What is energy (english)

What is energy. Everything in the universe is either energy or matter. For us humans, energy is the means for doing work. Picking up a book, watching TV or launching a Space Shuttle all needs energy. Without it there would be no life, for all life uses energy. Energy, so far as we are concerned, comes from only two sources the

Sun and the decay of radioactive elements inside the Earth. The Sun radiates its warmth out to all the planets, but ours happens to be about the right distance away to be able to support Life. In fact, Life seems to control the temperature of the planet like a thermostat. But what about oil, gas or coal, which also come from inside the Earth They were formed because of the energy from ancient sunshine from millions of years ago driving

life on Earth. These have formed fossil fuels or non-renewable energy sources. Energy is the power that we use to do things, whether it is thinking about building a ship or actually building it. Building it needs large amounts of energy to power blast furnaces to make the steel, mills to roll it and electricity to weld it to form the ships structure. That ship, when built, has engines, which push it through the water.

Most energy is not available to us in a usable form. We have to convert it into another form to make it work for us. Here are two examples A fast-flowing river is full of energy we cant use. If you dam it and install turbines, you get electricity. Coal is just black rock with one odd property it burns.

If you burn it, you can warm your home, cook food or raise steam in a boiler – to make electricity. Life needs energy. Lifes energy is self-perpetuating only so long as there is sunshine. Plants can convert it and store it for their next generation as in potato tubers, groundnuts, rice or peas. Animals eat the plants or each other, die and decompose, freeing nutrients for plants again. It is a sustainable cycle. For hundreds of thousands of years, humans have merely been a part of this
cycle. Then we got clever and discovered that we could use energy other than from our own muscles to do work for us. First we discovered that wind could drive our ships and water could power our mills. Later, we found that coal could make heat and steam for machinery. Then came oil and gas and nuclear power, all needed in increasingly large amounts to fuel our endless appetite for being comfortable and doing things with as little effort as possible.

So we heat our homes, schools and workplaces in the winter. In the richer countries, most people have a car or several so that they can travel about. Transport guzzles huge amounts of energy – all so that we can have goods and services when we want them. Kinds of energy resources. Almost all of the energy we use comes from non-renewable sources. All non-renewable energy sources create pollution, in part due to their extraction from the crust of

our planet but mainly from their burning. Only two types exist the fossil fuels coal, oil and natural gas and nuclear fuels uranium, plutonium and, for the future, unusual types – isotopes – of hydrogen such as deuterium and tritium. Fossil fuels are useful to us only because they liberate heat energy when we burn the carbon they contain. Burning – combustion – is really oxidation making carbon and oxygen combine to liberate heat. Unfortunately for us, the principal byproduct is carbon dioxide,

CO2. Most scientists believe that this is an important contributor to global warming. The heat from coal, gas and oil we can use either directly or indirectly to raise steam in boilers and generate electricity using steam turbines to drive generators. By contrast, properly managed nuclear fuels liberate no pollution to the atmosphere at all. Accidents are rare in the nuclear power industry but when they occur, their potential for long-lasting
damage is horrific. The disaster at Chernobyl on April 26, 1986 was by far the worlds worst nuclear accident. Phytoplankton are tiny floating plants called algae. The commonest are golden or brown colored diatoms and din flagellates. Zooplankton are tiny animals, which eat the phytoplankton but are themselves the main food for fish and some whales. Oil petroleum and natural gas formed by complex decay processes from microscopic life

forms called phytoplankton phytoplant which floated in the worlds oceans millions of years ago. Just like todays phytoplankton, they harnessed the Sun to photosynthesis and store energy. When these myriads of tiny floating plants died, they sank to the sea floor and became mixed with muds from distant rivers, and were gradually buried. Over immense periods of time, the soft sediments became ever more deeply buried and slowly hardened

into rocks. Heat from the Earths interior and the weight of the overlying rocks gradually changed the energy-containing substances in the accumulated plants into hydrocarbon liquids and gases. Hydrocarbons are simple molecules made up of carbon and hydrogen atoms joined together in chains or in rings. These molecules, being light and mobile, migrated upwards through the rocks but eventually became trapped beneath impermeable rock structures in the

Earths crust. The oil and gas companies around the world know how to find these trapped reservoirs and release their contents by drilling holes into them. As everyone knows, crude oil and gas from these deposits form the basis for the worlds largest energy industry oil and gas. Much oil and gas production now comes from underneath the seabed. As the technology for extraction continues to advance, production becomes possible from deeper and
deeper waters. This means that new oil and gas fields will continue to be found for some years yet so the early forecasts of oil running dry have proved to be wrong. But we know that the supplies are limited. We also know that every drop of oil we burn adds to the monumental environment problems we already have by pumping gases like carbon dioxide CO2 into the atmosphere. Many scientists worry that this continual release of

CO2 is an important cause of global warming. Coal is carbon so is graphite lead pencils and diamond a girls best friend as well as the hardest substance known. Every living organism is made up of molecules based on carbon. Without carbon, there would be no life. Coal is the most plentiful fossil fuel and, unfortunately, the most polluting. Like oil and gas, coal started as living plants – mostly trees – in low lying swampy

areas not much above sea level, tens or hundreds of millions of years ago. As the trees died, they did not decompose as they normally would, returning the carbon locked in their tissues to the atmosphere. Because of the water logging, normal decay processes couldnt function. So thick layers of peat built up over thousands of years. These then became covered in sands or muds as the land subsided.

As more material accumulated above the peat, the water was squeezed out leaving just carbon-rich plant remains. After millions of years, this slowly changed – metamorphosis – like the oil and gas from the plankton into coal. Nuclear power taps the ultimate source of energy, which powers the universe, and its myriads of stars like our Sun. It exploits the famous Emc2 e1 equation, which shows that matter, can change into energy.
Nuclear engineers deliberately arrange to split certain atoms – this is called nuclear fission. When this happens, some matter gets destroyed – liberating huge amounts of energy. This energy mostly ends up as heat from which you can make steam to drive turbines and generators, and make electricity in power stations. In the Sun, atoms of hydrogen fuse to create helium and liberate the seemingly endless stream of energy we call sunlight.

Without this solar fusion reactor 150 million kilometers away, our home planet would be a frigid lifeless world. Scientists hope to reproduce this fusion reaction in a controlled way to yield almost unlimited energy supplies with far fewer radioactive waste problems. So far, theyve only managed the uncontrolled reactions hydrogen bombs. The discovery of nuclear reactions is a wonderful example of the neutrality or indifference of science.

Like so many other discoveries, humans for good or for ill could exploit nuclear reactions. The pressures of war caused the ill to be developed first but out of that development came an industry, which now provides 22 of electricity supply in the OECD countries. In France, it provides 73 in the UK 23 and 17 in the USA. And whilst its true that the two nuclear bombs used in anger on

Japan killed and maimed hundreds of thousands, they have some way to go to catch up with the hundreds of millions of people whove lost their lives because of ordinary bombs, high-explosive shells, bullets and mines. Many claim that the very existence of nuclear weapons has prevented major conflict since World War 2. But what really scares people – and rightly so – is that modern nuclear weapons could destroy the entire planet if theyre ever used in anger again.
So now, there are forces -like the World Court Project – afoot to make their possession and use illegal throughout the world. On the other hand, many countries view with disgust the idea that the nuclear haves should keep their weapons whilst making sure that the have nots dont get any a kind of nuclear imperialism. This is a good reason for making all such weapons illegal. Otherwise, proliferation is a worry, particularly since the break-up of the

Soviet Union, which has inadvertently made weapons-grade materials available on the international black market. Sooner or later, extremists will accumulate enough of this to build a crude device, which could easily be carried by a vehicle, driven into a major city and detonated. The prospects are frightening. As in any industry, accidents happen. Serious accidents can mean the spreading of dangerous radioactivity into the environment.

Several serious accidents have occurred, as everyone knows. Several other less well-known accidents associated with the race to build nuclear weapons occurred in the former Soviet Union, causing the contamination of hundreds of square kilometers of land. Renewable sources – Renewable energy sources have long been energys Cinderella. Today, wind power is finally coming into its own.

Denmark, already employing 12,000 people in its wind industry, intends wind power to produce half its total electricity needs by 2030. Several major wave power projects are now underway and solar energy is booming in Germany, the western USA and, in a smaller way, in remoter parts of the South. Equally important in cold climates is the design of buildings to capture passive energy and retain it through insulation. Other minor renewables include geothermal power in volcanically active countries
like Iceland, while tidal barrages remain a possibility in the UK and eastern Canada. People use some kinds of renewable sources. At first, it is wind energy. We have been harnessing the winds energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmills modern equivalent a wind turbine can use the winds energy to generate electricity.

Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet 30 meters or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the winds energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on

the downwind side of the blade. The low-pressure air pocket then pulls the blade toward it, causing the rotor to turn. This is called lift. The force of the lift is actually much stronger than the winds force against the front side of the blade, which is called drag. The combination of lift and drag causes the rotor to spin like a propeller, and the turning shaft spins a generator to make electricity. Wind turbines can be used as stand-alone applications, or they can

be connected to a utility power grid or even combined with a photovoltaic solar cell system. Stand-alone wind turbines are typically used for water pumping or communications. However, homeowners or farmers in windy areas can also use wind turbines as a way to cut their electric bills. For utility-scale sources of wind energy, a large number of wind turbines are usually built close together to form a wind plant. Several electricity providers today use wind plants to supply power to
their customers. At second, it is bio energy. We have used bio energy the energy from biomass organic matter for thousands of years, ever since people started burning wood to cook food or to keep warm. And today, wood is still our largest biomass resource for bio energy. But many other sources of biomass can now be used for bio energy, including plants, residues from agriculture or forestry, and the organic component of municipal and industrial wastes.

Even the fumes from landfills can be used as an energy source. The use of bio energy has the potential to greatly reduce our greenhouse gas emissions. Bio energy generates about the same amount of carbon dioxide as fossil fuels, but every time a new plant grows, carbon dioxide is actually removed from the atmosphere. The net emission of carbon dioxide will be zero as long as plants continue to be replenished for bio

energy purposes. These energy crops, such as fast-growing trees and grasses, are called bio energy feedstocks. The use of bio energy feedstocks can also help increase profits for the agricultural industry. I think, that it is very important to use sun energy. The Sun is the center of our solar system and the source of life on the planet earth. Moreover, as petroleum continues to pollute and destroy the earth, what better way than to look to

the Sun for a solution The earth and either being used or simply bouncing off are always capturing the heat from the Sun. Solar technology utilizes this heat energy and converts it to electrical energy, which is then fed into the power grid for users. That, albeit, is not all. One of the benefits of solar energy is its ability to be used widely and in specialized situations. For instance, Small systems can be installed on the roofs of homes to heat water for domestic use.
Moderate-size systems can supply hot water, steam, and hot air to schools, hospitals, businesses, and industries. Large solar thermal electric installations can generate electricity in quantities comparable to those generated in intermediate-size utility generating plants that is, 100 to 200 megawatts MW of electricity. One myth about solar power is that it requires large areas of land in order to be deemed useful. One example of this falsity is

Solar collectors covering less than half of Nevada could supply all of the United States energy needs. While that seems like a lot of land, that area divided my 50 states and spread out could almost go unnoticed. One of solar powers biggest advantages is cost. For 1 of the construction cost on a building, solar panels installed could save up to 50 on heating bills. In addition, at a more consumer level, a resident of a home could save almost 500 within just

the first year of installation. As an added bonus, the savings are likely to increase over the years due largely to increase in electrical bills. Thus, a solar heating system is capable of paying for itself in less than 10 years. The answer to the energy crisis the world is seeing could be to simply return to that with we depends on already, the Sun. Flowing water creates energy that can be captured and turned into electricity. This is called hydropower. The most common type of hydropower plant uses a dam on

a river to store water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which in turn activates a generator to produce electricity. But hydropower doesnt necessarily require a large dam. Some hydropower plants just use a small canal to channel the river water through a turbine. Another type of hydropower plant called a pumped storage plant can even store power.
The power is sent from a power grid into the electric generators. The generators then spin the turbines backward, which causes the turbines to pump water from a river or lower reservoir to an upper reservoir, where the power is stored. To use the power, the water is released from the upper reservoir back down into the river or lower reservoir. This spins the turbines forward, activating the generators to produce electricity.

The ocean can produce two types of energy thermal energy from the suns heat, and mechanical energy from the tides and waves. Oceans cover more than 70 of Earths surface, making them the worlds largest solar collectors. The suns heat warms the surface water a lot more than the deep ocean water, and this temperature difference creates thermal energy. Just a small portion of the heat trapped in the ocean could power the world.

Ocean thermal energy is used for many applications, including electricity generation. Ocean mechanical energy is quite different from ocean thermal energy. Even though the sun affects all ocean activity, tides are driven primarily by the gravitational pull of the moon, and waves are driven primarily by the winds. As a result, tides and waves are intermittent sources of energy, while ocean thermal energy is fairly

constant. Also, unlike thermal energy, the electricity conversion of both tidal and wave energy usually involves mechanical devices. A barrage dam is typically used to convert tidal energy into electricity by forcing the water through turbines, activating a generator. For wave energy conversion, there are three basic systems channel systems that funnel the waves into reservoirs float systems that drive hydraulic pumps and oscillating water column systems that use the
waves to compress air within a container. The mechanical power created from these systems either directly activates a generator or transfers to a working fluid, water, or air, which then drives a turbinegenerator. Conclusion. Thus, humanity uses many kinds of energy renewable and non-renewable. To make sure we have plenty of energy in the future, its up to all of us to use energy wisely. We must all conserve energy and use it efficiently.

It also up to those of you who will want to create the new energy technologies of the future. One of you might be another Albert Einstein and find a new source of energy. Its up to all of us. The future is ours but we need energy to get there. The world has changed dramatically over the last 200 years, thanks largely to fossil fuels coal, oil and natural gas. These have provided us with cheap and convenient energy, which we use to heat and cool

our homes and to run our cars, appliances and industries. But there has been a cost. No city in the world is immune from the polluting effects of fossil fuels, and they contribute vast quantities of greenhouse gases to the atmosphere, something that many scientists believe causes global warming. So, in the last few decades, scientists have been looking for ways to produce energy without adverse side effects. Promising renewable energy sources such as wind, direct

solar and biomass are dealt with in other Nova topics see links at the end of this page. Now well have a look at hot dry rocks, waves and hydrogen. It may be some years before these energy sources make a big impact but they illustrate the diversity of options that are available.