"Искусственный интеллект" и проблема субъективного в философии

Санкт-Петербургская  кафедра философии РАН
 
 
 
“Искусственный интеллект” и проблема субъективного в философии
 
Реферат аспиранта ИМЧ РАН
Николаева Сергея Владимировича
                                                                                                       Научный руководитель
к-т филос. наук, доцент  
Мангасарян
Владимир Николаевич
 
 
С.-Петербург
2001
 
 
 
Содержание
 
 
1. Введение……………………………………………………………………..3
 
2. Эволюция понятия “искусственный интеллект”.                              
а.) Представление о наборе критериев предъявляемых к системам     
 искусственного интеллекта……………………………………………………3
б.) Семантические проблемы при описании вычислительных             
 процессов в рамках кибернетики……………………………………………..5
в.) Первоначальные подходы к разработке интеллектуальных систем,
причины затруднений…………………………………………………………..6
 
3. Принципы создания действующих моделей искусственного
интеллекта.
а.) Моделирование функций человеческого мозга: системный подход……..9
б.) Значение субстратной и структурной специфичности для
реализации интеллектуальных функций………………………………………11
в.) Различная роль языка при обработке информации у человека и
 кибернетических устройств……………………………………………………12
г.) Отражение и информация……………………………………………………13
 
4. Возможности субъективного восприятия у человека, биологических
 и кибернетических систем.
а.) Субъективное как проявление высшей формы активного отражения……15
б.) Альтернативы разрешения психофизической проблемы:
функционализм и теория психофизического тождества………………………16
в.) Возможная роль субъективных феноменов в процессах обработки
информации. ……………………………………………………………………..20
 
5. Заключение…………………………………………………………………….22
 
6. Список литературы……………………………………………………………23
 
 
 
 
 
 
 
 

Вопрос о возможности или невозможности искусственного разума всегда интересовал людей. Но сравнительно недавно эта тема из разряда теоретических споров переросла в практически-важную область знания. При внимательном рассмотрении проблемы искусственного интеллекта выявляется ее комплексный характер, вовлеченность в ее разработку многих областей знания. Иначе не может и быть, когда дело касается, пожалуй, наиболее сложного явления в природе, которое лишь частично поддается объективному исследованию. Гносеологические, семантические, технологические аспекты рассматриваемой проблемы находят выражение не только в теоретических, но и прикладных областях естественнонаучных дисциплин. Сравнительно специфически занимается разработкой проблемы “искусственного интеллекта”  кибернетика — наука об управлении, хотя в ее рамках рассматривается более широкий круг вопросов. Кибернетика имеет необычный, синтетический характер. В связи с этим до сих пор существуют различия в трактовке некоторых ее проблем и понятий. Для развития кибернетики немаловажное значение имеет применение к предмету ее исследования ряда фундаментальных философских принципов и понятий.
Все попытки создания искусственного разума, аналогичного человеческому так или иначе обращаются к феномену самопознания субъекта, потому что единственным доступным прототипом для всех моделей такого интеллекта является человеческое мышление и его физический субстрат – головной мозг. Учитывая, что сущность человеческого мышления и сознания сама по себе еще далека от полного понимания, практические реализации искусственного интеллекта представляются скорее средством решения более широкого вопроса об интеллекте вообще (если не учитывать прагматические соображения об использовании его в практических целях).
В прошлом философский анализ мышления производился сверху вниз, то есть процессы мышления рассматривались, как данность и основное внимание было направлено не на происхождение мышления, а на законы, по которым оно функционирует. Впервые в истории античной философии занялся специальным изучением внутренней структуры человеческого мышления Аристотель, он стремился вывести логические формы из реального содержания мысли.
Однако по мере накопления естественнонаучного знания назрела необходимость исследования и материальной основы сознания. Когда развитие техники достигло определенного уровня, естественным образом стала обсуждаться возможность осуществления техническими устройствами интеллектуальных функций.
 
 
Первоначально система искусственного мышления представлялась как система, занимающаяся вычислениями в чистом виде. Сейчас это кажется не вполне понятным, но некоторые представители философской науки длительное время абсолютизировали математические достижения, рассматривая их как высшую форму активности разума. С тех пор как древние греки изобрели логику и геометрию, мысль о том, что всякое рассуждение может быть сведено к своего рода вычислению – так что любое дискуссии можно было бы считать улаженными раз и навсегда — занимала умы многих мыслителей. Платон значительное место в своих взглядах отводил вопросам теории познания и логики.
Согласно Платону, всякое знание должно быть представлено в виде точного определения, которыми может пользоваться всякий. Если человек не может представить свое умение в виде такого рода точных правил, т.е. если он не в состоянии обратить свои знания о том, как нечто делается, в знание о том, что делать, значит, он располагает не знанием, а лишь уверенностью. Однако представления Платона еще не совпадали с центральной линией современной кибернетики. Аристотель, обоснованно отметил, что для применения платоновских правил необходимо обращение к интуиции. Это действительно так, потому что Платон исходил из предположения, что человек изначально понимает значение понятий, составляющих правила. Сам Платон признавал, что его правила не могут быть полностью формализованы. Как будет показано ниже, такая установка на априорное понимание правил может завести в тупик. Впервые синтаксическая концепция мышления как процесса вычисления была в явной форме сформулирована Т. Гоббсом: “Когда человек рассуждает, он лишь образует в уме итоговую сумму путем сложения частей…”..Лейбниц — изобретатель системы двоичной системы счисления — посвятил свою жизнь разработке однозначного формального языка необходимого для такого “строгого” мышления. Используя этот универсальный язык, как думал Лейбниц, всякое понятие можно будет представить в виде небольшого количества исходных неопределяемых идей, каждому объекту приписать определяющее его “характеристическое число”. На основе таких характеристик и правил их комбинирования в единой дедуктивной системе должны были стать легкорешаемы любые проблемы. По Лейбницу практика есть, по сути, не что иное, как более сложная и подробная теория. Дж. Буль – известный математик и логик 19-го века – продолжил заниматься формализацией процессов мышления, что нашло воплощение в логической алгебре, основном теоретическом базисе современной вычислительной техники. В то же время, И. Кант предостерегал против абсолютизации законов логики. По взглядам И. Канта, логика представляет собой науку о необходимых законах, правилах рассудка вообще. Он первым указал, что всегда необходимо отличать логическое основание и логическое следствие от реальной причины и реального следствия.
Если оценивать достигнутые на сегодняшний день успехи кибернетики с указанных позиций, искусственный разум, как его понимали на протяжении веков, давно и успешно реализован. Недаром М. Хайдеггер справедливо назвал кибернетику кульминацией философской традиции.
В 1944 году Х. Айкен создал первую электромеханическую вычислительную машину. В основу этого устройства был заложен принцип дискретной (цифровой) и последовательной обработки информации. Хотя эта машина еще не была электронной,  по своей сути она ничем не отличалась от компьютеров производимых в последующие 50 лет. Существуют 2 основных типа вычислительных машин: аналоговые и цифровые. Аналоговые машины не вычисляют в строгом смысле слова – их функционирование заключается в измерении физических величин. Комбинируя различные непрерывные величины, такие машины измеряют получившийся результат. Цифровая вычислительная машина оперирует абстрактными символами, которые могут означать все что угодно и логическими операциями, которые могут связывать все что угодно. Иногда в литературе можно встретить мнение, согласно которому цифровые машины считаются универсальными, т.к. вследствие абстрактности символического языка они могут имитировать любую другую цифровую и  даже аналоговую машину (если для ее описания определена математическая функция). Но я думаю, что такие утверждения не вполне обоснованы. Поскольку все области знания, в том числе математика и философия постоянно развиваются, чисто теоретически нельзя исключить, что будет разработан алгоритм, реализация которого станет возможна лишь на цифровой машине качественно отличной. Однако, во второй половине 20-го века самодостаточным базовым элементом, реализующим любые мыслимые принципы, считалась логическая алгебра Буля, которая внедрялась в устройства уже на стадии проектирования.
Несмотря на бурное развитие электронной техники и параллельное этому совершенствование алгоритмических языков вскоре стали заметны несоответствие между широким кругом задач, которые предъявлялись создаваемым системам и теми задачами, которые они были в состоянии выполнить. Например, попытки решения сложных задач (выбор пути в лабиринте, игра в шахматы и т.д.) методом простого перебора вариантов наталкивались на экспоненциальный рост объема вычислений. Это подвигло ученых на пересмотр критериев, характеризующих ”интеллектуальность” искусственных устройств. Все большее внимание теперь уделялось не только абстрактно-отвлеченным операциям формальной логики, но и задачам аналогичным другой стороне человеческого мышления: интуитивному восприятию и творческому преобразованию действительности. В связи с этим стала еще более актуальной потребность в уяснении внешне не очевидных закономерностей человеческого мышления и стратегий решения задач. Что бы найти путь решения надо вначале уяснить, что является задачей в принципе. Как отмечают психологи, этот термин тоже не является достаточно определенным. По-видимому, в качестве исходного можно принять понимание задачи как мыслительной задачи, существующее в психологии: задача есть только тогда, когда есть работа для мышления, т. е. когда имеется некоторая цель, а средства к ее достижению не ясны; их надо найти посредством мышления. Хорошо по этому поводу сказал Д. Пойа: “…трудность решения в какой-то мере входит в само понятие задачи: там, где нет трудности, нет и задачи”. Если человек имеет очевидное средство, с помощью которого, наверное, можно осуществить желание, то задачи не возникает.
 
 
На сегодняшний день наиболее популярно определение искусственного интеллекта как системы способной решать интеллектуальные задачи, т.е. задачи, которые человек обычно решает посредством своего интеллекта (интеллектом принято называть  способность приобретать новые и использовать ранее накопленные знания, что подразумевает способность эффективно действовать в нестандартных ситуациях.). Мне такое определение искусственного интеллекта представляется не вполне конкретным. Оно вносит неоднозначность, так как согласно ему требования к функциям, выполняемым системой, могут варьировать в широких пределах. Например, на заре электронной эры, когда исследователи-кибернетики еще не знали об ограничениях применяемого ими подхода, они постулировали создание систем, превосходящих человека по широкому  кругу вопросов. Впоследствии, столкнувшись с проблемами, разработчики программ для электронных устройств перенесли основной акцент на создание экспертных систем, и такие системы, имея редуцированные в целом функции, сохранили за собой наименование искусственного интеллекта. Еще больше критики вызывает так называемый тест Тьюринга или игра в имитацию. Обе попытки определить данное понятие страдают антропоморфизмом. Причина сложности видимо кроется в семантической неадекватности термина “искусственный интеллект”. Причем это частный случай более широкой проблемы. Так, например, постановка вопроса “может ли машина мыслить?” была обусловлена тем, что при использовании моделирования для изучения мыслительной деятельности стала применяться техническая, точнее, кибернетическая технология, а термины биологии, физиологии и психологии стали проникать в кибернетику. Как справедливо выразился Э.Хольст, “cторонники кибернетики распоряжаются по своему усмотрению тем запасом знаний, который был накоплен с таким трудом отдельными науками…”. Подведение под определенный термин не соответствующего ему понятия порождает так называемые “языковые ловушки”. Так описание психического процесса при помощи технических терминов нередко приводит к “открытию” машиноподобности психики, мышления. Вот что говорил по этому поводу один из крупнейших кибернетиков Ст. Бир: “Модель языка системы, которым пользуется кибернетика, вносит в описание такие смысловые оттенки, от которых нам хотелось бы избавиться. Но мы не в силах этого сделать и поэтому всегда должны помнить о возможности неверных толкований при обсуждении нервных систем, мозга и машин”.
Допустим все же, что можно согласиться с таким обозначением рассматриваемого понятия как “искусственный интеллект”. Какие же признаки позволяют однозначно отнести ту или иную вычислительную систему к разряду интеллектуальной? Характеризуя особенности систем “искусственного интеллекта”, Л. Т. Кузин указывает на:1) наличие в них собственной внутренней модели внешнего мира; эта модель обеспечивает индивидуальность, относительную самостоятельность системы в оценке ситуации, возможность семантической и прагматической интерпретации запросов к системе;2) способность пополнения имеющихся знаний;3) способность к дедуктивному выводу, т.е. к генерации информации, которая в явном виде не содержится в системе; это качество позволяет системе конструировать информационную структуру с новой семантикой и практической направленностью; 4) умение оперировать в ситуациях, связанных с различными аспектами нечеткости, включая “понимание” естественного языка;5) способность к диалоговому взаимодействию с человеком;6) способность к адаптации. Некоторые из указанных критериев будут обсуждаться ниже.
При характеристике мышления необходимо отметить, что его основная функция заключается в выработке схем целесообразных внешних действий в бесконечно варьирующих условиях. Специфика человеческого мышления (в отличие от рассудочной деятельности животных) состоит в том, что человек вырабатывает и накапливает знания, храня их в своей памяти. Выработка схем внешних действий происходит не по принципу «стимул — реакция», а на основе знаний, получаемых дополнительно из среды, для поведения в которой вырабатывается схема действия.
Этот способ выработки схем внешних действий (а не просто действия по командам, пусть даже меняющимся как функции от времени или как однозначно определенные функции от результатов предшествующих шагов), является существенной характеристикой любого интеллекта. Если задача не является мыслительной, то она решается на ЭВМ традиционными (алгоритмическими) методами и, значит, не входит в круг задач “искусственного интеллекта”. Ее интеллектуальная часть выполнена человеком. На долю машины осталась часть работы, которая не требует участия мышления, т. е. “безмысленная”, неинтеллектуальная.
Отсюда следует, что к системам “искусственного интеллекта” относятся те, которые, используя заложенные в них правила переработки информации, вырабатывают новые схемы целесообразных действий на основе анализа моделей среды, хранящихся в их памяти. Способность к перестройке самих этих моделей в соответствии с вновь поступающей информацией является свидетельством более высокого уровня “искусственного интеллекта”.
 
 
Принципы обработки информации, заложенные в первые вычислительные устройства, определялись традиционными представлениями о могуществе формальной логики. Жесткие алгоритмы предписывали устройству поочередно шаг за шагом выполнить некоторые арифметические преобразования. И с такой задачей устройства успешно справлялись. Но далее сложилась парадоксальная ситуация: компьютеры прекрасно имитировали высшие формы абстрактной деятельности человека, такие как решение сложных инженерных задач и в тоже время им были недоступны более “примитивные” способности типа распознавания изображений, понимания конструкций языка. Попытки экстенсивного наращивания скорости и объема вычислений проблему не решили. Стало очевидно, что необходим пересмотр фундаментальных принципов работы решающих устройств.
Первым реальным шагом на пути преодоления ограничений алгоритмического подхода была разработка эвристического программирования. Решению задачи может способствовать использование информации самого различного рода: информация может подсказать порядок, в котором следует проверять возможные решения или послужить основанием, для того чтобы исключить из рассмотрения целый класс возможных решений. Всякая информация такого рода есть эвристика, т.е. то, что способствует открытию. Иными словами суть эвристического поиска — сокращение числа перебираемых вариантов без потери качества решения, благодаря содержащейся в задаче дополнительной информации. Эвристики в редких случаях могут служить безошибочным руководством, их результаты варьируют от задачи к задаче, и успешность их применения нельзя гарантировать. Однако, руководствуясь такими инструкциями, машина проявляет больше “человеческих” свойств, ей становится доступным принципиально новый круг задач (например, поиск в лабиринте).  Именно в 50-х годах, когда был открыт принцип эвристического программирования, термин “искусственный интеллект” получил еще одно толкование, теперь им обозначалась область исследований, в которой цифровые машины используются для моделирования разумного поведения.
Другим подходом было создание алгоритмов, которые обеспечили бы компьютерам способность обучаться, или, иначе говоря, способность изменяться под влиянием собственного опыта. К сожалению, системы искусственного интеллекта практически неспособны активно воздействовать на внешнюю среду, что отрицательно сказывается на возможностях самообучения и вообще совершенствования «интеллектуальной» деятельности. Простые процессы ассоциативного обучения были промоделированы на цифровых машинах, но такое обучение имеет мало общего с тем, что мы наблюдаем у человека или высокоорганизованных животных.
Задача создания обучающихся систем непосредственно связана со структурированием знаний, объем которых может быть грандиозным. Вспомним, что наличие собственной модели мира неотъемлемый признак “искусственного интеллекта”. Формирование такой модели связано с преодолением синтаксической односторонности системы, т.е. с тем, что символы или та их часть, которой оперирует система, интерпретированы, имеют семантику. На начальных этапах разработки проблемы искусственного интеллекта ряд исследователей, особенно занимающихся эвристическим программированием, ставили задачу создания интеллекта, успешно функционирующего в любой сфере деятельности. Это можно назвать разработкой «общего интеллекта». Сейчас большинство работ направлено на создание «профессионального искусственного интеллекта», т. е. систем, решающих интеллектуальные задачи из относительно ограниченной области (например, управление портом, интегрирование функций, доказательство теорем геометрии и т.п.). Тем самым создаются предпосылки для устранения неоднозначности семантической интерпретации, что упрощает процесс реализации функций самообучения. Такие специализированные системы получили название экспертных. Однако даже на современном этапе экспертные системы не в полной мере оправдывают свое название. Они представляют собой скорее склад знаний, которыми обладают различные эксперты и только в этом могут принести пользу при определенных обстоятельствах. Однако элемент интеллектуальности у этих систем все-таки имеется. Дело в том что самостоятельное структурирование огромных массивов информации является довольно сложной задачей. Основой современных экспертных систем служат фреймы – крупная, структурированная единица знаний, основанная на фактах и процедурах. Фактуальные (декларативные) знания – база данных. Важнейшая часть базы данных – сценарий описывающий внешнюю обстановку, с которой взаимодействует эксперт. Процедурные знания – множество правил вывода (продукций) для базы знаний. Правила включают информацию о методах сужения области поиска. Отдельные фреймы взаимосвязаны и образуют единую систему. Единство системы реализуется с помощью дополнительной информации, содержащейся в каждом фрейме. Она включает сведения о способе обращения с данным фреймом, о действии, которое нужно выполнить, о действии которое нужно выполнить, если текущие предположения не оправдались. Таким образом, фрейм включает способы переадресации к другому фрейму, а иногда переадресация осуществляется по аналогии. Еще одна характерная особенность фрейма связана с наследованием атрибутов, что позволяет избегать дублирования информации и устранять противоречивые данные
Некоторые задачи, такие как распознавание образов и использование естественных языков не удавалось реализовать длительное время, лишь в последние годы в этой области наметился некоторый прогресс. На задаче распознания зрительных образов следует остановиться особо. Человек узнает человека, которого видел один-два раза, непосредственно в процессе чувственного восприятия. Исходя из этого, кажется, что задача не является интеллектуальной. Но в процессе узнавания человек не решает мыслительных задач лишь постольку, поскольку программа распознания не находится в сфере осознанного. Традиционный подход показал полную несостоятельность в плане восприятия естественного языка даже для эвристически запрограммированных систем. Попытки свести понимание языка к конечному набору каких-то правил выявили, что он не поддается окончательной формализации. Правила, которые выводились из других правил, в свою очередь нуждались в интерпретации. Вскрылась проблема “изначального понимания” человеком неявных инструкций, которые не могут быть четко сформулированы. Принципиальная корректность работы компьютера означает невозможность порождения ошибочных гипотез, а указание на локальный характер работы ЭВМ — отсутствие как такового механизма выдвижения гипотез, поскольку для выдвижения гипотез необходима другая, отличная от алгоритмического вычислителя, программа, способная «помнить» результаты своих прошлых вычислений и анализировать их. По существу, речь в данном случае идет уже о программе следующего иерархического уровня (метапрограмме), которая работает не непосредственно с «входными данными», а с результатами работы программы первого уровня — с результатами работы алгоритмического вычислителя.
Это заставило ученых обратиться к еще одному аспекту человеческого мышления: умению человека учитывать нечеткие ситуации, не прибегая к замене их точными описаниями. Человек способен использовать глобальный контекст для требуемого уменьшения неоднозначности, не прибегая при этом к формализации (то есть полному исключению неопределенности). Это особенно ярко проявляется при манипулировании естественным языком. Присущее человеку ощущение ситуации позволяет ему исключить из рассмотрения большинство возможных вариантов до всякого точного их анализа. По аналогии с человеком в цифровые вычислительные устройства попытались ввести принцип случайности. Такой подход оказался наиболее продуктивным при решении игровых задач, например шахматных. Также интересной в этом плане представляется используемая во фреймах операция по умолчанию. Она включается, если не хватает конкретной информации для использования данного фрейма. Тогда вводится предположение, что недостающая информация – обычная, т.е. не отличается от нормы. Такой прием позволяет снять неопределенность – понять смысл ситуации при неполноте информации. Вывод по умолчанию выполняет весьма важную функцию при распознавании. Например, если видна лишь часть образа, то, заменив другие части значениями по умолчанию, можно хотя бы приблизительно идентифицировать образ. Точно также, используя значения по умолчанию, можно восстановить смысл контекста, из которого выхвачены отдельные предложения. Отчетливо видно, что те механизмы мышления, которые мыслители прошлого, считали  лишь помехой на пути постижения истины, являются  не менее важным способом получения информации о действительности, хотя законы такого способа не столь очевидны по сравнению с правилами формальной логики.

На данной стадии возникает необходимость прояснить взаимоотношения, существующие между “искусственным интеллектом” и биологической наукой о мышлении.Один из аспектов проблемы – это моделирование процессов мышления. В исследованиях по “искусственному интеллекту” ученые, сталкиваясь с затруднениями, неизбежно обращали взоры на процессы мыслительной деятельности, имеющие место у человека. Вот что пишет по этому поводу Станислав Мурсалов программист, известный разработчик систем с элементами “искусственного интеллекта”:“Многочисленные аналогии с психикой человека будут продолжаться, …аналогия в данном случае – важный инструмент разработки. Фундаментальная теория всегда опирается на подходящую модель явления, а здесь самая подходящая модель – наша психика, сотворив которую, природа давно решила нашу задачу. Уже многократно в трудах своих, придя к тем или иным выводам, впоследствии я обнаруживал объяснение этому в «психической» книжке или беседуя с умным человеком. … если совершенно разные пути приводят к аналогичным выводам, значитпредмет– рационален, работать с ним можно…”
Общим для мозга и моделирующими его работу устройствами является материальность, закономерный характер всех процессов, общность некоторых форм движения материи и отражение как всеобщее свойство материи.
Когда мы говорим о модели, речь идет о системе, в определенных существенных структурах и отношениях аналогичной предмету исследования, системе, применение которой при исследовании определенных предметных областей опирается на научную обоснованность выводов по аналогии. Аналогия предполагает тождественность некоторых характеристик сравниваемых систем, но в целом эти системы всегда различны.
Модель при этом выступает как заместитель прототипа, причем это не простое замещение, а такое, которое дает возможность получить о прототипе определенное знание. Следовательно, для всех научных моделей характерно то, что они являются заместителями объекта исследования, находящимися с последним в таком сходстве (или соответствии), которое позволяет получить новое знание об этом объекте. Весьма распространенным является отождествление модели с идеальным образом. С этой точкой зрения трудно согласиться, ведь нетождественность модели и образа определяется самой природой моделирования – последнее предполагает формирование образа в процессе предварительного исследования объекта (прототипа).
В моделировании объекта мы можем выделить разные этапы, для которых характерно использование моделей, отражающих степень полноты аналогии между моделью и прототипом: моделирование результата; моделирование поведения, ведущего к этому результату; моделирование структуры; моделирование материала. Этот способ разделен