Со времени открытия бензилпенициллина А. Флемингом антибиотики являются одним из наиболее эффективных средств борьбы с жизненно опасными инфекционными заболеваниями. Однако, весьма часто встречается ситуация, в которой патологический орган-мишень является труднодоступным для попадания в него молекул антибиотика и/или имеет развитые защитные биологические барьеры, эффективно препятствующие этому попаданию. В качестве примеров таких органов можно назвать глаза, предстательную железу, пародонтальные ткани, плаценту и т.д. Поэтому имеются трудности для получения необходимой локальной концентрации антибиотика в патологическом очаге, и при инъекциях или пероральном приеме часто в нужное место попадает не более общей дозы. Лечащему врачу приходится увеличивать прием антибиотиков, что может привести к различным побочным эффектам и осложнениям антибиотиковой химиотерапии.
Вопросами транспорта лекарств в организме занимается сравнительно молодая и бурно развивающаяся отрасль медицины – фармакокинетика, которая использует формальные аналогии таких процессов как всасывание лекарств; их распределение по тканям и органам, метаболизм, экскреция с тем или иным разделом химической кинетики.
Вместе с тем, на наш взгляд, традиционный фармакокинетический подход не учитывает некоторых важных электрохимических особенностей, присущих как лекарствам-антибиотикам, так и тканям организма, в которые они вводятся. Действительно, почти все широко распространенные в химиотерапии антибиотики либо присутствуют в форме солей, либо являются диссоциирующими в плазме крови на гидратированные протоны и сложные органические анионы.
Поэтому представляется достаточно очевидной необходимость учета взаимодействия анионов антибиотиков с распределенным зарядом тканей организма при описании химиотерапевтического транспорта. Фармакокинетика не рассматривает также и влияние различных физических полей на транспорт лекарств, которое широко известно из практики физиотерапии с применением электрических, магнитных, радиочастотных, СВЧ и лазерных электромагнитных полей, ультразвука и т.п. Все эти малоамплитудные полевые воздействия на организм обладают форетическими эффектами по отношению к лекарственным препаратам, наиболее широко известным из которых является электрофорез.
Все вышеизложенное позволяет отнести тему нашей работы по исследованию механизма проницаемости плацентарных мембран по анионам антибиотиков в малоамплитудных физических полях к новому актуальному научному направлению – электрохимической кинетике.
Цель работы
На основании теоретических и экспериментальных исследований определить особенности электрохимического механизма и кинетики переноса анионов антибиотиков (бензилпенициллина, оксациллина, левомицетина) в физиологическом растворе через препарированные плацентарные мембраны ускоряющем влиянии электрического, магнитного, радиочастотного, СВЧ, лазерного, злектромагнитных полей и ультразвука. Рассмотреть возможность синергетических эффектов стимулирования переноса антибиотиков с определением оптимального числа смешанных малоамплитудных полевых воздействий как основы приборов физиотерапии нового поколения. Провести анализ клинической эффективности применения этих приборов в стомaтoлoгии.
Научная новизна
впервые фармакокинетические характеристики молекул лекарств-антибиотиков через ткани организма связаны как с их электролитической анионной диссоциацией, так и с наличием стохастических мембранно-связанных модифицированной с учетом этих электрохимических аспектов модели «рыхлого квазикристалла».
впервые сформулированы теоретические математические модели ускоряющего влияния малоамплитудных физических полей на электрохимическую кинетику переноса анионов антибиотиков в тканях организма («рыхлых квазикристаллов») по механизмам изменения симметрии распределения зарядов на границах биологических мембран с межклеточной жидкостью (электрические и магнитные поля), дополнительной внутритканевой генерации тепла (электромагнитные и ВЧ-ультразвуковые поля) и дополнительной механической стимуляции направленным потоком колебаний биосреды распространения (НЧ-ультразвуковые поля);
в экспериментах с препарированными плацентарными мембранами впервые была доказана адекватность вышеупомянутой модифицированной модели «рыхлого квазикристалла» как для собственного, так и для физически стимулированного плацентарного переноса анионов левомицетина, бензилпенициллина и оксациллина, начиная со времен, много меньших периодов полураспада этих антибиотиков по липидным «кинковым» каналам проводимости с коэффициентами диффузии 2,6-1(Г8-2,6-1(Г7 см2/с, с энергией активации 7,9-13,4 кДж/моль, удельной электропроводностью плацент 2,04-10»7 См/см при ускоряющем сдвиге их потенциалов асимметрии порядка нескольких десятков милливольт; при экспериментальных исследованиях влияния магнитных полей на электрохимическую кинетику переноса аниона левомицетина впервые были обнаружены артефакты в виде преобладания ускоряющего действия постоянного поля с «северной» ориентацией и магнитомеханических резонансов левомицетиновой проницаемости плацент при частотах вращения синусоидальных и пульсирующих полей 0,6 и 10 Гц;
на основе проведенных теоретических и экспериментальных исследований впервые была построена математическая модель смешанных синергетических полевых воздействий в малоамплитудном приближении, согласно которой результирующий коэффициент ускорения трансмембранного переноса ионов представляет собой произведение частных коэффициентов ускорения – «электрического», термического и механического;
расчеты по синергетической модели и экспериментальным коэффициентам ускорения плацентарного переноса анионов левомицетина, бензилпенициллина и оксациллина в индивидуальных физических полях впервые показали, что результирующий коэффициент ускорения нарастает с числом смешения полей по экспоненциальному закону. Суммарный фактор системных реакций организма (биопараметричность) увеличивается пропорционально числу смешения, а энергетическая сенситивность тканей (плацент) изменяется немонотонно, и ее максимум приходится на число смешения, равное двум;
с помощью комплексного индекса оптимизации (КИО) по трем выходным параметрам – результирующему коэффициенту ускорения, суммарной биопараметричности и безразмерному коэффициенту сенситивности впервые были определены оптимальные числа смешения полей от 2 до 4, обеспечивающие плато одинаковых максимальных значений КИО и оптимальность конструкции аппарата антибиотиковой физиотерапии на сочетанных полевых эффектах.
Практическая ценность
Результаты работы учитывались при конструировании физиотерапевтической аппаратуры типа «Атос», «Атос-А», «Атос-МнДЭП», «Интрамаг», «Интратерм», «Ласт-1», «Ласт-2» и т.д., выпускаемой ООО «ТРИМА» в г. Саратове, а также использовались практикующими соответствующие антибиотиковые физиотерапевтические процедуры врачами-урологами, стоматологами, офтальмологами. Конкретные данные по стимулированной антибиотиковой проницаемости плацент представляют интерес для врачей-гинекологов.
Материалы диссертации используются при чтении курса лекций и проведении лабораторных работ по биофизике студентам IV курса кафедры МВПО СГТУ.
Апробация работы
Результаты диссертационной работы доложены и обсуждены на Всероссийской конференции «Электрохимия мембран и процессы в тонких ионопроводящих пленках» (г. Энгельс), конференции «Современные проблемы теоретической и экспериментальной химии» (г. Саратов), Всероссийской конференции молодых ученых «Актуальные проблемы электрохимической технологии» (г. Энгельс, 2000), 5-й Международной конференции «Современные проблемы имплантологии» (г. Саратов, 2000).
Публикации
Основное содержание работы опубликовано в 10 статьях и тезисах докладов конференций.
Основные положения, выносимые на защиту
• Схемы диссоциации исследуемых антибиотиков.
• Теория переноса аниона антибиотика в тканях организма по модели «рыхлого квазикристалла».
• Методика эксперимента.
• Собственный антибиотиковый форез в плацентах.
• Антибиотиковый электрофорез в плацентах.
• Антибиотиковый магнитофорез в плацентах.
• Антибиотиковый СВЧ-форез в плацентах.
• Антибиотиковый лазерофорез в плацентах.
• Антибиотиковый НЧ и ВЧ-сонофорез в плацентах.
• Синергетические полевые эффекты антибиотикового анионного переноса в плацентах по модели «рыхлого квазикристалла».
• Учет системных реакций организма и энергетической сенситивности тканей.
• Оптимизация числа синергетических полевых воздействий в аппаратах антибиотиковой физиотерапии. Корреляция с терапевтическим эффектом.
• Выводы.
Структура и объем работы
Диссертационная работа состоит из введения, 4 глав, выводов, списка цитируемой литературы, включающего 335 источников, изложена на 250 страницах машинописного текста, содержит 30 рисунков и 20 таблиц.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы, сформулированы цели и задачи исследования, научная новизна и практическая значимость выполненной работы.
В литературном обзоре (первая глава) проведен анализ состояния современных представлений о химическом составе, структуре, физико-химических и электрохимических свойствах биологических мембран и сделан вывод о применимости к описанию ионного переноса в надмембранных тканевых структурах организма модели «рыхлого квазикристалла» (первый раздел). Рассмотрены различные аспекты антибиотиковой физиотерапии в современной урологии, стоматологии и офтальмологии (второй раздел). Обоснована применимость к проблемам многопараметрической оптимизации физиотерапевтической аппаратуры комплексного индекса оптимизации (КИО), как многомерной функции входных параметров (третий раздел).
Во второй главе (теоретические исследования) сформулированы математические уравнения ионного переноса в тканях организма в рамках модели «рыхлого квазикристалла» под действием собственной электрической асимметрии межфазных границ с физиологическими жидкостями (первый раздел) и при дополнительном ускоряющем влиянии электрических (второй раздел), магнитных (третий раздел), СВЧ- (четвертый раздел), лазерных (пятый раздел) электромагнитных и ультразвуковых (шестой раздел) малоамплитудных физических полей.
Выяснено, что собственный перенос ионов в тканевых мембранах подчиняется уравнению:
Сх=(С0-С,)-е-е±,
где С0 – исходная входная и С – текущая выходная концентрация переносимого иона, X – толщина мембраны, D – коэффициент транскорпоральной диффузии иона, т – время переноса, z – заряд иона, F = 96487 Кл/моль, R = 8,314 Дж/(моль-К), Т- абсолютная температура, (ра – собственный потенциал электрической асимметрии межфазных границ, знак «+» относится к переносу катионов и знак «-» соответствует переносу анионов. Построением в координатах In С(Со – С) – определяется D – по угловому коэффициенту прямых и фа – по отрезку, отсекаемому на оси ординат.
Все малоамплитудные физические поля, перечисленные выше, оказывают ускоряющее влияние на транскорпоральный электромиграционный перенос ионов, и коэффициенты ускорения могут быть выражены с помощью общей формулы:
Ку = Куе -г, (2)
где Ку — коэффициент ускорения транскорпоральной диффузии ионов, Дфа -стимулированный полем сдвиг потенциала электрической асимметрии, и -порядковый номер поля. Величины Ку и AВ – магнитная индукция, г0 – радиус кругового источника вращающихся магнитных полей, – частота синусоидального или пульсирующего магнитного поля, – частота вращения магнитного поля, An – энергия активации транскорпоральной ионной диффузии,- частота СВЧ-излучения, е0 = 104/36t Ф/м, с’- действительная часть относительной диэлектрической проницаемости мембраны, tg 6 – тангенс угла диэлектрических потерь, Е0 – амплитудная напряженность электрического ноля СВЧ-излучения, р и ср – плотность и теплоемкость мембраны, а к К — коэффициенты температуро- и теплопроводности мембраны, – коэффициент теплообмена, га – радиус сфокусированного лазерного луча, Wu – интенсивность лазерного облучения, v – скорость сканирования «пятна» лазерного излучения, и — частота и интенсивность ультразвука, с – скорость распространения ультразвука, т0 – время нахождения иона в узле стохастической квазирешетки, – глубина узловой потенциальной «ямы», Дф, Аф AВ третьей главе (экспериментальные исследования) приведены характеристики объектов и методики эксперимента (первый раздел), изучены параметры собственного и стимулированного переноса анионов антибиотиков через плацентарные мембраны (второй раздел), а также рассмотрены синергетические эффекты ускорения переноса при смешанном влиянии малоамплитудных физических нолей (третий раздел).
В качестве объектов исследования были выбраны препарированные в формальдегиде ювенильные ткани плацент со средней лазерно-иитерферометрической толщиной X ~ 0,1 мм и антибиотики левомицетин, бензил пенициллин, оксациллнн (р-лактам), разведенные в терапевтических концентрациях 0,2 м каждый в изотоническом физиологическом растворе 0,9 мае. NaCl. Растворы с антибиотиками помешались над плацентарными мембранами в специальных стеклянных электрохимических ячейках, и исследования кинетики переноса производились посредством отбора проб из подмембраиного пространства после предварительного перемешивания. Пробы анализировались фотометрически на приборе СФ-2 в диапазоне длин волн 265- 300 нм со средней относительной погрешностью 3,5 %.
В качестве источников мал о амплитудных полевых воздействий применялись приборы Б5-43, «Атос», ЛТН-101, УЗУ-0,25 с заменой одного из трех НЧ-излучателей УЗ-колебаний на ВЧ-излучатель, Влияние СВЧ-излучения моделировалось термостатическим нагревом ячейки с 309,7 до 317 К. Термостат MWL поддерживал температуру 309,7 К (36,7 °С) во всех остальных экспериментах с точностью ±0,05 А’.
На рис. 1 представлены результаты исследования кинетики проницаемости плацент по аниону левомицетнна. При т > 10-15 мин экспериментальные точки укладывались на прямые в теоретических координатах In C/(CD – С\) -т~ и вес малоамплитудные полевые воздействия ускоряют левомицетин о вый перенос. Плаценты обладают значительной индивидуальностью (рис. 1а, кр. 1-3), «выпрямляющими» свойствами по отношению к постоянному электроциклу с увеличением эффективного заряда до z = -1,2. Химическая стабилизация Р-лактамного цикла в полусинтетическом оксациллине дает z = -1 и нормальную корреляцию скорости плацентарного переноса с размером аниона. Такая же корреляция: левомицетин > бензилпенициллин > оксациллин наблюдалась и в экспериментах с ультразвуком, где преобладали механическая стимуляция диффузии и размерный фактор.
Обработка экспериментальных данных показала, что перенос анионов антибиотиков идет по липидным «кинковым» каналам проводимости с D = 2,6-1(Г8 — 2,6»7 см2/с, AD = 7,9 – 13,4 кДж/моль, Ку = 1,2-13,5 при удельной электропроводности плацент 2,04-10-7 См/см и ускоряющем сдвиге потенциалов асимметрии Дсра порядка нескольких единиц и десятков милливольт.
На основании полученных результатов было рассмотрено синергетическое ускорение антибиотикового переноса в смешанных малоамплитудных физических полях. Соответствующие теоретические уравнения модели «рыхлого квазикристалла» имеют вид:
для синергетических коэффициентов ускорения. Здесь Сх – среднее значение модулированных переменными физическими полями ионных выходных концентраций, знак «+» отвечает переносу катионов, а «-», соответствует переносу анионов, величины Куп и Дфа„ приведены в табл, N – общее число действующих смешанных полей.
Для плацентарного переноса анионов антибиотиков расчет дал зависимости Ку – N (рис. 3), которые могут быть аппроксимированы простым экспоненциальным законом в виде. Численный коэффициент а имеет значения: а = 0,408 – для оксациллина, а = 0,683 – для левомицетина, а = 0,730 – для бензилпенициллина. Среднее значение коэффициента по выборке из трех антибиотиков а = 0,5. В четвертой главе (электрохимические аспекты оптимизации аппаратов антибиотиковой физиотерапии) произведен учет системных реакций организма на суммарной биопараметричности физических полей Е и энергетической сенситивности тканей организма S (первый раздел), а также решена задача многопараметрической оптимизации эффективности лечения с помощью аппаратов антибиотиковой физиотерапии на смешанных полевых эффектах и найдена корреляция комплексного индекса оптимизации – КИО с относительным терапевтическим эффектом – ОТЭ (второй раздел).
Анализ литературных данных показал, что в качестве физиологически значимых воздействий физических полей, вызывающих системные реакции организма, можно выделить «диффузионное», «электрическое», «тепловое», «силовое», «сепарирующее», «санирующее» и «информационное». Присваивая каждому воздействию статистический вес, равный единице, можно заключить, что наименьший суммарный индекс биопараметричности имеют СВЧ -поля (рассматриваемые с точки зрения чисто теплового эффекта в биологических тканях) при Е = 3, а наибольший – ультразвуковые поля при I = 5. Электрические, магнитные поля и лазерное облучение имеют S = 4. Для смешанных воздействий N физических полей можно принять линейную аппроксимацию численное решение, которого дает Nmax = 2,4. При этом важно то, что положение Nmax не зависит от р, т.е. от выбора числа факторов влияния физических полей, которое из-за сложности системных реакций организма и его индиви дуальной переносимости антибиотиковых физиотерапевтических процедур следует считать достаточно произвольным.
При а = 0,5 и |3 = 4 получается зависимость КИО – N, показанная на рис. 4а. Из этих данных следует, что оптимум сочетаний антибиотиковой физиотерапии отвечает плато КО = 0,7 при Nmax = 2 – 4. Именно такой подход к конструированию аппаратов, основанный на использовании как минимум бинарных сочетаний полевых воздействий, и представляет собой наиболее перспективную линию развития современного клинического физиотерапевтического приборостроения. Например, это хорошо прослеживается на аппаратах, выпускаемых ООО «ТРИМА» в г. Саратове для лечения урологических, стоматологических и офтальмологических заболеваний с помощью магнитных, электрических, температурных полей, световых и лазерных излучений, а также их сочетанных комбинаций (приборы типа «Атос», «Ин-трамаг», «Интратерм», «Амблио» и т.п., разработанные под руководством к.т.н. Райгородского Ю.М.).
При анализе клинической эффективности применения этих и аналогичных им приборов других фирм применялся коэффициент тяжести заболевания K-t, рассчитываемый по диагностическим показателям, индивидуальным для каждого из перечисленных выше медицинских разделов.
Отбирались статистические данные по результатам лечения (из литературы, приведенной в разд. 1.2), позволяющие оценить Кт для контрольных групп I пациентов, лечившихся только антибиотиками, и для экспериментальных групп II пациентов, принимавших курсы сочетанной антибиотиковой физиотерапии. На основании этого по формуле:
ОТЭ = Кт(1)/Кт(П) (12)
оценивался относительный терапевтический эффект при уровне статистической достоверности 95 %. Была обнаружена достаточно хорошая корреляция между ростом N, КИО и ОТЭ, означающая корректность теоретических моделей и экспериментов in vitro, разработанных и проведенных нами.
Выводы
1. Впервые фармакокинетические характеристики транспорта молекул антибиотиков через ткани организма связаны как с их электролитической анионной диссоциацией, так и с наличием стохастически распределенных мембранно-связанных зарядов в рамках модифицированной с учетом этих электрохимических аспектов модели «рыхлого квазикристалла», и сформулированы теоретические математические модели ускоряющего влияния малоамплитудных физических полей.
2. В экспериментах с препарированными плацентарными мембранами впервые была доказана адекватность вышеупомянутой модифицированной модели «рыхлого квазикристалла как для собственного, так и для физически стимулированного плацентарного переноса анионов левомицетина, бензилпенициллина и оксациллина по липидным «кинкевышт «канаттам проводимости с коэффициентами диффузии С^,6-10~8-2,6-10~ активации 7,9-13,4 кДж/моль, плацент 2,04-10»7 См/см при ускоряющем сдвиге их потенциалов асимметрии порядка нескольких десятков милливольт.
3. Обнаружено влияние размера и эффективного заряда аниона антибиотика на кинетику плацентарного переноса, причем увеличение эффективного заряда из-за кислотной диссоциации по второй ступени (левомицетин, z s -1,09) или гидролитического диссоциативного расщепления Р-лактамного цикла (бензилпенициллин z = -1,2) ускоряет перенос и может компенсировать тормозящий размерный фактор (оксациллин z = -1).
4. При экспериментальных исследованиях влияния магнитных полей на электрохимическую кинетику переноса аниона левомицетина впервые были обнаружены артефакты в виде преобладания ускоряющего действия постоянного поля с «северной» ориентацией и магнитоме-ханических резонансов левомицетиновой проницаемости плацент при частотах вращения синусоидальных и пульсирующих полей 0,6 и 10 Гц.
5. На основе проведения теоретических и экспериментальных исследований впервые была построена математическая модель смешанных синергетических полевых воздействий в малоамплитудном приближении, и полуэмпирические расчеты показали, что результирующий коэффициент ускорения плацентарного переноса анионов левомицетина, бензилпенициллина и оксациллина нарастает с числом смещения полей по экспоненциальному закону.
6. С помощью комплексного индекса оптимизации (КИО) по трем выходным параметрам – результирующему коэффициенту ускорения, суммарной биопараметричности и безразмерному коэффициенту сенситивности впервые были определены оптимальные числа смешения полей от 2 до 4, обеспечивающие плато одинаковых максимальных значений КИО = 0,7 и оптимальность конструкции аппарата антибиотиковой физиотерапии на сочетанных полевых эффектах.
7. Анализ большого числа литературных источников по клинической практике применения аппаратов антибиотиковой физиотерапии в урологии, стоматологии и офтальмологии показал правильность определения оптимальных чисел смешения полей (N„a = 2-4), корреляцию межлу КИО и относительной терапевтической эффективностью (ОТЭ) прибора, означающую корректность построенных теоретических моделей и проведенных экспериментов in vitro, а также преимущество по ОТЭ приборов с большими значениями tfm и суммарной биопараметричности.
Основное содержание работы отражено в следующих публикациях:
1. Магнитостимулированная проводимость плацентарных мембран по анионам-антибиотикам Т.Е. Сорокина, Ю.В. Серянов, Л.А. Фоменко и др. II Химические науки: Сборник научных трудов. – Саратов: Изд-во Сарат. ун-та, 1999.- С. 117-121.
2. Кинетика магнитостимулированной проводимости плацентарных мембран Т.Е. Сорокина, Ю.В. Серянов, Л.А. Фоменко, Ю.М. Райгородский Сб. материалов Всероссийской конф. «Электрохимия мембран и процессы в тонких ионопроводящих пленках на электродах». – Саратов – СГТУ 1999 -С. 112-117.
3. Исследование скорости химического растворения пористых биоактивных покрытий на титане / К.В. Мазаное, Л.А. Фоменко, Ю.В. Серянов, Т.Е. Сорокина // Тез, докл. II Всерос. конф. молодых учёных «Современные проблемы теоретической и экспериментальной химии». – Саратов: Изд-во ун-та, 1999.-С. 28.
4. Кинетика электростимулированного переноса антибиотиков через плацентарные мембраны / Т.Е. Сорокина, Ю.В. Серянов. Л.А. Фоменко, Ю.М. Райгородский, В.Н. «Актуальные проблемы электрохимической технологии»: Сб. статей молодых учёных. – Саратов: СГТУ 2000 – С 198-204.
5. Кинетика термостимулированного переноса антибиотиков через плацентарные мембраны / Т.Е. Сорокина, Ю.В. Серяпов, Л.А. Фоменко, Ю.М. Райгородский, В.Н. Лясникое II «Актуальные проблемы электрохимической технологии»: Сб. статей молодых учёных. – Саратов: СГТУ, 2000. – С. 207
6. Биофизические принципы аппаратов физиотерапии для дентальной имплантологии / Ю.В. Серянов, В.Н. Лясников; А.В.Лепилин, Ю.М. Райгородский, Л.А. Фоменко, Т.Е. Сорокина II Сб. материалов V Международной конф. «Современные проблемы имплантология». – Саратов, 2000. С. 21-25.
7. Исследование проницаемости плацентарных мембран по антибиотикам в бегущем магнитном поле / Т.Е. Сорокина, Ю.В. Серянов, Л.А. Фоменко, Ю.М. Райгородский II Юбилейный сборник научных работ, посвященный 150-летию института ветеринарной медицины и биотехнологии. – Саратов: СГАУ, 2000. – С. 182-190.
10. Исследование проницаемости плацентарных мембран по анионам- антибиотикам в постоянных электрических полях / Т.Е. Сорокина, Ю.В. Серянов, Л.А. Фоменко, Ю.М. Райгородский II Юбилейный сборник научных работ, посвященный 150-летию института ветеринарной медицины и биотехнологии. – Саратов: СГАУ, 2000. – С. 254-257.