–PAGE_BREAK–ПРОБЛЕМЫ г. МОСКВЫ. ПОДЗЕМНЫЕ ВОДЫ И ЗДОРОВЬЕ НАСЕЛЕНИЯ.
Эколого-гидрогеологические проблемы использования подземных вод для водоснабжения г. Москвы
В качестве примера предполагаемого крупного отбора подземных вод и связанных с этим природоохранных ограничений рассмотрим проблемы водоснабжения г. Москвы.
Питьевое водоснабжение большинства небольших городов с населением менее 100 тыс. человек в каждом почти полностью основано на подземных водах. Третья часть крупных городов с населением свыше 250 тыс. человек, использует для питьевого водоснабжения исключительно подземные воды, и еще треть -подземные и поверхностные воды совместно. Однако водоснабжение крупнейших городов России и прежде всего таких многомиллионных городов как Москва и Санкт-Петербург основано почти полностью на поверхностных водах.
До настоящего времени Москва остается одним из немногих крупных городов России, практически не использующих для питьевого водоснабжения подземные воды. Выход из строя водозаборов в связи с возможными аварийными ситуациями приводит к загрязнению поверхностных вод. Поэтому использование защищенных от загрязнения пресных подземных вод напорных водоносных горизонтов должно повысить надежность системы хозяйственно-питьевого водоснабжения города.
Состав и свойства подземных вод изучены в пределах Московского региона до глубин, составляющих примерно 1500 м. Пресные подземные воды с минерализацией до 1 г/л распространены до глубин в среднем 250-300 м, в отдельных районах до глубин всего 80-100 м. В настоящее время сеть скважин включает около 1100 наблюдательных скважин.
Геолого-гидрогеологический разрез территории Московской области представлен двумя гидрогеологическими этажами: нижним, сложенным преимущественно известняками каменноугольного возраста, и вышележащими рыхлыми песчано-глинистыми отложениями мелового и четвертичного возраста. Эти водоносные толщи разделены регионально выдержанным водоупором юрских глин мощностью от 8-10 до 30-40 м, которые в долинах рек часто размыты.
Примерно 80% водоотбора подземных вод осуществляется городскими водозаборами, в зонах расположения которых в последние годы ухудшилась экологическая обстановка. Эти водозаборы, особенно расположенные в г. Москве и ближайших его окрестностях, работают в условиях постоянного риска загрязнения.
Для решения проблемы более широкого использования пресных подземных вод хорошего качества в течение нескольких лет были разведаны 4 крупных месторождения подземных вод, находящихся в радиусе примерно 100—120 км от города. Общий отбор подземных вод в объединенной системе водоснабжения из новых четырех крупных водозаборов предусмотрен в количестве 2,7 млн. м3/сут. При этом общий отбор подземных вод на территории Московского региона не должен превышать величины их естественных ресурсов (питания), которые оценены в 8,7 млн. м7сут.
При распределении эксплуатационных запасов подземных вод между Москвой и Московской областью приоритет отдан городам Московской области. Потребность области в воде составляет 5 млн. м3/сут. Ее планируется удовлетворить как за счет подземных вод месторождений, не включенных в объединенную систему (3,8 млн. м3/сут), так и месторождений, входящих в эту систему (1,1 млн. м3/сут). Предусматривается, что только после удовлетворения перспективной потребности в подземной воде питьевого качества городов Московской области возможно их использование для водоснабжения самого г. Москвы.
Известно, что требованиями Государственного стандарта России «Безопасность в чрезвычайных ситуациях. Защита системы хозяйственно-питьевого водоснабжения», установлено, что водоснабжение средних и крупных городов должно быть основано на не менее, чем двух независимых источниках водоснабжения.
Одним из таких источников должны быть подземные воды, минимальная доля которых в водоснабжении города должна быть достаточной, чтобы иметь возможность обеспечивать бесперебойную подачу питьевой воды населению при отключении поверхностных водоисточников в период их аварийного загрязнения. «Генеральной схемой…» предусматривалось комплексное решение двух важных проблем: водообеспечение подземной водой питьевого качества ряда городов и населенных пунктов Московской области и создание автономного источника резервного водоснабжения столицы на случай непредвиденных природно-техногенных катастроф, исключающих возможность использования подземных вод.
В «Схеме…» обосновывается возможность использования подземных вод для хозяйственно-питьевого водоснабжения населения Московского региона. «Схемой…» предусматривается создание объединенной системы водоснабжения, состоящей из четырех систем водозаборов подземных вод (Северной, Южной, Восточной и Западной) с общим отбором подземных вод 2,7 млн. м3/сут (соответственно 860,1200,500 и 140 тыс. м3/сут). При разработке «Схемы…» авторы исходили из следующих основных принципиальных соображений:
– интенсификация использования подземных вод в Московском регионе является единственным, практически не имеющим альтернатив способом повышения надежности водоснабжения столицы России и близлежащих районов;
– общий отбор подземных вод на территории Московского региона не должен превышать величину их естественных ресурсов, иными словами, не должен быть больше величины их ежегодного естественного восполнения (за многолетний период):
– в первую очередь должна быть удовлетворена потребность в воде питьевого качества городов Московской области (около 5 млн. м3/сут). Ее планируется удовлетворить как за счет уже существующих разведанных и эксплуатируемых месторождений подземных вод области, не включенных в объединенную систему (3,8 Млн. м3/сут), так и новых месторождений на указанных 4-х участках, включенных в эту систему (1,1 млн. м3/сут);
– на водоснабжение самого города Москвы будет использоваться только часть запасов подземных вод, которая остается после удовлетворения потребностей в воде Московской области (1,6 млн. м3/сут).
В процессе оценки перспективных возможностей интенсификации использования подземных вод с помощью математических моделей изучалось взаимодействие между существующими и проектными водозаборами.
Предлагаемые к использованию 2,7 млн. м3/сут подземных вод рекомендовалось распределить между отдельными системами следующим образом: Северная система — 0,8, Южная система — 1,2, Восточная система — 0,56 и Западная система -0,14 млн. м3/сут.
Как указывалось выше, первоначально предполагалось, что производительность водозаборов, входящих в объединенную систему водоснабжения, составит около 2,7 млн. м3/сут, из которых 1,6 млн. м3/сут планировалось подавать в Москву. Однако, в последнее время установлено, что дополнительная вода городу не нужна, что вызвано прежде всего осуществляемыми и планируемыми мероприятиями по экономии воды и уменьшению общей потребности в воде в силу ряда причин экономического характера.
Поэтому подача подземных вод в Москву в периоды интенсивного загрязнения поверхностных вод может быть ограничена 1,0 млн. м3/сут (исходя из нормы 100-200 л/сут на 1 человека при численности населения г. Москвы в 8,5 млн. человек).
В настоящее время в качестве первоочередного освоения выбрана южная группа месторождений, основанная на использовании подземных вод каменноугольных водоносных горизонтов в долине р. Оки (район г. Серпухова).
Качество подземных вод на участках, включенных в объединенную систему, в целом соответствует нормам для питьевых вод, установленным в России, за исключением повышенного содержания железа и марганца. Кроме того, на Южной системе отмечается пониженное содержание фтора. Месторождения Северной и Восточной систем надежно защищены от возможного загрязнения, а месторождения Южной и Западной систем являются слабо защищенными. Выполненные специальные гидродинамические расчеты показывают, что качество подземных вод при эксплуатации изменится незначительно и это не приведет к невозможности их использования для питьевого водоснабжения.
При разработке «Генеральной схемы объединенной системы водоснабжения г. Москвы й Московской области с использованием подземных источников» значительное внимание уделялось прогнозу возможных экологических последствий интенсификации использования подземных вод. В частности, анализировалось влияние снижения уровня в верхнем водоносном горизонте на состояние растительности, ландшафтов, прогнозировалось возможное изменение речного стока (особенно стока малых рек), опасность загрязнения эксплуатируемых водоносных горизонтов за счет миграции загрязнителей при изменении гидродинамических условий взаимодействия подземных и поверхностных вод и отдельных водоносных горизонтов между собой. При этом авторы «Схемы…» правильно подчеркивают, что при прогнозе возможного влияния отбора подземных вод на окружающую среду первостепенное значение имеет анализ опыта эксплуатации действующих водозаборов подземных вод. Как уже отмечалось, многолетняя эксплуатация подземных вод, вызывающая снижение уровней подземных вод в каменноугольных водоносных горизонтах на многие десятки метров, не привела к заметным и опасным негативным экологическим последствиям, за исключением уменьшения меженного стока рек на отдельных участках.
Влияние эксплуатации подземных вод на сток малых рек проявляется двояко: иногда на некоторых реках возникают участки, где поверхностный сток уменьшается (Москва в верховьях, Истра в среднем течении, Пахра, Нерская, Нора и некоторые другие) за счет питания рекой грунтовых водоносных горизонтов й сокращения подземного стока в реки. В других случаях за счет сброса в реки очищенных отработанных вод, различных стоков, речной сток по сравнению с естественным увеличивается (реки Воря, Торгоша, Пажа). Характерной в этом отношении является р. Клязьма, сток которой выше Ногинска уменьшился по сравнению с естественным, а ниже Ногинска и Электростали — увеличился.
Математическое моделирование, проведенное с учетом сезонного регулирования питания грунтовых водоносных горизонтов, показало, что «ущерб» меженному стоку малых рек составит около 10% в год средней водности и 17-18% в год водности 95% обеспеченности. На отдельных участках рек, где меженный сток рек 95% обеспеченности уменьшится более, чем на 25-30%, потребуется осуществление специальных мероприятий, таких как устройство русловых запруд, подпитывание малых рек в экстремальных ситуациях подземными водами и др.
Следует отметить, что проблема интенсификации использования подземных вод в Московском регионе вызвала небывалый интерес и прежде всего значительное беспокойство у населения и ряда ученых, в частности Пущинского научного центра. Еще ни разу в бывшем Советском Союзе специалисты и просто жители какого-либо региона не обсуждали столь активно экологические проблемы использования подземных вод. Можно назвать две основные причины этого:
– впервые в России планируется столь крупный отбор подземных вод для решения проблемы питьевого водоснабжения такого большого города, как Москва;
– в последние годы наблюдается повышенный интерес населения к экологическим проблемам природопользования, в том числе к опасности крупномасштабного использования подземных вод.
Предварительный вывод авторов проекта, основанный на анализе существующего опыта эксплуатации, о незначительном влиянии водоотбора на уровень подземных вод первого от по верхности водоносного горизонта и, тем самым, на растительный мир, в целом является достаточно обоснованным. Однако этот оптимистический вывод, имеющий важное практическое значение для экологии региона, должен быть подкреплен и более обоснован дальнейшими опытными и экспериментальными исследованиями. В связи с этим одним из важнейших направлений дальнейших работ по повышению эффективности использования подземных вод для водообеспечения Московского региона является создание комплексного мониторинга окружающей среды, включающего подземные воды. Необходимо также провести специальные опытно-фильтрационные экспериментальные работы на опытных полигонах, позволяющие в натурных условиях смоделировать возможное влияние отбора подземных вод на экосистемы бассейнов малых рек. Проведение исследований в рамках такого мониторинга позволит определить необходимость, состав и содержание компенсационных мероприятий по минимизации возможного негативного влияния крупного отбора подземных вод на сток малых рек, состояние растительности, возникновение или усиление карстово-суффозионных процессов, качество отбираемой подземной воды. Кроме того, результаты таких работ позволят разработать научно-обоснованные методические рекомендации по региональной оценке экологических последствий влияния отбора подземных вод на окружающую среду, которые можно будет использовать при решении аналогичных проблем в других регионах.
продолжение
–PAGE_BREAK–КАЧЕСТВО ПИТЬЕВОЙ ВОДЫ
Для оценки качества воды применяют физические, химические, бактериологические и технологические методы анализа. При учете динамики состава воды в источниках водоснабжения важно, чтобы данные анализа совпадали с биологическими показателями и отражали качество именно той воды, которая будет поступать в водозабор и направляться на обработку. Поэтому выбор источника водоснабжения и отбор проб из него следует проводить в строгом соответствии с ГОСТом.
Характеристика физических показателей качества воды
При оценке качества воды источника необходимо знать ее физические показатели (температуру, запах, вкус, мутность и цветность).
Температураводы.
Температура природных вод зависит от их происхождения. Воды подземных источников отличаются постоянством температуры, причем с увеличением глубины залегания водсезонные колебания температурыуменьшаются. Наоборот, температура вод открытыхводоемов (рек, прудов, водохранилищ) претерпевает значительные изменения, связанные с нагреванием и остыванием водоемов. Помимо сезонных изменений на температуру воды в отдельных местах открытых водоемов влияет поступление в них подземных вод, а также тепловых выбросов промышленности. Оптимальная температура воды, используемой для питья, составляет 7—11 °С.
Прозрачностьили мутность воды.
Природные воды, особенно поверхностные, почти никогда не бывают прозрачными из-за наличия в них взвешенных частиц глины, песка, ила, водорослей и других веществ минерального или органического происхождения.
Причиной мутности речных и озерных вод могут быть составные части почв и горных пород, вымываемые реками из своего русла, а также талые воды и ливневый смыв, т. е. твердые осадки, смываемые дождями с почвы лесов, полей, лугов и улиц населенных пунктов. Ливневый смыв в период сильных дождей повышает мутность воды в несколько раз. В больших водоемах помутнение воды происходит за счет взмучивания осадков со дна вследствие волнения в ветреную погоду, в результате массового развития одноклеточных водорослей и по другим причинам.
Мутность воды в реках в различные времена года значительно изменяется, причем обычно она резко возрастает весной в период половодья. Наименьшая мутность наблюдается в зимнее время, когда реки покрыты льдом.
Количественное определение взвешенных веществ в воде весовым способом занимает много времени, и в практике чаще применяются методы косвенной оценки: установление прозрачности или мутности воды. При содержании взвешенных веществ менее 3 иг/л определяют не прозрачность, а мутность воды (понятие, обратное прозрачности), сравнивая испытуемую воду со стандартными суспензиями. Согласно ГОСТ 3351—74 мутность воды определяется фотометрическим способом и выражается в миллиграммах на 1 л.
Цветностьводы.
Чистая вода, взятая в малом объеме, бесцветна. В толстом слое она имеет голубовато-зеленый оттенок. Другие оттенки свидетельствуют о наличии в ней различных растворенных и взвешенных примесей. Для выяснения природы цветной воды необходимо в каждом конкретном случае установить причину, вызвавшую появление того или иного цвета.
Изменение цветности воды в основном обусловливают органические соединения, которые в природных водах весьма разнообразны. Некоторые из них входят в состав организмов, населяющих воду, а часть является продуктами их жизнедеятельности или распада. В природной воде установлено присутствие гумусовых и дубильных веществ, белково- и углеводоподобных соединений, жиров, органических кислот и витаминов. Иногда источником окрашенных органических соединений в водоемах служат промышленные и бытовые сточные воды. Коллоидные железистые соединения придают воде оттенки от желтоватых до зеленых.
Цветность воды выражается в градусах и определяется фотометрически — путем сравнения проб испытуемой жидкости с растворами, имитирующими цвет природной воды.
Вкуси запах воды.
Различают четыре вкуса природной воды: соленый, горький, сладкий и кислый. При. родные воды, используемые для водоснабжения, могут обладать соленым или горьким вкусом, что связано с присутствием избытка растворенных солей.
В частности, избыток MgS04 вызывает горькийвкус, избытокNaCl— соленый. Кислый вкус имеют минеральные воды при избытке растворенной углекислоты.
Все другие виды вкусовых ощущений называются привкусами. Так, соли же-леза (II)и марганца придают воде чернильный илижелезистый привкус, CaS04 — вяжущий.
Интенсивность вкуса и привкуса определяется органолептически при 20 °С и оценивается по пятибалльной системе.
Запахи воды бывают естественного и искусственного происхождения. Причиной запахов естественного происхождения могут быть химический состав примесей воды, живущие и отмершие в воде организмы, загнивающие растительные остатки, специфические соединения, выделяемые некоторыми водорослями и микроорганизмами. К этим запахам относятся следующие: ароматический, болотный, гнилостный, древесный, землистый, запах плесени, рыбный, травянистый, неопределенный, а также запах сероводорода, часто обусловливаемый присутствием последнего в воде.
Наличие в воде запахов естественного происхождения периодически наблюдается в реках и каналах. В водохранилищах запахи часто появляются в период массового развития водорослей, во время так называемого цветения воды.
Вещества, обусловливающие запахи естественного происхождения, являются сложными смесями ароматических углеводородов и кислородсодержащих соединений (спирты, альдегиды, кетоны, сложные эфиры). Они летучи, разрушаются сильными окислителями и хорошо поглощаются активированным углем. Запахи искусственного происхождения, вызываемые примесями промышленных сточных вод, называются по соответствующим веществам: феноль-ный, хлорфенольный, нефтяной и т. д.
Характеристика химических показателей качества воды
Химический анализ природной воды имеет решающее значение в практике водоснабжения. Результаты анализа позволяют установить пригодность источника для питьевого и технического водоснабжения, наличие в воде вредных для организма загрязнений или соединений, способствующих ее коррозийной активности, вспениванию, образованию накипи и т. д.
На основании сопоставления результатов анализа природной воды с требованиями, предъявляемыми к ней потребителем, можно судить о том, каким процессамочистки следуетподвергнуть эту воду для улучшения тех или иных показателей ее качества.
К химическим определениям относятся установление активной реакции воды, окисляемости, азотсодержащих веществ, растворенных в воде газов, плотного остатка и потерь при прокаливании, жесткости и щелочности, а также хлоридов, сульфатов, железа, марганца и других элементов.
Активная реакция воды, т. е. степень ее кислотности или щелочности, определяется концентрацией водородных ионов, точнее, их активностью.
Активность представляет собой эффективную концентрацию вещества, учитывающую взаимодействие его ионов или молекул друг с другом, а также с молекулами растворителя.
Окисляемость воды. Наличие в природных водах органических и некоторых легкоокисляющихся неорганических примесей (сероводорода, сульфитов, железа (II) и др.) обусловливает определенную величину окисляемости воды. В связи с тем что окисляемость поверхностных вод объясняется главным образом наличием органических веществ, установление окисляемости, т. е. количества кислорода, необходимого для окисления примесей в данном объеме зоды, является одним из косвенных методов определения органических веществ в воде.
Окисляемость природных, особенно поверхностных, вод не является постоянной величиной. Изменение химической характеристик, поступающих в воду веществ меняет величину ее окисляемости. Повышенная окисляемость воды свидетельствует о загрязнении источника и требует применения соответствующих мероприятий по его охране при использовании для водоснабжения. Внезапное повышение окисляемости воды служит признаком загрязнения ее бытовыми сточными водами, поэтому величина окисляемости — важная гигиеническая характеристика воды.
Окисляемость определяют обработкой исследуемой воды марганцевокислым калием (пермангнатная окисляемость).
Определение окисляемости является не только способом установления концентрации органических веществ, но в сочетании с другими показателями, например с цветностью, может служить и методом определения их происхождения.
Азотсодержащие вещества (ионы аммония, нитритные и нитратные ионы) образуются в воде в результате разложения белковых соединений, попадающих в нее почти всегда со сточными бытовыми водами, сточными водами коксобензоль-ных, азотнотуковых и других заводов. Белковые вещества под действием микроорганизмов подвергаются распаду, конечный продукт которого — аммиак. Наличие последнего свидетельствует о загрязнении воды сточными водами.
Сухой остаток и потеря при прокаливании. О количестве солей, содержащихся в природных водах, можно судить по величине сухого остатка и потере массы при прокаливании. Сухой остаток, образующийся при выпаривании определенного объема воды, предварительно профильтрованной через бумажный фильтр, состоит из минеральных солей и нелетучих органических соединений. Органическая часть сухого остатка воды определяется потерей его при прокаливании.
Наличие в воде большого количества сульфатов нежелательно, так как сульфат натрия, например, нарушает деятельность желудочно-кишечного тракта, а сульфаты кальция и магния повышают некарбонатную жесткость воды.
Сульфаты и хлориды в определенных концентрациях являются причиной коррозийной активности (агрессивности) воды.
Воды, содержащие большое количество сульфатов, оказывают разрушающее действие на бетонные конструкции.
Щелочность воды. Под общей щелочностью воды подразумевается сумма содержащихся в воде гидроксильных ионов (ОН) и анионов слабых кислот, например угольной (ионов НСОз, СОз). Поскольку в большинстве природных вод преобладают углекислые соединения, различают обычно лишь гидрокарбонатнуюи карбонатнующелочность. При некоторых приемах обработки воды и при рН ее выше 8,5 возникает гидратная щелочность.
Щелочные металлы. Изионов щелочных металлов в воде наиболее распространены Naи К, попадающие в воду в результате растворения коренных пород. Основным источником натрия в природных водах являются залежи поваренной соли. В природных водах натрия содержится больше, чем калия. Это объясняется лучшим поглощением последнего почвами, а также большим извлечением его из воды растениями.
Жесткость воды. Жесткость природных вод обусловливается наличием в них солей кальция и магния. Ионы Са2+ поступают в воду при растворении известняков под действием содержащейся вводе углекислоты водой гипса
СаС03 + Н20 + С02
.
Основным источником ионов магния служат доломиты, также растворяющиеся водой в присутствии углекислоты.
Хотя указанные соли и не являются особо вредными для организма, наличие их в воде в больших количествах нежелательно, так как вода становится непригодной для хозяйственно-питьевых нужд и промышленного водоснабжения. В жесткой воде плохо развариваются овощи, перерасходуется мыло при стирке белья. Жесткая вода непригодна для питания паровых котлов; ее нельзя использовать во многих отраслях промышленности .
Общая жесткость воды представляет собой суммы карбонатной (временной) и некарбонатной (постоянной) жесткости.
Карбонатнаяжесткость, связанная с присутствием в воде в основном гидрекарбонатов кальция или магния, почти полностью удаляется при кипячении воды. Гидрокарбонаты при этом распадаются с образованием углекислоты, в осадок выпадают карбонаты кальция и гидроксид магния.
Некарбонатнаяжесткость обусловливается присутствием кальциевых и магниевых солей серной, соляной •и азотной кислот и кипячением не устраняется.
Жесткость воды представляет сумму эквивалентных концентраций ионов Са2+ и Mg2+и выражается в миллиграмм-эквивалентах на 1 л; 1 мг-экв/л жесткости отвечает 20,04 мг/л ионов Са’2+ или12,16 мг/л ионов Mg2+.
Железо имарганец. Железо в природных водах может находиться в виде ионов Fe2и Fe3, неорганических (Fe(OH)3, Fe(OH)2, FeS) и органических коллоидов, комплексных соединений (главным образом органических комплексных соединений железа) и тонкодисперсной взвеси (Fe(OH)3, Fe(OH)2, FeS). В поверхностных водах железо содержится в виде органических комплексных соединений, коллоидов или тонкодисперсных взвесей. В подземных водах при отсутствии растворенного кислорода железо обычно находится в виде солей железа (II). Форма, в которой присутствуют в природных водах железо и марганец, зависит от величины рН и содержания кислорода.
Обычно содержание железа и марганца не превышает нескольких десятков миллиграммов в 1 л воды. Хотя вода, содержащая и более высокие количества этих ионов, совершенно безвредна для здоровья, все же для питьевых, промышленных и хозяйственных целей она непригодна, так как имеет неприятный чернильный или железистый привкус.
Наличие в воде железа и марганца может приводить к развитию в трубопроводах железистых и марганцевых бактерий, использующих в процессе своей жизнедеятельности энергию, выделяемую при окислении соединений с низшей в соединения с высшей валентностью. Продукты жизнедеятельности бактерий накапливаются в таких количествах, что могут значительно уменьшить сечение водопроводных труб, а иногда и полностью их закупорить.
Соединения кремния. Кремний присутствует в природных водах в виде минеральных и органических соединений. Выщелачивание силикатных пород обогащает природные воды кремниевой кислотой и ее солями. Кремниевая кислота очень слабая и диссоциирует на ионы в незначительной степени.
Наличие соединений кремния в питьевой воде не вредно для здоровья. Если же вода используется для питания паровых котлов высокого давления, содержание самого незначительного количества кремниевой кислоты недоступно из-за образования плотной силикатной накипи.
Соединения фосфора. Фосфор встречается в воде в виде ионов ортофосфорной кислоты или органического комплекса, а также в виде взвешенных частиц органического и минерального происхождения. Соединения фосфора содержатся в природных водах в ничтожных количествах, однако имеют огромное значение для развития растительной жизни в водоемах.
Растворенные в воде газы. Из растворенных в воде газов наиболее важными для оценки ее качества являются углекислота, кислород, сероводород, азот и метан. Углекислота, кислород и сероводород при определенных условиях придают воде коррозийные свойства по отношению к бетону и металлам.
Углекислотавстречается в больших или меньших количествах во всех природных водах. Подземные воды обогащаются углекислотой за счет разложения органических соединений в воде и почвах, а также вследствие протекающих в глубине геохимических процессов.
Уменьшение содержания С02 в природных водах может происходить благодаря выделению углекислоты в атмосферу, растворению карбонатных пород с образованием гидрокарбонатов или в результате фотосинтеза.
Агрессивные свойства углекислоты основаны на ее способности взаимодействовать с карбонатными породами и переводить их в растворимые в воде гидрокарбонаты, а также на некотором снижении рН среды, в результате чего усиливается электрохимическая коррозия некоторых металлов, например железа.
Углекислота не является коррозионным агентом, непосредственно воздействующим на металл. Действие ее заключается в растворении карбонатов составных частей ржавокарбонатных отложений, которые образуются в водопроводной сети. В результате этого процесса происходят дальнейшая коррозия материала труб и образование новых отложений; вода приобретает желтую или красноватую окраску, неприятный вкус и содержит мелкие комья рыхлых железистых веществ.
Кислородможет находиться в природных водах в различных концентрациях (0—14,6 мг/л), что определяется интенсивностью противоположно направленных процессов, влияющих на содержание кислорода в воде. Обогащение воды кислородом происходит за счет растворения его из воздуха (в соответствии с парциальным давлением кислорода и температурой воды) и выделения водной растительностью в процессе фотосинтеза
Окисление некоторых примесей воды, гниение органических остатков, брожение, дыхание организмов понижают содержание кислорода в воде. Резкое уменьшение содержания кислорода в воде по сравнению с нормальным свидетельствует о ее загрязнении.
Определение концентрации кислорода имеет большое значение при изучении физико-химического режима водоема, его самоочищения и биологической жизни.
Кислород интенсифицирует процессы коррозии металлов, поэтому в водах, которые используются для теплоэнергетических систем, количество растворенного кислорода лимитируется.
Сероводородпопадает в природные воды в результате их соприкосновения с гниющими органическими остатками (сероводород органического происхождения) либо с некоторыми минеральными солями (гипсом, серным колчеданом и др.). Последние, восстанавливаясь и разлагаясь, выделяют сероводород (сероводород неорганического происхождения).
Наличие в воде сероводорода органического происхождения свидетельствует о загрязненности водоисточника.
Сероводород необходимо удалять из воды, используемой для хозяйственно-питьевого или промышленного водоснабжения.
Азотпопадает в природные воды при поглощении его из воздуха, восстановлении соединений азота денитрифицирующими бактериями, а также в результате разложения органических остатков. Несмотря на меньшую по сравнению с кислородом растворимость азота содержание последнего в природных водах больше из-за более высокого парциального давления его в воздухе.
Метанобразуется в воде иногда в очень значительных количествах при разложении микробами клетчатки растительных остатков.
Микроэлементы. Наряду с органическими и минеральными примесями и загрязнениями, которые находятся в природных водах в относительно больших количествах, в последних содержится ряд химических элементов в самых ничтожных дозах (иод, бром, фтор, селен, теллур и др.). В отличие от других примесей природных вод эти элементы почти не контролируются, хотя в настоящее время установлено, что ониоказывают большое влияние на здоровье человека.
Для нормальной жизнедеятельности человеческого организма содержание перечисленных элементов в воде должно находиться в строго определенных пределах. При нарушении этих пределов могут возникать массовые заболевания, называемые геохимическими эндемиями.
Например, установлена суточная потребность организма в иоде и фторе. Человек ежесуточно должен потреблять 0,06— 0,10 мг иода. Отсутствие или недостаток его в питьевой воде и пище нарушает нормальную деятельность щитовидной железы и приводит к тяжелому заболеванию — эндемическому зобу.
Содержание фтора в питьевой воде должно находиться в пределах 0,7— 1,5 мг/л. Недостаточное или избыточное содержание его в воде одинаково вредно и вызывает разрушение зубов и изменения в костях скелета.
Радиоактивные элементы. К примесям природных вод относятся и радиоактивные элементы. Допустимым пределом радиоактивности в обычной питьевой воде считается10-8—10-9 мкКи/л. Радиоактивность некоторых минеральных вод достигает 2,8 •10-3 мкКи/л.
Ядовитые вещества попадают в воду с промышленными отбросами и канализационными сточными водами населенных пунктов, а также при умышленном отравлении водоема. Токсическая концентрация таких веществ обычно достигается уже при содержании их в количестве нескольких миллиграммов (редко одного-двух десятков миллиграммов) в 1 л воды. К этой группе веществ относятся свинец,, цинк, медь, мышьяк, ртуть и др., а также органические вещества, называемые отравляющими (ОВ).
Свинец, медь и цинк попадают в воду главным образом с промышленными сточными водами. Наиболее ядовитымииз этих металлов является свинец, который накапливается в организме и может вызвать опасное отравление.
Вода, подаваемая населению, не должна содержать более 0,03 мг/л свинца, 1 мг/л меди и 5 мг/л цинка. Определение содержания этих металлов требуется лишь в тех случаях, когда предполагается наличие их в источнике водоснабжжения.
Мышьяк в очень небольших концентрациях может поступать в воду из почв, содержащих его соли. В значительных количествах он был обнаружен в некоторых минеральных водах. В открытые водоемы мышьяк попадает со сточными водами населенных пунктов и промышленных предприятий (от дубильных цехов кожевенных заводов, красильных, ситцепечатных фабрик, металлообрабатывающих заводов и т. д.). Его содержание в питьевой воде не должно превышать 0,05 мг/л.
Известны ОВ самого различного действия, однако, попадая в воду, они ведут себя в основном как общеядовитые. На зараженность воды ОВ могут указывать некоторые внешние признаки и данные обычных методов контроля, так как наличие ОВ вызывает изменение многих показателей качества воды, например рН, окисляемое, хлоропоглощаемости, содержания хлоридов и растворенного кислорода, а также данные биологических и бактериологических исследований. Поэтому все перечисленные показатели в условиях отравления воды ОВ должны определяться и фиксироваться систематически.
продолжение
–PAGE_BREAK–АНАЛИЗ ГИДРОГЕОЛОГИЧЕСКОГО РАЗРЕЗА ДОЛИНЫ РЕКИ КОЗЛОВКА
При изучении гидрогеологических условий впервую очередь составляются гидрогеологические разрезы.Они необходимы при проведении любых видов гидрогеологических исследований. Гидрогеологические разрезы обычно прилагаются к картам, поясняя и дополняя их.
Перечислим основные положения, которые должны быть отмечены при этом описании.
1. Характер водоносных горизонтов и условия их залегания устанавливаются из анализа литологического состава пород и данных водопроявлений по скважинам, шурфам и источникам. Н а порный горизонт характеризуется наличием выдержанных водоупорных толщ в кровле и в подошве водосодержащего пласта и избыточного напора воды над кровлей пласта. Последний проявляется в том, что уровни, встреченные при бурении и вскрытии водоносного горизонта, поднимаются и устанавливаются выше верхней границы, или кровли, пласта (так называемые установившиеся напорные уровни). Положение установившихся напорных уровней по скважинам определяет положение пьезометрической кривой. Для любого сечения составленного разреза по этим данным можно определить мощность потока как разность отметок кровли и подошвы водоносного пласта, глубину вскрытия напорного водоносного горизонта как разность между отметками поверхности земли и кровли водосодержащего пласта, ожидаемый установившийся уро вень напорных вод при бурении скважины как разность между отметкой поверхности земли и пьезометрической кривой. Величина напора над кровлей определяется разностью отметок между установившимся уровнем и кровлей пласта. По разрезу можно выявить участки возможного самоизлива, приуроченные к зонам, где поверхность земли располагается ниже пьезометрической кривой.
Грунтовыеводы — воды, не насыщающие полностью весь водопроницаемый пласт, их поверхность является свободной; напор на поверхности воды равен атмосферному давлению.
Установившийся уровень грунтовых вод, показывающий положение кривой депрессии, обычно фиксируется на том же уровне, где он был встречен при бурении скважины (разница между глубиной появления и установления уровня для грунтовых вод может быть в ряде случаев за счет отбора воды с породой в процессе бурения). Глубина до грунтовых вод по разрезу определяется разностью отметок поверхности земли и кривой депрессии, мощность потока — разностью отметок кривой депрессии и водоупорной подошвы водоносного пласта.
На отдельных участках грунтовые воды могут перекрываться линзами и прослоями водоупорных пород, и тогда здесь поток приобретает местный напор.
2. По разрезу можно дать характеристику условий движения потоков подземных вод, определить направление потока, вычислить изменения уклона подземных вод на разных участках и определить расход потока, если известны коэффициенты фильтрации.
Направление движения потока устанавливается от участков с большими отметками пьезометрической или депрессионной кривой, имеющимися на исследуемом разрезе, к участкам с меньшими отметками.
Уклон потока, или напорный градиент, определяют по разности абсолютных или относительных отметок уровней в двух сечениях потока, отнесенных к расстоянию между этими сечениями:
I=H1 –H2/l1-2,
ГдеI-уклон
Н1 и Н2-абсолютные или относительные величины,
l1 -2 – расстояние между сечениями.
3. Условия питания и разгрузки подземных вод устанавливаются для напорных вод из из анализа отметок пьезометрической кривой; » максиимальные отметки имеют место в области питания подземных вод, минимальные — в области разгрузки. Областью питания для напорных обычно являются участки выхода водосодержащих толщ на высоких отметках на поверхность участки фильтрации вод из вышележащих зонтов в местных выклиниваниях последних или при уменьшении мощности разделяющих водоупоров. Наличие перетекания из одного водоносного горизонта в другой устанавливается из сравнения положения пьезометрических кривых этих зонтов: из горизонта, пьезометрическая кривая которого располагается выше, возможно подпитывание другого горизонта, напорные уровни которого располагаются на меньших отметках.
В некоторых случаях подпитывание подземных вод прослеживается на значительных площадях распространения горизонта, через водоупорные толщи; такой тип питания носит региональный характер и обусловлю разностью напоров водоносных горизонтов.
Разгрузка напорных вод так же, как питание, может носить как местный, локальный характер, так и общий, региональный.
продолжение
–PAGE_BREAK–