Проблемы хорошего зрения.

1. Плохое зрение. 2. Строение глаза. 3. Фокусация глаза. 4. Дальняя и ближняя точки. 5. Прессбиоприя. 6. Близорукость. 7. Испытание на близорукость. 8. Геперопия, или дальнозоркость. 9. Астигматизм. 10. Характеристика бинокулярного зрения. 11. Трёхмерное кино и бинокулярное зрение. 12. Способность оценивать расстояние и видеть вбок.
13. Различные способы оценки расстояния. 14. Несогласованное напряжение мускулов. 15. Список литературы. 1. Плохое зрение. Если вообразить, что недостаток зрения может, например, превратиться в недостаток ног; тогда более 50% людей будут хромать или даже будут, неспособны, ходить без костылей, а некоторые вынуждены будут прибегнуть к коляскам. В современном мире гораздо больше комфорта и удобств, что облегчает значительную часть нашего каждодневного
труда, нас освободили от многих жизненных забот, но сильно увеличилась нагрузку на глаза. Экспериментальные данные показывают, что примерно 95% младенцев рождается без дефектов глаз с нормальным зрением. Однако по результатам табл. 1 видно, очень малый процент в пожилом возрасте остается с хорошим зрением. На зрение людей возлагается тяжёлая нагрузка. В результате этого мы быстро превращаемся в людей обязательно носящих очки.
Несоответствие человеческого зрения в целом – один из самых серьёзных проблем современности. Перегрузка глаз заключается в том, что мы “используем глаза не по назначению”, то есть не в тех целях, для которых они первоначально предназначались. Первобытный человек пользовался своими глазами только для того, чтобы смотреть вдаль при ярком солнечном свете – для охоты, рыбной ловли и для сражений. Когда солнце заходило, обязанности глаз кончались.
Он не работал целый день с предметами, расположенными вблизи глаз и не ходил потом в панорамное кино, не смотрел телевизионные передачи в течение нескольких часов и не читал книгу далеко за полночь. В основном многие недостатки глаза возникают в результате нагрузки на них и условий, при которых глаза выполняют работу, можно значительно улучшить их положение. Но это требует научного подхода со стороны различных групп людей и каждого человека в отдельности. В наши задачи входит узнать, как устроен глаз, каковы его функции, какие бывают дефекты и какие рабочие условия вызывают перегрузку. Начнём с изучения самого глаза. Таблица 1 Приближённый процент нормального зрения среди лиц разного возраста. Возрастная группа. Процент лиц с недостатками зрения. Новорождённые 0,5 Учащиеся средней школы 20 Учащиеся колледжа 40 40 лет 60 95 лет 95
Данные из книги М. Лекиша (М. Luckiesh, Light, Vision and Seeing, N. Y 1944) 2. Строение глаза. Часто проводят аналогию между глазом и камерой Обскурой, но как большинство аналогий эта верна лишь частично. Глаз – это бесконечно более тонкий и сложный прибор, чем наилучший фотоаппарат, хотя в общем они похожи. В фотоаппарате (рис.1), имеется простая собирательная линза или их система, которая действует наподобие
собирательного хрусталика глаза. Чувствительность к свету сетчатой оболочки на задней стороне глаза соответствует чувствительной плёнке в фотоаппарате; ту и другую получают перевёрнутые, действительные, уменьшенные изображения. Радужная оболочка регулирует количество света, входящего в глаз, а диафрагма регулирует количество света, допускаемого в фотоаппарат;. В на ярком свете зрачок имеет размер булавочной головки, а в темноте отверстие радужной оболочки может
иметь диаметр почти 1см. 3. Фокусация глаз. В один момент нормальный глаз может дать одинаково чёткое изображение отпечатанного текста или спидометра автомашины, находящийся всего на расстоянии какого-нибудь десятка сантиметров от глаз, а в следующую долю секунды он способен сфокусировать чётко на сетчатой оболочке такой большой удалённый предмет как гора. Не обладай мы такой способностью, было бы очень сложно управлять быстроходными автомобиля и самолётами. Увеличилось бы количество несчастных случаев, которых и так много. Существует несколько теоретически возможных способов. Допусти, рыба фокусирует свой глаз, изменяя расстояние между линзой и сетчатой оболочкой так же, как и фокусируется фотоаппарат с растяжением. Но фокусировка человеческого глаза достигается не таким способом, хрусталик глаза изменяет свою форму, т. е. с увеличением расстояния предмета, приводящим к уменьшению
расстояния изображения, мускулы, соединённые с внешними краями глазного хрусталика, заставляют хрусталик сплющиваться и он становится тоньше. Его фокусное расстояние увеличивается в достаточной степени, изображение резко фокусируется на сетчатой оболочке (рис 2.а). Когда предмет приближается к глазу, чтобы заставить увеличиться расстояние до изображения, хрусталик становится более выпуклым и толстым. Его фокусное расстояние при этом уменьшается так, что расстояние
изображения остаётся полным и изображение не сходит с сетчатой оболочки (рис 2,в). Процесс называется аккомодацией и дает те же самые результаты, что и фокусировка фотоаппарата. Так как стенки фотоаппарата поглощают любой попавший луч света, его внутренность зачернена. Внутренность глаза так же окружена тёмной оболочкой, которая поглощает свет. Поверх тёмной имеется твёрдая белая оболочка глаза, сохраняющая форму глазного яблока.
Она защищает глаз от повреждений. Глаз во многом совершеннее фотоаппарата, но не во всем. Например, фотоаппарат даёт стационарное изображение предметов во всех подробностях, между тем как изображение в глазу существует только в течение 1/16 сек до появления следующего чёткого изображения. На сетчатой оболочке часто одно изображение может перекрываться и заслонять следующее изображение, отсутствуют некоторые детали. Поэтому два болельщика могут спорить относительно победителя в гонках. Фотоснимки не имеют таких недостатков. При таких обстоятельствах имеют они превосходство перед непосредственным наблюдателем. Остаточное изображение в глазу вызывает размытие картины спиц вращающегося колеса, а также создаёт видимость светящегося следа за быстродвижущимся в темноте источником света. На самом деле в кино мы видим от 16 до 24 неподвижных картин, чередующихся на экране каждую секунду. После каждой такой картины и перед следующей экран затемняется обтюратором кинопроекционного аппарата,
но глаз сохраняет впечатление непрерывного изображения. 4. Дальняя и ближняя точки. Если смотреть на удалённый предмет, глазные мускулы не напряжены, хрусталик имеет максимальное фокусное расстояние, и тогда говорят, что он адаптирован на дальнюю точку. Когда предмет находиться так близко к глазу, что хрусталик имеет наименьшее возможное фокусное расстояние, то предмет расположен в ближней точке. Определить свою ближнюю точку можно медленно приближая шрифт
(рис 3) к глазу. Испытание проводиться для каждого глаза отдельно. Самое короткое расстояние, при котором ещё не заметно смазывание глаз, и есть ваша ближняя точка. Таблица 2 Приближённое расстояние ближней точки для среднего глаза в различном возрасте. Возраст Бл. Тч. См Возраст Бл. Тч. См Возраст Бл. Тч. см Возраст Бл. Тч. см 10 лет 6,7 25 лет 12,5 40 лет 22,5 55 лет 50 15 >>
7,5 30 >> 15 45 >> 30 60 >> 100 20 >> 10 35 >> 17,5 50 >> 40 65 >> 200 Вы можете определить вашу ближнюю точку, медленно приближая мелкий шрифт рис.3 к глазу. Испытания проводятся для каждого глаза отдельно. Кратчайшее расстояние, при котором ещё не заметно смазывание букв, и есть ваша ближняя точка. Измерьте это расстояние для каждого глаза и сравните с тем, что должно быть согласно таблице 2. Рис. 3. Испытание для определения ближней точки при чтении. 5. Прессбиоприя. С возрастом способность аккомодации постепенно уменьшается. Это объясняется уменьшением упругости хрусталика и способности глазных мускулов увеличивать кривизну хрусталика. Этот недостаток называется прессбиопией. Когда такой недостаток имеет место, ближняя точка удаляется от глаза и аккомодационная способность
уменьшается. Из таблицы 2 видно, что для лиц 65-летнего возраста ближняя точка находиться на расстоянии 200 см. Каково будет приблизительно ближайшее расстояние, на котором человек 65 лет может прочесть эту страницу без помощи очков? При таком расстоянии (200 см) сомнительно, что можно было разобрать слова вследствие слишком малой величены изображения на сетчатой оболочке. Идеального расстояния для чтения или другой работы на близком расстоянии не существует, но если учесть
все факторы, то можно считать, что наилучшим расстоянием является 32 – 37 см. Но если это расстояние меньше, чем примерно полуторное расстояние ближней точки, то напряжение, которое требуется мускулам для того, чтобы сфокусировать свет и получить резкое изображение на сетчатой оболочке, настолько велико, что, вероятно, наступит усталость глаза. В возрасте до 35 лет легко соблюдать это правило.
После 40 лет (табл. 2) обычно это трудно сделать. В возрасте 45 лет минимальное расстояние равно 1,5*30=45 см, а это дальше, чем необходимо для предмета, чтобы изображение имело соответствующую величину и было легко видимо. После 40 лет средний хрусталик глаза нуждается в вспомогательном приспособлении для собирания света при рассмотрении близких предметов. С этой целью перед глазом помещается собирательная линза соответствующей оптической силы. Но с такой линзой невозможно видеть удалённые предметы. Для того чтобы, исправить этот недостаток, нужно или снять очки, или применить бифокальные линзы. У таких линз нижняя часть применяется для ближнего зрения, а верхняя – для рассматривания удалённых предметов. Хотя прессбиопия является, по-видимому, естественным и неустранимым недостатком, оказывается, что более сильное освещение ближних предметов в значительной степени заменяет очки для чтения. Более сильное освещение заставляет сильнее сужаться зрачки.
Это создаёт более резкое и чёткое изображение на сетчатой оболочке так же, как и в фотоаппарате чем меньше отверстие диафрагмы, тем резче изображение. 6. Близорукость. В том случае, если расстояние между сетчатой оболочкой и хрусталиком ненормально велико или хрусталик настолько закруглён и толст, что его фокусное расстояние ненормально мало, изображение удалённого предмета попадает перед сетчатой оболочкой (рис.
4). Этот дефект глаза очень распространён и называется близорукостью или миопией. Близорукость – это такой дефект глаза, который чрезвычайно распространён среди школьников и студентов. Согласно данным специалистов каждые 3 новорождённых из 100 обладают этим дефектом; в начальной школе число близоруких составляет примерно 10 из 100; в средней школе число близоруких достигает 24%, а в колледже – 31%. Среди диких племён, живущих и работающих большей частью на открытом воздухе, близорукость
почти неизвестна. Точно также среди фермеров и лиц, работающих на открытом воздухе, очень малое количество страдает от близорукости, если только они не приобрели её в школе или при работе с близкими объектами. Причиной близорукости в большинстве случаев является, по-видимому, то, что в детстве глаз легко деформируется. При работе с близкими предметами глазное яблоко “привыкает” удлиняться на столько, что хрусталик уже теряет способность сплющиваться для фокусирования изображения удалённого предмета на сетчатой оболочке без избыточного напряжения. Сравните длину близорукого глаза на рис. 4 с длиной дальнозоркого на рис. 5. 7. Испытание на близорукость. Один из видов проверки на миопию делается при помощи таблицы Снеллена. Таблица Снеллена в уменьшенном виде изображена на рис. 5. При нормальном зрении можно читать седьмую строчку хорошо освещённой таблицы стандартных размеров
каждым глазом в отдельности с расстоянием в 50 см. Неспособность сделать это не обязательно свидетельствует о близорукости, так как эта непосредственность может быть вызвана другой причиной. Но если отрицательная (рассеивающая) сферическая линза улучшает видимость (при этом нужно начать с линзы малой оптической силы и постепенно увеличивать силу линзы), то можно предположить наличие близорукости. Близорукость можно исправить, но не вылечить, при помощи
очков. В этом случае применяются рассеивающие сферические линзы (рис. 4.с). Эта линза рассеивает параллельные световые волновые лучи, исходящие от удалённых предметов в достаточной степени для того, чтобы изображение попало на сетчатую оболочку дальше того места, где оно находилось бы без применения очков. 8. Гиперопия, или дальнозоркость. Если расстояние между сетчатой оболочкой и хрусталиком ненормально мало или если хрусталик ненормально
тонок и сплющен, так что фокусное расстояние его ненормально велико, то изображение близких предметов оказывается за сетчатой оболочкой (рис.6). Следовательно, близкие предметы не могут быть видимы без напряжения глаза. Если вы только дальнозорки и не имеете никаких других недостатков зрения, то вы легко прочтёте 9-ю строчку таблицы Снеллена, но ваша ближняя точка может оказаться дальше своего нормального положения. Для исправления гиперопии следует уменьшать расстояние изображения для близких предметов. Это требует применения собирательной (положительной) линзы соответствующей оптической силы (рис. 6.с).