002; 0,005; 0,01; 0,02; 0,05.
/>
Устройство одной из катушек сопротивления. На латунный или фарфоровый цилиндр А наложена бифилярная (выполненная в два провода) обмотка, на концах которой расположены две пары зажимов I и U, укреплённые на эбонитовой панели Б, к которой крепится кожух катушки В.
/>
Токовыми зажимами Iрезистор включается в цепь тока, зажимы U, называемые потенциальными, предназначены для измерения напряжения на сопротивлении резистора
Электрическая схема

Набор резисторов, заключённых в общий кожухи соединённых по определённой схеме, называется – магазином резисторов или сопротивлений. Они применяются взамен образцовых катушек и для регулировки тока. Магазины резисторов по точности делятся на классы: 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1,0. Образцовые катушки и магазины резисторов должны иметь возможно меньшие собственные индуктивность и ёмкость.
в). Меры индуктивности и взаимной индуктивности представляют собой катушки индуктивности и взаимной индуктивности с постоянным значением индуктивности.
Образцовые катушки индуктивности представляют собой пластмассовый или фарфоровый каркас с наложенной на него обмоткой из медной изолированной проволоки, концы которой укрепляются на зажимах. Использование каркаса из немагнитного материала обеспечивает независимость индуктивности от тока в катушке.    продолжение
–PAGE_BREAK–
Добротность катушки Q=щL/r увеличивают, уменьшая её активное сопротивление r.
Образцовые катушки изготовляют на следующие номинальные значения индуктивности: 0,0001; 0,001; 0,01; 0,1; 1 Г.
Образцовая катушка с переменной индуктивностью – вариометр состоит из двух частей – неподвижной и подвижной, могущей поворачиваться на угол около 180є. Индуктивность вариометра зависит от положения подвижной части.
Магазин индуктивностей состоит из набора катушек, а иногда, кроме того, и из вариометра. Погрешность этого магазина индуктивностей равна ±(0,3ч0,5)%.
Катушка взаимной индуктивности выполняются аналогично катушкам индуктивности, но имеют две обмотки.
г). Меры ёмкости – это образцовые конденсаторы с известной или переменной ёмкостью. Ёмкость конденсатора должна возможно меньше изменяться в зависимости от времени, температуры, частоты и других факторов. Конденсатор должен обладать малыми диэлектрическими потерями и большим сопротивлением изоляции. В качестве образцовых используются воздушные и слюдяные конденсаторы.
Воздушные конденсаторы выполняются с плоскими или цилиндрическими электродами, они имеют малую ёмкость от 0,001 мкФ и практически не обладают диэлектрическими потерями, но обладают большими размерами.
Слюдяные конденсаторы состоят из ряда металлических пластин, изолированных слюдяными прокладками. Чётные пластины соединены с одним, а нечётные с другим зажимом конденсатора. Тангенс угла потерь слюдяных конденсаторов порядка 10-4, погрешность их составляет ±(0,01ч0,5)%.
При использования магазина конденсаторов кроме групп конденсаторов, в магазине имеется конденсатор переменной ёмкости (С=0ч0,011 мкФ). Погрешность его ±0,5%.
д). Мера тока – токовые весы.
/>
Токовые весы имеют коромысло, на одном плече которого подвешена токовая катушка К1. Последовательно с ней соединена неподвижная катушка К2.
При прохождении тока по катушкам К1 и К2 возникает сила их электродинамического взаимодействия пропорциональная I2, которая уравновешивается эталонными гирями, нагруженными на второе плечо коромысла.
Исходя из данного определения единицы силы тока и геометрических размеров катушек подсчитывается значение силы взаимодействия между катушками при силе тока 1 А. Нагрузив второе плечо грузом найденного расчётного значения, регулируют силу ока в катушках до получения равновесия, при котором установившийся ток имеет значение 1 А.
Токовые весы ВНИИМ обеспечивают погрешность до 0,001%.
Единица силы тока – ампер А – сила не изменяющегося тока, который, проходя по двум прямолинейным параллельным проводам бесконечной длинны и ничтожно малого кругового сечения, расположенного на расстоянии 1 м один от другого в вакууме. Вызвал бы между этими проводниками силу, равную 2·10-7 Ньютон (Н), на каждый метр длины.
Эталон ЭДС – 20 насыщенных нормальных элементов и устройство сравнения для взаимного сличения нормальных элементов. ЭДС отдельного элемента может колебаться, но среднее значение ЭДС= const (постоянно).
Эталон индуктивности– 4 катушки (групповой индуктивности).
Эталоны сопротивления – 10 манганиновых катушек с номинальным сопротивлением в 1 Ом.
2. Преобразователи токов и напряжений
2.1 Шунты
Является простейшим измерительным преобразователем тока в напряжение. Применяется для расширения предела измерения тока измерительным механизмом. Представляет собой измерительный преобразователь, состоящий из резистора, включаемого в цепь измеряемого тока, параллельно которому присоединяется измерительный механизм.
Для устранения влияния сопротивлений контактных соединений шунты снабжаются токовыми и потенциальными зажимами.
/>
Iи=I·

;
Rш=

Rш+Rи

p 1

где
р=
I
Шунтирующий множитель

Шунты изготавливают из манганина. Шунты на токи до 30 А обычно встраивают в корпус прибора на большие токи делают наружные шунты.
Наружные шунты обычно выпускаются калиброванными, т.е. рассчитываются на определённые токи и падения напряжения 10; 15; 30; 50; 60; 75; 100; 150; 300 мВ.
/>
Для переносных приборов часто используются многопредельные шунты. Такой шунт состоит из нескольких резисторов, переключаемых в зависимости от предела измерения, рычажным переключателем или переносом проводов с одного зажима на другой. Сечение шунта должно быть достаточно большим, с тем чтобы не было нагревания шунта током и связанной с ним температурной погрешности.
По точности шунты делятся на классы: 0,02; 0,05; 0,1; 0,2; 0,5; 1,0. Число класса точности обозначает допустимое отклонение сопротивления в процентах его номинального значения.
Шунты широко применяются с измерительным механизмами магнитоэлектрической системы, которые могут изготовляться на малые номинальные напряжения 45–150 мВ.
Многопредельный с рычажным переключателем.

/>

Многопредельный с отдельными выводами.

2.2 Добавочные резисторы
Добавочный резистор, представляющий собой измерительный преобразователь, применяется для расширения предела измерения напряжения и для исключения влияния температуры на сопротивление вольтметра RV.
/>
Добавочный резистор изготавливается из манганина и включается последовательно с измерительным механизмом.
Если предел измерения напряжения измерительного механизма необходимо расширить в р раз, то, U=Uи·p=Uи+Uд=Iи·(rи+rд) откуда сопротивление добавочного резистора rд=(Uи·P–Iи·rи)/I=(Iи·rи·p–Iи·rи)/Iи;
Или Rд=rи·(p 1),    продолжение
–PAGE_BREAK–
Оно должно быть в (з 1) раз больше сопротивления измерительного механизма.
Если сопротивление измерительного механизма и добавочного резистора известны, то множитель добавочного сопротивления р=rд/rи+1.
Добавочные резисторы для постоянного тока наматываются обычно, а для переменного тока – бифилярно для получения безреактивного резистора. Намотка производится изолированным проводом на пластины или каркасы из пластмассы.
/>
В переносных приборах часто применяют добавочные резисторы, состоящие из нескольких частей, что позволяет иметь вольтметры на несколько пределов измерения.
Применяются внутренние и наружные добавочные резисторы.
Последние выполняют в виде самостоятельных устройств и подразделяют на индивидуальные и калиброванные. Индивидуальные резисторы применяют только с тем прибором, который градуировался с ним. Калиброванный резистор может применяться с любым прибором, номинальный ток которого равен номинальному току добавочного резистора.
Калиброванные добавочные резисторы, так же как и шунты, делят на классы точности 0,02; 0,05; 0,1; 0,2; 0,5; 1,0. Они изготавливаются на номинальные токи 0,5; 1; 3; 5; 7,5; 15 и 30 мА.
Добавочные резисторы применяются для преобразования напряжения до 30 кВ.
Пример 1:
I=10A; Iп=100; Rи=10Ом; Rш– ?
Rш=

Р=
I
=
10
=100
Rш=
10
=0,1 Ом

р 1

0.1

100–1

Пример 2:
U=30; Uи=5; Rи=5; Rд– ?
p=
U
=
30
=6
Rд=Rи·(p 1)=5·(6–1)=25 кОм

5

2.3 Измерительные трансформаторы тока
Трансформаторы тока предназначены для преобразования измеряемых переменных токов в относительно малые токи. Во вторичную цепь трансформатора тока включают амперметры, последовательные обмотки ваттметров, счётчиков и других приборов.
– В цепях высокого напряжения при помощи трансформаторов тока измерительные приборы изолируются от проводов высокого напряжения. Таким образом, с одной стороны, достигается возможность применения низковольтных измерительных приборов, с другой стороны, обеспечивается безопасность обслуживания измерительной установки.
/>
Трансформатор тока состоит из стального магнитопровода и двух изолированных обмоток. Первичная обмотка Л1, Л2, имеющая меньшее число витков, включается в рассечку провода с измеряемым током. Вторичная обмотка с большим витком И1, И2 замыкается на амперметр и токовые обмотки измерительных приборов, соединённые последовательно,
Так что сопротивление вторичной внешней цепи мало и обычно не превышает 1–2 Ом.
Принцип работы трансформатора тока тот же, что и трансформатора напряжения, но в отличие от последнего он работает в условиях, близких к короткому замыканию. Кроме того, первичный ток трансформатора тока не зависит от сопротивления его вторичной цепи. При работе этот ток может изменяться от нуля до номинального, а при коротких замыканиях в цепи может превосходить номинальный в десятки раз.
Отношение действительного значения первичного тока I1 к действительному значению вторичного тока I2 называется действительным коэффициентом трансформации трансформатора тока, т.е. k=I1/I2. При известном коэффициенте k, измерив вторичный ток амперметром, определяем первичный ток: I1=k·I2.
Действительный коэффициент трансформации обычно не известен, так как он зависит от режима работы трансформатора тока, т.е. от измеряемого тока, значения и характера сопротивления вторичной внешней цепи и от частоты тока. Вследствие этого пользуются даваемым заводом на щитке трансформатора номинальным коэффициентом трансформации kН=IН1/IH2, представляющим отношение номинального первичного тока к номинальному вторичному току трансформатора. Зная kH, находим приближённое значение переменного тока: I’1=kH·I2.
Погрешность при измерении тока, вызванная применением трансформатора,
гI=
I’1–I1
·100%=
kH·I2–k2·I2
·100%=
kH–k
·100%=гK

I1

k·I2

k

где гК=г1 – погрешность в коэффициенте трансформации или погрешность по току.
Вторичный номинальный ток у большинства трансформаторов тока равен 5 А.
Один из выводов вторичной обмотки должен быть заземлён.
По точности трансформаторы тока подразделяются на десять классов: 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1,0; 3,0; 5,0; 10.
Разновидность трансформатора тока с разъёмным магнитопроводом и вторичной обмоткой, замкнутой на амперметр, носит название измерительных клещей. Разъёмный магнитопровод даёт возможность измерять ток в проводе, не разрывая его, а только охватывая его как клещами.    продолжение
–PAGE_BREAK–
2.4 Измерительные трансформаторы напряжения
Представляет собой измерительный преобразователь, понижающий измеряемое напряжение в заданное число раз. Получаемое низкое напряжение, не превышающее обычно 100 В, подводится к вольтметрам, параллельным цепям ваттметров, счётчиков и других измерительных приборов.
Используя трансформаторы напряжения, с одной стороны, получаем возможность применения низковольтных приборов для измерений в цепях высокого напряжения, а с другой – обеспечиваем безопасность обслуживания высоковольтных установок.
/>
Устройство трансформатора напряжения аналогично устройству силового трансформатора. Трансформатор напряжения состоит из замкнутого магнитопровода, набранного из листовой трансформаторной стали, и двух изолированных обмоток – первичной Л1, Л2 и вторичной И1, И2 с числами витков w1, и w2. Первичная обмотка трансформатора присоединённая к сети с измеряемым напряжением; к зажимам вторичной обмотки подключается соединённые параллельно вольтметры и параллельные цепи других приборов.
Для работы трансформатора напряжения характерно незначительное изменение первичного напряжения и большое сопротивление вторичной внешней цепи; таким образом, он работает в условиях, близких к холостому ходу.
Отношение действительного значения первичного напряжения U1 к действительному напряжению U2 называется действительным коэффициентом трансформации трансформатора напряжения k=U1/U2. зная этот коэффициент и измерив вторичное напряжение вольтметром, можно определить первичное напряжение U1=k·U2.
Однако действительный коэффициент трансформации обычно не известен, так как он зависит от режима работы трансформатора, т.е. от измеряемого напряжения, от значения и характера нагрузки и от частоты переменного тока.
Вследствие этого приближённо измеряемое напряжение U’1 находят по формуле:
U’1=kH·U2
где kH=UH1/UH2 – номинальный коэффициент трансформации, равный отношению номинального первичного напряжения к номинальному вторичному напряжению, даётся заводом изготовителем на щитке трансформатора. Напряжение UH2=100 B или 100 В.
Погрешность при измерении напряжения, вызванная применением трансформатора,
гU=
U’1–U1
·100%=
kH·U2–k2·U2
·100%=
kH–k
·100%=гK

U1

k·U2

k

где гK=гU– погрешность в коэффициенте трансформации или погрешность по напряжению.
Для безопасности обслуживающего персонала один зажим вторичной цепи трансформатора и его металлический корпус всегда заземляются.
Трансформаторы напряжения по точности делятся на классы точности: 0,05; 0,1; 0,2; 0,5; 1,0 и 3,0.
Породу изоляции трансформаторы напряжения делят на сухие (для напряжений до 3 кВ) и трансформаторы с заливкой маслом или изолирующей массой (для напряжения 3 кВ и выше).
Отечественная промышленность, кроме различных типов промышленных трансформаторов, изготовляет лабораторные трансформаторы с несколькими номинальными первичными и вторичными напряжениями.
Список используемой литературы
В.С. Попов «Электрические измерения». М «Энергия», 1974 г.
В.Н. Малиновский «Электрические измерения». М «Энергоиздат», 1982 г.
В.И. Котур и др. «Электрические измерения и электроизмерительные приборы». М. Эн. 1986 г.