Опубликовано в журнале: Профилактика старения »» Выпуск 3 2000 Здесь публикуется с сокращениями.СИСТЕМА АНТИОКСИДАНТНОЙ ЗАЩИТЫ ОРГАНИЗМА И СТАРЕНИЕ А.А. Подколзин, А.Г. Мегреладзе, В.И. Донцов, С.Д. Арутюнов, О.М. Мрикаева , Е.А. Жукова Национальный Геронтологический Центр Научно-исследовательский центр Московского государственного медико-стоматологического университета МЗ РФ АКТИВНЫЕ ФОРМЫ КИСЛОРОДА В РЕАКЦИЯХ ПОВРЕЖДЕНИЯ БИОМОЛЕКУЛ Молекулярный кислород сам по себе обычно не вступает в неконтролируемые химические реакции внутри организма, для его активации нужны ферментативные процессы – главные ферменты метаболизма кислорода у млекопитающих: оксидазы и оксигеназы. Но в каталитических центрах этих ферментов кислород испытывает превращения до конечных соединений, не выделяясь в среду и не подвергая опасности органические макромолекулы клетки, повреждающими же агентами являются активные формы кислорода (АФК), образующиеся в ряде физико-химических процессов в организме. Главные активные формы кислорода (Осипов и др., 1990): супероксидные радикалы (О2-), перекись водорода (Н2О2), гидроксильные (свободные) радикалы (* ОН, НО2*), синглетные формы кислорода (1О2), ионы НО2-.Основные механизмы появления АФК в организме связаны обычно с нарушениями функционирования электроннотранспортных цепей митохондрий или микросом, а также при изменении свойств дегидрогеназ. Особняком стоит нормальный процесс формирования АФК фагоцитами в ходе стимуляции неспецифической защиты организма. Синглетный кислород образуется в реакциях фотоокисления в присутствии так называемых фотосенсибилизаторов: флавины, гематопорфирин, хлорофилл и др., а также при дисмутации супероксидных радикалов (Khan,1970). Синглетный кислород агрессивен в отношении биосубстратов, в особенности в отношении молекул с двойной связью; конечным итогом таких реакций обычно является образование гидроперекисей органических молекул – один из важнейших в процессах перекисного окисления ненасыщенных липидов в биомембранах (Осипов,1990, Roschupkin, Pelenitsin, Potapenko etc, 1975). В присутствии металлов переменной валентности эти продукты запускают цепные реакции окислительной деградации биомолекул (Vladimirov etc., 1980). Главным защитным механизмом такого процесса является бета-каротин, переводящий синглетный кислород в триплетный, однако, обычная вода и токоферол также способны вызывать такой процесс инактивации синглетного кислорода (Duran, 1982, Mercel, Kearns, 1972) . В клинической практике синглетный кислород участвует в кожных проявлениях некоторых генетических заболеваний – порфирий (Frank, 1982), а также в процессах эритемы при ультрафиолетовом облучении кожи при приеме лекарств, обладающих фотосенсибилизирующим действием. Во всех аэробных клетках в процессе присоединения одного электрона к молекуле кислорода образуются супероксидный анион-радикал – О2- и его протонированная форма – гидроперекисный радикал – НО2*; оба они порождают ряд других активных форм кислорода. Образование этих АФК наиболее существенно вблизи цепей переноса электронов – дыхательная цепь, микросомы и, в растительных клетках, хлоропласты (Каган, Сербинова, Минин и др, 1985, Rosen, Finkelstein, Rauckman, 1982). Эти АФК играют также важную роль в защитных – неспецифических иммунных механизмах организма: они выделяются в ходе активации при инфекционных и иных воспалительных процессов фагоцитирующих клеток (нейтрофилы, макрофаги, моноциты, эозинофилы) (Маянский, Маянский, 1983, Edwards,. Hallett, L loyd etc, 1983, Klebanoff, Clark, 1978). Супероксидный радикал может прямо инактивировать адреналин, аскорбиновую кислоты (Bhuyan, Bhuyan, 1977), а более активный гидроперексиный радикал – реагирует с линолевой, линоленовой, арахидоновой кислотами, окисляя их до гидроперекисей (Bielsky, Arudi, Sutherland, 1983). Образованию гидроперекисного радикала способствует закисление среды, он также свободно проникает через биомембраны, так как не несет заряда. Гидроперекиси липидов являются весьма активными соединениями и обладают высокой биологической агрессивностью. Для протекания цепного окисления липидов в биологических мембранах совершенно необходимы переходные металлы, в частности, ионы железа (Ванин,1967, Владимиров, Арчаков, 1972). Простым и доступным методом определения продуктов перекисного окисления липидов является реакция с тиобарбитуровой кислотой (Marcuse, Johnston, 1973). Главным механизмом защиты организма от данных форм АФК является фермент супероксиддисмутаза (СОД), активность ее обычно достаточна, чтобы инактивировать их в месте образования, не допуская диффузии в среде макромолекул ткани. Для определения концентрации супероксидных анион-радикалов используют методы электропарамагнитного резонанса (ЭПР-резонанс) и реакции оксиления интенсивно поглощающих соединений: цитохрома С, нитросинего тетразолия, адреналина и др. (Massey, 1959, Beyer, 1987, Misra, Frodowich, 1972). Для доказательства специфичности этих реакций используют их подавление супероксиддисмутазой. Дисмутация супероксидных анион-радикалов под действием СОД в биологических тканях ведет к образованию перекиси водорода, способной легко проникать через мембраны клеток. Перекись водорода обнаруживается при фагоцитозе, при работе митохондрий и микросом (Rosen, Finkelstein, Rauckman, 1982, E dwards, Hallett, Lloyd etc, 1983). В присутствии ионов переходных металлов (например Fe2+) перекись водорода может давать высоко активный гидроксильный радикал (* ОН). Этому процессу препятствуют главные высоко активные ферменты антиоксидантной защиты организма: каталаза и глутатион-пероксидаза. Измерение перекиси водорода в биосубстратах проводят обычно методом титрования перманганатом калия (Bonnichsen, 1948), реакцией с молибдатом аммония (Королюк, Иванова, Майорова, Токорева, 1988) или прямой спектрофотометрией при длине волны равной 240 нм (Bergmeyer, 1955, Cohen, Dembiec, Marcus, 1970). Используют также пероксидазную реакцию, в ходе которой изменяется окраска индикатора, например, индигокармина (Frew, Jones P, Sholes, 1983), и флюориметричсекие методы (Perschke, Broda, 1961, Keston, Brandt, 1965). Высокой реакционной способностью обладает гидроксильный радикал (* ОН), образующийся из перекиси водорода в присутствии ионов переходных металлов. Высокая реакционная способность определяет преимущественно местное воздействие этой форм АФК. Прямое повреждение ДНК при этом характеризуется разрывом цепи (180); с другими биомолекулами * ОН образует вторичные свободные радикалы, в том числе перексиные соединения липидов (Азизова и др, 1985, O`Connel, Garner, 1983, Rowley, Halliwell, 1982). Главные типы повреждений биомолекул * ОН: отрыв атома водорода (таким образом повреждается лецитин – главный компонент биологических мембран, а также сахара в составе нуклеозидов ДНК); присоединение к молекулам по двойным связям (взаимодействие с пуринами и пиримидинами ДНК и РНК, в том числе с образованием вторичных радикалов); перенос электронов также является патогенным механизмом действия * ОН (Anbar, Neta 1967). В образовании гидроксильного радикала важное значение имеют ионы металлов с переменной валентностью, в первую очередь ионы железа (Flitter, Rawley, Haliwell, 1983, Floyd, 1983, Jacobs, 1977). Ионы железа входят в большом количестве в состав организма (гемоглобин, миоглобин и пр.); в крови они находятся в связанной форме с трансферрином. Снижение количества железо-переносщих белков и повышение свободного железа крови может вести к стимулированию формирования свободных радикалов; своевременная диагностика и профилактика такого состояния является важным моментом программ диагностики и профилактики старения, в частности, американской ассоциации Life Extension Foundation. Отмечено, однако, формирование гидроксильного радикала и под действием связанного железа – лактоферрина (Ambruso, Johnston, 1981, Bannister, Bannister, Hill, Thornalley, 1982), а также при действии гемоглобина на перекись водорода (Banatti, Morelli, Guida, de Flora, 1983). Использование хелатосвязывающих агентов дает лечебный эффект при состояниях, при которых предполагается участие гидроксильного радикала в патогенезе заболевания: связывающий ионы железа десферриоксиамин эффективен при воспалительных процессах в легких (Ward, Till, Kunkel etc.,1983) и при аутоиммунных процессах (Bowern, Ramshow, Clark etc., 1984, Clark, Hunt, 1983). АФК могут образовываться также и при многих иных процессах в организме. Так, например, формирование АФК обычно сопровождает процесс инактивирования в организме ксенобиотиков (Mustafa, 1990, Sinha, Mimnough, 1990), потенцируя их повреждающий эффект. Главные методы определения * ОН: ЭПР, хроматография биомолекул для определения результатов их изменения под действием * ОН и прямые химические методы определения таких агентов, важным является также метод хемолюминесценции биомолекул, обычно с использованием активаторов хемилюминесценции, наиболее известными из которых являются люминол, люциноген (Allen, 1982). ^ ЗАЩИТА ОРГАНИЗМА ОТ АФКСУПЕРОКСИДДИСМУТАЗА (СОД). Супероксиддисмутаза является важнейшим элементом антиоксидантной защиты организма. Это фермент из двух субъединиц с общей молекулярной массой 32 кДа, содержащий по одному атому меди и цинка (существует также марганец-содержащая СОД, обнаруженная в печени крысы и человека; в бактериальных клетках обнаружена железо-содержащая СОД). Фермент ускоряет распад О2- на 4 порядка. Активность СОД обычно определяют по ингибированию содержащих СОД биологическими экстрактами и жидкостями образования под действием О2- окрашенных продуктов из субстратов, например, тетразолия нитросинего (Чевари., Чаба., Секей 1981). Источником О2- обычно является система феназинметасульфат + НАД*Н или ксантин + ксантиноксидаза. За единицу активности СОД принято ее количество, тормозящее в 2 раза восстановление цитохрома с при реакции ксантиноксидазы (0,003 ед/мл), ксантина (2 мкмоль/мл) и цитохрома с – 0,6 мкмоль/мл (McCord, Fridovich, 1969). Вторым эшелоном защиты организма от АФК являются пероксидаза и каталаза. КАТАЛАЗА. Каталаза расщепляет перекись водорода, до которой дисмутирует супероксидный радикал, до молекул воды и молекулярного кислорода. В клетках каталаза в основном сосредоточена в пероксисомах, в которых содержатся и ферменты, продуцирующие перекись водорода, необходимую в ходе ряда процессов жизнедеятельности организма, в частности, в процессах неспецифической иммунной защиты. ПЕРОКСИДАЗА. Пероксидаза, в особенности глутатион-пероксидаза, широко распространена в клетках животных и растений. Глутатион-пероксидаза состоит из 4 субъединиц в каждой из которых содержится по молекуле селена. В клектах этот фермент располагается в цитозоле и матриксе митохондрий. Активность глутатион-пероксидазы зависит от содержания глутатиона клетки, что, в свою очередь, определяется активностью глутатионредуктазы и концентрацией НАДФ*Н, который образуется в пентозофосфатном метаболическом цикле. Лимитирующими органами по активности каталазы, являются легкие, мышцы, глаза. ^ ДРУГИЕ ФОРМЫ ЗАЩИТЫ ОТ АФК В защите от АФК в организме участвуют и многие другие молекулы и ферментные системы (Осипов, Азизова, Владимиров, 1990). Классические в настоящее время антиоксиданты – витамин Е, витамин А и каротиноиды, активны почти ко всем АФК, но их вклад в общую антиоксидантную активность организма не слишком велик. Из других жирорастворимых агентов антиоксидантной активностью обладают стероидные гормоны, билирубин; из водорастворимых – церрулоплазмин (влияя на свободное железо крови), трансферрин, альбумин, SH-группы белков. Аскорбиновая кислота инактивирует свободные радикалы, образуя неактивный радикал (семидегидроаскорбат), она же является кофактором пероксидазы, (фермент аскорбат-пероксидаза). Глутатион, присутствуя в клетках в высоких концентрациях, также является акцептором гидроксильного иона и синглетного кислорода, кроме того, он же является кофактором глутатион-пероксидазы и глутатион-редуктазы. Мочевая кислота присутствует в крови в достаточных количествах, чтобы эффективно акцептировать синглетный кислород и гидроксильный радикал. Аналогичными эффектами обладают этанол, маннит, глюкоза и некоторые другие органические молекулы. ^ АФК В НЕСПЕЦИФИЧЕСКОМ ИММУНИТЕТЕ И ВОСПАЛЕНИИ Формирование АФК – важный защитный механизм, лежащий в основе неспецифического иммунитета: фагоцитоз приводит к многократному увеличению содержания АФК в фагоцитирующих клетках с одновременным повышением потребления кислорода в 20 и более раз (“дыхательный взрыв” (Маянский, Маянский, 1983, Klebanoff, Clark, 1978). Участие АФК в процессах фагоцитоза достаточно сложное. Фагоцитирующая клетка активируется бактериальными клетками (или механическими частицами, лектинами и пр.), что сопровождается активацией фермента плазматической мембраны – НАДФ*Н-оксидазы с формированием из свободного молекулярного кислорода О2- (Babior, 1978, Badway, Karnovsky, 1980). В процессе генерации АФК участвуют ФАД-содержащий флавопротеин и цитохром b . В конечном счете с участием ионов железа происходит дисмутация АФК до перекиси водорода. Кроме того, миелопероксидаза нейтрофилов приводит к образованию гипохлорита, хотя последний не является главным в антибактериальной защите организма. Высвобождние АФК в ходе “дыхательного взрыва” происходит как в фагосомы, так и в среду, что инактивирует как бактериальные клетки, так и может повреждать сами фагоциты, а также нормальные ткани. Для защиты от АФК нейтрофилы содержат каталазу и глутатион-пероксидазу (Klebanoff, Clark, 1978). Активация нейтрофилов сопровождается также при любых явлениях некроза ткани, в том числе микроинфарктах (Клебанов и др., 1984, 1987 ). Участие гидроксильных радикалов подтверждено в патогенезе ревматоидного артрита, при этом фагоциты активируются иммунными комплексами в синовиальной жидкости (Bennett, Eddie-Quartey, Holt, 1973, Bennett, Skosey, 1977), при этом введение СОД в полость сустава оказывается терапевтически высоко эффективным. Окисленные липиды обладают антигенными свойствами, запуская аутоиммунные процессы повреждения тканей (Деев и др.,1987, Hejnecke, 1987). Бронхоконстриктивные заболевания легких, обычно сопровождающиеся хроническими воспалительными процессами, являются второй важнейшей патологией, в которой участие АФК достаточно важно, как это представляется на настоящий момент. АФК сами способны вызывать бронхоконстрикцию, кроме того, гистамин в ходе развития хронических обструктивных заболеваний легких способен вызывать продукцию АФК вследствие извращения реакции на него нейтрофилов – при бронхиальной астме растормаживается ингибирующее действие гистамина на нейтрофилы; сходным образом действует и ацетилхолин (Коган, 1999). Увеличивается также генерация АФК в ходе приступа бронхиальной астмы, причем обнаруживается параллелизм в тяжести астматических приступов и генерации АФК нейтрофилами и повышением содержания в крови ПОЛ. Имеет место также лечебный эффект антиоксидантной терапии при этом заболевании. Известен механизм усиления продукции лейкоцитами АФК при обострении бронхиальной астмы (Коган, 1999): он заключается в снижении АФК-ингибирующей функции тромбоцитов в отношении лейкоцитов и стимуляции лейкоцитов под действием ацетилхолина, а также в извращении тормозащего действия гистамина на лейкоциты. Важное значение имеет утрата лейкоцитами особого недавно открытого отечественными исследователями эффекта – супероксидингибирующего действия углекислого газа (Коган, 1999). Так, было показано, что влияние углекислоты на многие типы тканей ведет к снижению в 2-4 раза продукции ими генерации супероксидных радикалов. Этот эффект может лежать в основе тренирующего и лечебного действия гиперкапнических методов терапии и профилактики бронхиальной астмы. В то же время, в ряде случаев такой лечебный эффект отсутствует. Было показано, что в большинстве таких случаев отсутствует и эффект углекислого газа на подавление продукции супероксидных радикалов лейкоцитами таких больных. Выше обсуждались также эффекты участия АФК в хроническом воспалении, всегда присутствующем при бронхоконстриктивных заболеваниях легких. Таким образом, воспалительные и констриктивные легочные заболевания – еще один важный патологический процесс, в котором явно принимают участие АФК. ^ АФК В СЕРДЕЧНО-СОСУДИСТОЙ ПАТОЛОГИИ Участие АФК в сердечно-сосудистой патологии в настоящее время не оставляет сомнений. Показано усиление процессов перикисного окисления липидов (ПОЛ) в ишемизированном миокарде (Коган, Кудрин, Лосев, 1987, Kogan, Kudrin, 1980). Между продукцией в тканях миокарда перекиси водорода, повреждающем действием перекиси и повышением чувствительности к ней ишемизированных тканей устанавливается порочный круг; повреждению способствует также эмиграция лейкоцитов в зону воспаления и снижение в ней активности ферментов антиоксидантной защиты тканей (Коган, 1999). Ишемия, парадоксально, не отражается на продукции АФК, в то же время, выражено повреждая аэробные ткани вследствие недостатка обычного кислорода. Так, показано, что снижение кислорода в 100 раз по отношению к атмосферному, снижает продукцию АФК макрофагами не более чем на 25% (34ж). В то же время, активность СОД, глутатионпероксидазы в ишемизированной области снижается уже в первые минуты ишемии и сохраняется в течение всего периода эксперимента по ишемии миокарда (Лапкин и др., 1982). Активация селеном активности глутатионпероксидазы обладает протективным эффектом на экспериментальный инфаркт (Коган, 1992), снижая зону морфологически видимого инфаркта и изменения ЭКГ. В противоположность, активация продукции АФК форболмиристат ацетатом вызывает резкую дисфункцию сердца: уменьшение в 6 раз сердечного индекса, ЭКГ-регистрируемую ишемию миокарда и гибель животных (Rao, Mueller, 1983). Все эти эффекты могут быть ревертированы внутривенным введением СОД и каталазы или же снижением количества нейтрофилов (антинейтрофильными антителами) как основного источника в норме АФК в организме. Введение СОД снижало также размеры инфаркта миокарда после коронароакклюзии у крыс (Коновалова, Лапкин, Бескровнова, 1989). СОД защищает, видимо, как от первичных повреждений ишемизированной ткани в ходе начавшейся коронароакклюзии, так и от усугубления повреждения после восстановления кро-вотока – когда повышение кислорода в ткани при восстановлении кровотока ведет к активации продукции АФК и усилению повреждения. Имеются данные об активации СОД – повышении активности СОД в оттекающей от зоны инфаркта крови, при этом повышается и содержание перекиси (Rao, Mueller, 1983). Косвенным показателем участия продуцируемых лейкоцитами АФК в патогенезе инфаркта служит и известный факт ухудшения прогноза при повышении степени лейкоцитоза при инфаркте; генерация АФК нейтрофилами и тяжесть стенокардии также параллельны. Включение коэнзима Q (антиоксиданта, работающего на митохондриальном уровне), улучшает лечебные эффекты при стенокардии. Интересные данные о влиянии коэнзима Q на эффекты гипербарической оксигенации: без антиоксидантов гипербарическая оксигенация приводит к временному ухудшению и стимулированию приступов стенокардии, с одновременным увеличением продукции АФК нейтрофилами; антиоксидантная терапия снимает эти эффекты, сохраняя лечебное действие гипербарической оксигенации (Аль-Хадиди, 1987). Антиоксидантная терапия эффективна также в профилактике стенокардитических приступов и достоверно повышает толерантность к физической нагрузке (велоэргометрии). Все выше перечисленные данные позволяют говорить о кислородном свободнорадикальном механизме аутоагрессии при ишемической болезни сердца и о целесообразности включения в лечение этих заболеваний средств, регулирующих продукцию и инактивацию АФК. ^ АФК В ПРОЦЕССАХ КАНЦЕРОГЕНЕЗА Вопрос участия АФК в процессах возникновения опухолей постоянно привлекал к себе внимание исследователей, однако, до настоящего времени он фактически не однозначно не решен. Конкретный механизм индукции опухолей свободными радикалами мало понятен. Предполагают, что АФК повреждают хроматин, ДНК, мебраны, изменяют регуляцию внутриклеточного кальция и пр. (Кольтовер, 1998, Пескин, 1997, Dogru-Abbasoglu, Tanger-Toptani, Ugernal etc, 1997, Papa, Skulachev, 1997, Yan, Levine, Sohal, 1 997). Важным также является разнонаправленность изменений антиоксидантного статуса в различных органах (Кольтовер, 1998, Dogru-Abbasoglu etc., 1997, Papa, Skulachev, 1997), что соответствует и различной чувствительности к химическим канцерогенам и ионизирующему облучению. С возрастом изменяется скорость накопления соматических мутаций в разных тканях, причем она выше в печени, чем в мозгу (Dolle etc., 1997). Все это позволяет ряду авторов говорить о возможности использования антиоксидантов в качестве геропротекторов и средств коррекции возрастной патологии, в том числе опухолей, так как риск их возникновения выраженно растет с возрастом (Anisimov, Mylnikov, Khavinson, 1998, Cutler, 1991, Harman, 1994, Shigenaga, Hogen, Ames, 1994). В настоящее время изучается и другой аспект участия АФК в процессах канцерогенеза, а именно – контроль АФК естественных цитотоксических реакций (Чекнеев, 1999). Известно, что АФК участвуют в деструкции клеток-мишеней в процессах их взаимодействия с ЕК – естественными киллерами (Cameron, 1986, Saito etc., 1987). Антиоксиданты – диметилсульфоксид, диметилмочевина, этиловый спирт, этиленгликоль, снижают активность ЕК (Suthanthiran etc., 1984), как и обработка мононуклеаров миелопероксидазой (El-Hag, Clark, 1984) а ингибирование активности СОД хелатирующими комплексами усиливает цитотоксическую реакцию (Van Kessel etc., 1987). В то же время, перекись водорода регуляторно повышает активность ЕК и выработку интерферона (Munakata etc., 1985). В целом, видимо, имеет место сложная динамическая регуляция иммунной системы с участием АФК, в которой принимают участие, кроме выше описанных, также Р-белки сыворотки крови, обладающие СОД-активностью (Кульберг и др., 1986, Петяев, Кульберг, 1988) и комплексированные с ними сывороточные гамма-глобулины (Кульберг, Петяев, Замотаева, 1988), снижающие интенсивность свободнорадикальных процессов. В экологическом плане рассматривают также участие глобальной экспансии цианобактерий, оказывающих негативное влияние на активность ЕК-иммунитета (Кульберг, 1994, Чекнев, Кульберг, 1995). ^ УЧАСТИЕ АФК В ПРОЦЕССАХ СТАРЕНИЯ ОРГАНИЗМА Старение организма – сложный и многогранный процесс, он не может быть в принципе сведен к одному конкретному механизму (наши ссылки), но среди групп влияний, играющих важную роль в старении, безусловно важное значение имеет механизм повреждения биомолекул самыми разнообразными внешними влияниями. Среди таких влияний многие авторы давно пытались выделить наиболее значимые. Среди таких попыток один из наиболее значимых факторов оказался окислительный метаболизм – оказалось, что его интенсивность обратно пропорциональна продолжительности жизни для многих далеко отстоящих друг от друга видов, хотя некоторые исследователи отмечают, что это соблюдается достаточно хорошо только для относительного (на единицу массы) значения его, причем в расчете на единицу активности супероксиддисмутазы – ключевого фермента антиоксидантной защиты организма (Гродзинский и др., 1987, Дупленко, 1985, Azbel, 1994). Эти факты послужили основой для выдвижения свободнорадикальной теории старения. Основное положение свободнорадикальной теории старения сформулировано было в 1954 году D.Harman, предположившим, что универсальной причиной старения служит свободнорадикальное окисление липидов, жиров и белков всех организмов кислородом воздуха (Harman, 1991). В дальнейшем было выполнено значительное число самых разнообразных работ в этой области, но каких-либо однозначно интерпретируемых результатов получено не было. Так, митохондрии (основной потребитель кислорода клеток) старых животных не отличались значимо от таковых молодых (Кольтовер, 1996, 1998) по генерации супероксидного радикала, хотя отмечена структурная и функциональная неоднородность митохондрий старых животных, приводящая к значительным разбросам в результатах исследований и тенденция к повышению генерации АФК митохондриями старых животных все же имеет место (Кольтовер, 1996,Hagen etc.,1997). Аналогично, микросомы – другой значимый источник супероксидных радикалов, в старости генерируют в 2 раза меньшие количества АФК, снижение же активности СОД цитоплазмы происходит всего на 40%, что явно компенсирует эти изменения (Гуськова, Виленчик, Кольтовер, 1998). В отдельных случаях активность СОД тканей может даже повышаться с возрастом (Dehaan etc., 1995). Активность ферментов антиоксидантной защиты, в принципе, зависит от нейро-эндокринной регуляции и может, таким образом, подтверждать не теорию повреждений, а регуляторную теорию старения (Bolzan etc., 1995). Активность СОД мозга долгоживущих мышей оказывается выше, чем для короткоживущих линий (Kellog, Fridowich, 1976). Генетически измененные дрозофилы с повышенной активностью СОД живут дольше нормальных мух (Orr, Sohal, 1994). Ингибиторы свободнорадикальных механизмов (дибунол и пр.) увеличивают на 20-30% длительность жизни мышей (Обухова, Эммануэль, 1983, Harman, 1991). Для людей, однако, можно видеть противоположное – синдром Дауна с укорочением продолжительности жизни вдвое сопровождается ростом активности СОД тканей (Dehaan etc., 1995). Фармакокоррекция системы антиоксидантной защиты организма также мало достоверна – активность обычных ферментов (СОД, каталаза, перкосидаза) очень высока и специфична, поэтому способы фармакологического “тушения” антиоксидантов, видимо, мало эффективны в принципе. Более эффективны непрямые методы, например, нормализации функции митохондрий, где эффективны окись азота, кортикостероиды, тиреоидные гормоны (Koltover, 1995). В то же время, с возрастом безусловно повышается содержание в тканях человека и животных продуктов окислительного повреждения макромолекул, в том числе ДНК (Гродзинский и др.,1987, Фролькис, Мурадян, 1988, Ozawa , 1997). С нашей точки зрения, впрочем, это указывает лишь на снижение скорости метаболизма для организма в целом. Повреждения ДНК, однако, могут играть важную роль в мутагенезе в старости (Lee, Weindruch., Aiken, 1997, Ozawa, 1997). Возможно, АФК стимулируют и апоптоз – программируемую гибель клеток, путем раскрытия каналов мембраны для белка, находящегося в межмембранном пространстве и запускающего этот процесс (Kroemer, 1997). АФК, несомненно, главный мутаген аэробных клеток. АФК могут снижать скорость клеточного деления, возможно, влияя на так называемый “предел клеточных делений Хейфлика” – культуральный феномен остановки клеточного роста после ряда пассажей культур на свежую среду. Возможно влияние АФК на ускоренное укорочение концевых (теломерных) участков ДНК – процесс, которому придают важную роль как в клеточном делении, так и в его ограничении (Orr, Sohal , 1994). Интересны данные получены при параллельном изучении продукции АФК тканями молодых и старых животных (Анисимов и др., 1999). Показано, что в головном мозгу старых животных почти в 2 раза снижается активность СОД; это, однако, не приводило ни к повышению концентрации диеновых конъюгатов ни к повышению показателей перекисного окисления белков или общей антиокислительной активности (содержание аскорбиновой кислоты, токоферола, мочевой килсоты, тиоловых соединений – глутатиона и др.), концентрация же шиффовых основания даже снижалась. В то же время, в печени старых животных существенно повышалась концентрация шиффовых оснований и продуктов перекисного окисления белков, также при снижении активности СОД в 2 более раза; но не изменялись уровень общей антиокислительной активности и содержание диеновых конъюгатов. В сыворотке старых крыс существенно повышалось содержание продуктов перекисного окисления липидов и белков при снижении активности СОД и общей антиокислительной активности сыворотки крови. В литературе отмечены данные о существенном снижении в сыворотке крови пожилых и старых лиц (60-97 лет) уровня глутатиона и повышение продуктов перекисного окисления липидов (Nuttal, Martin, Hutchin etc, 1998). Возможно, накопление продуктов перекисного окисления липидов в мозгу играет роль и в патогенезе возрастной патологии мозга, включая болезнь Альцгеймера (Romero etc., 1998). Интересно, что эти изменения идут на фоне существенного снижения с возрастом генерации АФК в тканях старых животных и человека. В связи с этим снижение активности ферментов антиоксидазной защиты может в этих условиях быть результатом чисто регуляторных изменений – приспособления к пониженной продукции АФК. Накопление же конечных продуктов повреждения тканей может быть результатом иных процессов – прежде всего, результатом снижения метаболизма и физиологической регенерации большинства самообновляющихся тканей в старости – в этих условиях снижается обновление всех макромолекул и биологических структур, что создает возможности для персистенции измененных форм макромолекул вследствие общего увеличения длительности их жизни. Сейчас все больше склоняются к мнению, что наиболее значимым при старении оказывается усиленное перекисное окисление белков, а не липидов, чему способствует снижение активности СОД как результата снижения общей продукции АФК (Анисимов и др., 1999). Общий анализ данных об участии АФК в процессах старения и сопровождающих старение заболеваний позволяет ряду авторов утверждать, что повреждение под действием АФК макромолекул приводит к мутациям, нестабильности генома в целом и развитию ряда возрастных патологий: рак, сердечно-сосудистые заболевания, возрастная иммунодепрессия, дисфункция мозга, катаракта и др. (Голубев, 1996, Кольтовер, 1998, Cutler, 1991, Dogru-Abbasoglu etc.,1997, Shigenag aetc., 1994). Конкретный механизм индукции старения свободными радикалами мало понятен. Предполагают, что АФК повреждают хроматин, ДНК, мембраны, коллаген, изменяют регуляцию внутриклеточного кальция и пр. (Кольто-вер, 1998, Пескин , 1997, Dogru-Abbasoglu etc., 1997, Papa, Skulachev, 1997, Yan, Levine,etc., 1997). Важным также является разнонаправлен-ность изменений антиоксидантного статуса в различных органах (Кольтовер, 1998, Dogru-Abbasoglu etc., 1997, Papa., Skulachev, 1997), что соответствует и различной чувствительности к химическим канцерогенам и ионизирующему облучению. Скорость накопления соматических мутация в разных тканях может существенно различаться с возрастом, причем она выше в печени, чем в мозгу (Doll etc., 1997). Все это позволяет говорить о возможности использования антиоксидантов в качестве геропротекторов и средств коррекции возрастной патологии (Anisimov etc., 1998, Cutler, 1991. Данные, полученные на трансгенных дрозофилах с дополнительными копиями гена СОД и каталазы показали увеличение средней и максимальной продолжительности жизни (Orr, Sohal, 1994); трансгенные мыши с избыточной экспрессией СОД, каталазы и глутатион-пероксидазы обладали повышенной резистентностью к оксидативному стрессу, при снижении же активности этих генов мыши имели признаки преждевременного старения (Ho etc., 1998). ^ НЕКОТОРЫЕ ДРУГИЕ ЭФФЕКТЫ АФК В последние годы все большее внимание привлекают физиологические эффекты АФК, которые оказались на удивление разнообразными. Так, кислороду и АФК придают важное значение в процессах эволюции и видообразования (Скулачев, 1998), у целого ряда клеток АФК вызывают повышение клеточного деления (Nashio, Watanabe, 1992, Dypbukt etc., 1994, Bhunia etc., 1998, Lee S-L., Wang, Fanburg, 1998, Lee S-L., Wang W-W-, Fanburg, 1998), причем показано, что это регуляторный эффект, реализуемый через специфические белки (NF-kB, c-Jun, p21, p44MAPK, c-fos). Достаточно изучен процесс регуляции АФК сосудистого тонуса (Rubanyi, 1998). Общеизвестен и хорошо изучен механизм “дыхательного взрыва” фагоцитов, являющийся главным компонентом неспецифической иммунной защиты организма. Продуктам перекисного окисления липидов (ПОЛ) придают важное значение в процессах нормального обновления клеток и клеточных мембран – в поддержании структурного гомеостаза (Зенков, 1993). Действие внешних прооксидантов, повышенное потребление кислорода, ионизирующее и ультрафиолетовое облучение, загрязнение воздуха, воды и продуктов, недостаток естественных антиоксидантов (витамины Е, К, А, селен и пр.), врожденная недостаточность ферментов антиокосидантной защиты, другие состояния могут приводить к напряжению системы антиоксидантной защиты организма и вызывать так называемый “оксидативный стресс”, проявляющийся на молекулярном, клеточном и организменном уровне (Sies, 1991). Подобный стресс, видимо, является патогенетическим моментом в развитии воспалительных, бронхо-легочных и сердечно-сосудистых заболеваний (Меньшикова, Зенков, 1991).
Похожие работы
Альфред адлер: индивидуальная теория личности биографический очерк
АЛЬФРЕД АДЛЕР: ИНДИВИДУАЛЬНАЯ ТЕОРИЯ ЛИЧНОСТИ БИОГРАФИЧЕСКИЙ ОЧЕРКАльфред Адлер (Alfred Adler) родился в Вене 7 февраля 1870 года, третьим из шести детей. Как и Фрейд, он…
«Макроэкономические проблемы рф»
Секция 10. «Макроэкономические проблемы РФ»Руководитель – Еремина Марина Юрьевна, доцент кафедры «Экономика и управление»Место проведения: Аудитория 518 учебного корпуса 7 Голев Степан Вячеславович, «Камчатский государственный…
«Страна Буквляндия»
Всем учителям, которые убеждены в том, что при обучении иностранному языку удовольствие и успех идут вместе.УЧИМСЯ ЧИТАТЬ, ИГРАЯПисецкая Алина, НОУ “Аврора”БлагодарностьМне бы хотелось поблагодарить тех,…
Xvi международная конференция
XVI Международная конференция «Информационные технологии на железнодорожном транспорте» и выставка отраслевых достижений «ИНФОТРАНС-2011»11-12 октября, г. Санкт-Петербург, «Парк Инн Прибалтийская» IT-инновации для железнодорожного транспортаОрганизатор: ООО «Бизнес…
«фізика навколо нас»
Фізичний вечір на тему: «ФІЗИКА НАВКОЛО НАС»І. Вступ(Лунає музика.Виходять учні)Учень.УВАГА! УВАГА!На вечорі цьомуНемає артистів, еквілібристів,Дуетів,квартетів,славетних солістів.Ровесники, друзі,Тут ваші знайомі,Що разом із вами за партами сидять.Ми…
«экспресс каникулы в скандинавии» финляндия швеция обозначение тура: фш3
«ЭКСПРЕСС КАНИКУЛЫ В СКАНДИНАВИИ»ФИНЛЯНДИЯ – ШВЕЦИЯ Обозначение тура: ФШ3 Круиз по Балтийскому морю – ХЕЛЬСИНКИ – ТУРКУ – СТОКГОЛЬМ ОТЪЕЗД ИЗ САНКТ – ПЕТЕРБУРГА: на…