Министерство науки и образования РФ
Брянский государственный технический университет
Кафедра «Промышленная электроника»
Отчет по теоретическим основам электротехники
Лабораторная работа №8
«Исследование переходных процессов в электрических цепях с источником постоянного напряжения»
Выполнили студенты группы 04 ПЭ
Гайков В.А., Соколов А.А.,
Шкуратов А.А., Саченко Е.А.
Преподаватель Потапов Л.А.
Брянск 2006
Цель работы: получение навыков проведения экспериментальных работ при исследовании различных переходных режимов электрических цепей.
Задачи работы
Закрепить навыки работы с электронным осциллографом;
Освоить навыки получения осциллограммам в цепях RC, RL, RLC;
Научиться опытным путем определять постоянную времени и декремент затухания в исследуемых переходных процессах.
Выполнение работы
Схема для первых двух пунктов представлена на рис.1.
/>
Рис.1
Параметры схемы рис.1
R1,Oм
R2, Ом
R0, Ом
L, Гн
C, мкФ
U, В
268
51
7
0,0566
4
10
1. Исследование цепи с конденсатором и активным сопротивлением (процессы разряда и заряда).
Масштабы тока и напряжения на экране осциллографа соответственно равны: />5 В/ед,
/>0.5 А/ед. Т.е. Uc=/>. I=/>.
Отсюда можем рассчитать амплитуду для тока и напряжения на конденсаторе в цепи.
Для заряда конденсатора значение напряжение на конденсаторе имеет вид
/>.
Возьмем на графике 2 точки, отстоящие друг от друга на некий интервал времени />:
/>, />.
Отсюда />, />= с./>
При разряде конденсатора напряжение имеет вид
/>,
постоянная времени определяется по формуле
/>.
Для теоретического расчета параметров переходного процесса составим характеристическое уравнение цепи по методу входного сопротивления:
/>, />=/>.
Уравнение для тока в цепи
/>(/>).
Полученные результаты занесем в таблицу
Расчетные (р) и полученные теоретически (т) параметры переходного процесса в цепи RC
Режим
/>, В
/>, В
/>, мс
/>р, мс
/>т, мс
Заряд конденсатора
2,5
6,5
2
1,5
1,3
Разряд конденсатора
9,5
2
0,6
0,94
0,5
На осциллографе получаем чередование графиков процессов разряда и заряда конденсатора с частотой (переключения реле – ключ К) 50 Гц.
Построим графики переходного процесса по теоретическим данным.
График напряжения на конденсаторе при его заряде имеет вид
/>
График тока через конденсатор при его заряде
/>
График напряжения на конденсаторе при его разряде
/>–PAGE_BREAK–
График тока через конденсатор при его разряде
/>
2. Исследование цепи с катушкой и активным сопротивлением.
Масштабы тока и напряжения на экране осциллографа соответственно равны:
/>5 В/ед,
/>0.1 А/ед.
Для подключения катушки значение тока на ней имеет вид
/>.
Возьмем на графике 2 точки, отстоящие друг от друга на интервал времени />:
/>, />.
Отсюда />, />= с./>
При отключении катушки />, постоянная времени определяется по формуле
/>.
Для теоретического расчета параметров переходного процесса составим характеристическое уравнение цепи:
/>=> />.
Напряжение на катушке определяется следующей функцией
/>(/>).
Результаты внесем в таблицу
Расчетные (р) и полученные теоретически (т) параметры переходного процесса в цепи RL
Режим
/>, A
/>, A
/>, мс
/>р, мс
/>т, мс
Подключение катушки
0,1
0,15
0,5
0,2
0,17
Отключение катушки
0,2
0,04
0,3
0,48
0,45
На осциллографе получаем чередование графиков процессов отключения и подключения катушки с частотой (переключения реле – ключ К) 50 Гц.
График тока через катушку при ее подключении
/>
График напряжения на катушке при ее подключении
/>
График тока через катушку при ее отключении
/>
График напряжения на катушке при ее отключении
/>
3. Исследование цепи с катушкой, конденсатором и активным сопротивлением.
Цепь собрана по схеме, изображенной на рис.2.
/>
Рис.2
Параметры схемы рис.2
R, Ом
R0, Ом
L, Гн
C, мкФ
U, В
319
7
0,0566
4
10
В ходе эксперимента мы получили апериодический режим, близкий к критическому (|p1|>>|p2|), – при подключении цепи RLC под постоянное напряжение – и затухающий колебательный процесс – при отключении цепи. Напряжение на конденсаторе имеет вид /> — при подключении цепи RLC под напряжение Е – и /> — при отключении цепи. Масштабы тока и напряжения на экране осциллографа соответственно равны: />5 В/ед, />0.2 А/ед.
При подключении цепи RLC постоянная времени определяется по формуле
/>,
а при отключении цепи RLC в качестве параметров переходного процесса выступают декремент затухания и частота свободных колебаний –
/>, />, />.
Для теоретического расчета параметров переходного процесса составим характеристическое уравнение цепи:
/>
1) /> — для режима подключения цепи под напряжение (R>/>),
2)/>; /> — для затухающего колебательного процесса разряда конденсатора на катушку (R). продолжение
–PAGE_BREAK–
Ток и напряжение на катушке описываются следующими функциями:
— при апериодическом режиме
/>,
/>;
— при затухающих колебаниях
/>,
/>.
Rk=237,9 Ом, активное сопротивление исследуемой цепи при размыкании ключа К R=R+R0=326 Ом.
Поэтому, определяя />по осциллограмме апериодического процесса будем считать, что у нас критический режим, и затем сравним результат с полученными из теоретических расчетов />1 и />2 (одно из них будет сравнительно мало). Такое упрощение позволяет с достаточной точностью и простотой оценить результаты.
Расчетные (р) и полученные теоретически (т) параметры переходного процесса в цепи RLС
Режим
/>, В
/>, В
/>, мс
/>р, мс
/>т1, />т2,мс
/>р, с-1
/>т, с-1
/>р, с-1
/>т, с-1
/>,º
/>,º
Апериодический режим
5
8
1
0,92
1,1
–
–
–
–
0,21
Затухающие колебания
3,5
1
3
–
–
108,47
61,84
2094,4
2100,75
87,04
88,31
На осциллографе получаем чередование графиков процессов отключения и подключения цепи RLC под постоянное напряжение с частотой (переключения реле – ключ К) 50 Гц.
Участки экспериментальных осциллограмм для процессов
А) подключения цепи RLC
/>
/>
/>
Б) отключения цепи от постоянного напряжения
/>
/>
/>
На экране осциллографа наблюдаем протекание процессов в следующей форме
График напряжения на конденсаторе в цепи RLC
/>
После теоретических расчетов получаем следующие зависимости
А) подключение цепи RLC под E
/>(t)=/>;
/>;
/>.
/>
/>
/>
Б) разряд конденсатора на катушку
/>
/>
/>
/>
/>
/>
Вывод. При выполнении данной работы мы подробно рассмотрели различные режимы переходных процессов в цепях RC, RL, RLC, подключенных под постоянный ток, и развили навыки определения их параметров с использованием осциллограмм.
Вывод. При проведении эксперимента мы изучили возможности использования электронного осциллографа и применили их к задаче по практическому расчету параметров переходных процессов.
Вывод. Мы ознакомились со всеми режимами переходных процессов в цепях постоянного тока с входным сопротивлением, содержащим вторую степень комплексной частоты, и изучили их особенности.
Вывод. Проведенная работа позволила усвоить методы экспериментального расчета переходных процессов.