–PAGE_BREAK–Рішення.
1-й крок:
1.1) взяти декартову систему координат на площині;
1.2) відкласти на ній точки (Xi; Yi), і=1,…..,n;
1.3) обвести всі відкладені точки замкнутою кривою – отримати хмару розсіяння експерементальних даних;
1.4) на око провести криву, яка відповідає усередненим значенням.
У нашому випадку, по розташуванню крапок на графіку 1, можна припустити, що рівняння прямої будемо знаходити у вигляді
2-й крок:
2.1) визначити параметри моделі методом найменших квадратів (МНК) за формулами:
2.2)обчислити значення для кожного значення і занести в таблицю у якості додаткового стовбця;
2.3)побудувати графік регресійної функції
3-й крок:
3.1)обчислити залишкову дисперсію за формулою:
, де n– довжина вибірки, m– число факторів(m=1)
3.2) обчислити відносну похибку розрахункових значень регресії за формулою:
,
а середнє значення відносної похибки, як
,
4-й крок:
4.1) обчислити коефіцієнти еластичності за формулою:
, де
,
;
5-й крок:
5.1) обчислити центровані значення за формулою:
5.2) знайти коефіцієнт Стьюдента , де a=1-p,k=n-2( з таблиці, яку наведено звичайно у будь-якій книзі із статистики),
в нашому випадку =1.75
5.3) обчислити дисперсію:
5.4) обчислити за формулою:
5.5) з’єднати неперервною лінією на графіку всі значення і та отримані дані занести у таблицю (отримуємо надійну зону).
6-й крок:
6.1) обчислити збурювальну змінну за формулою
, де =1, 2,….,n
6.2) визначити d— статистику за формулою
6.3) знайти верхню () і нижню () межу (із додатку в кінці будь-якої книги із статистики ) – d-статистика(Критерій Дарбіна-Уотсона);;
6.4) зробити висновок про автокореляцію.
Так як , то ряд не містить автокореляцію.
7-й крок:
7.1) у рівняння підставити значення ;
Коли Xp=15, Yp=25,88365.
Коли Xp=17, Yp=28,61847.
Коли Xp=20, Yp=32,7207.
7.2) знайти межі надійних інтервалів індивідуальних прогнозованих значень за формулою
Коли Xp=15, DYp=12,318.
Коли Xp=17, DYp=15,207.
Коли Xp=20, DYp=19,567.
7.3) записати межі надійних інтервалів індивідуальних прогнозованих значень ( ; ).
(13,56565; 38,20165)
(13,41147; 43,82547)
(13,1537; 52,2877)
–PAGE_BREAK–Таблиця 2
–PAGE_BREAK–Рішення:
Припустимо, що між показником Ŷ і чинниками Х1 Х2 Х3 існує лінійна залежність Ŷ=А1Х1+А2Х2+А3Х3 .Знайдемо оцінки параметрів, використовуючи матричні операції.Запишеио систему нормальних рівнянь у матричній формі: [X]T[X]ā=[X]TY.Якщо помножити матричне рівняння зліва на матрицю [[X]T[X]]-1, то для оцінки параметрів вектора ā отримаємо формулу:
ā=[[X]T[X]]-1[X]Ty, звідки а1 =0,0603; а2=0,151; а3=0,859.
Складемо таблицю:
І
D(i)
S(i)
L(i)
C(i)
Cроз (i)
1
1
10,11
12,29
9
9,08
10,1954
1,1154
2
12,72
11,51
8,03
10,92
9,4018
-1,5182
3
11,78
11,46
9,66
12,42
10,7376
-1,6824
4
14,87
11,55
11,34
10,9
12,3803
1,4803
5
15,32
14
10,99
11,52
12,4768
0,9568
6
16,63
11,77
13,23
14,88
14,1429
-0,7371
7
16,39
13,71
14,02
15,2
15,1
-0,1
8
17,93
13,4
12,78
14,08
14,0809
0,0009
9
19,6
14,01
14,14
14,48
15,4418
0,9618
10
18,64
16,25
14,67
14,7
16,1774
1,4774
11
18,92
16,72
15,36
18,34
16,8579
-1,4821
12
21,22
14,4
15,69
17,22
16,9296
-0,2904
13
21,84
18,19
17,5
19,42
19,0939
-0,3261
Коефіцієнт множинної детермінації:
13 13
R2=1-Σ(yi-ŷi)2/Σ(y-ỳ)2=0.863
I=1 i=1
Визначимо автокореляцію за формулою:
13 13
d=Σ(lt–lt-1 )2/Σlt2=2.0531.
t=2 t=1
Оскільки значення d-статистики близьке до 2 то можна вважати автокореляцію відсутньою.Для визначення мультиколінеарності використаємо критерій Х2 . Розрахункове значення Х2 знаходимо за формулою:
Х2р=[n-1-1/6(2m+5)]ln│[X]T [X]│=3.1025
Для довірчої ймовірності р=0.95 і числа ступенів волі 1/2m(m-1)=3 X2=7.8.Оскільки розрахункове значення менше критичного, то можна вважати, що загальноі мультиколінеарності не існує.
Відповідь:
Коефіцієнт детермінації R2=0.863, автокореляція та загальна мультиколінеарність відсутні.
Завдання 4.
Проаналізуйте модель виробничої функції типу Кобба-Дугласа, що описує залежність між продуктивністю праці y=y/l та фондоозброєністю x=k/l з урахуванням впливу технічного прогресу у виробництво регіону.Оцініть параметри моделі, коефіцієнти детермінації та автокореляції за такими статистичними показниками Y ,k та L за 12 років.
T
Y(t)
k(t)
L(t)
1
54,24
4,41
11,89
2
49,56
4,97
11,04
3
52,32
6,63
11,46
4
73,92
7,39
15,56
5
67,2
7,44
15,67
6
64,44
8,31
17,44
7
80,04
8,9
15,71
8
93,12
12,12
19,91
9
95,4
14,77
16,52
10
90,54
15,06
21,54
11
116,94
14,21
17,9
Рішення:
Виробничою функцією називають функцію, яка описує кількісну залежність причинно-наслідкових відносин між результатом економічного процесу і умовами його одержання, хоча б частина з яких керована.В загальному випадку функція Кобба-Дугласа має вигляд:ŷ=b0x1b1x2b2…xmbm, де ŷ -продуктивність; x1, x2,…, xm –впливові фактори ;b0-нормований множник; b1, b2, bm -коефіціенти еластичності.
Припустимо, що між показником у – продуктивність праці і фактором х- фондоозброєність існує стохастична залежність: ŷ=bx2 (виробнича регресія Кобба-Дугласа).для оцінки параметрів виробничої регресії приводимо її до лінійної форми. Після логарифмування і заміни величинY1=Ln(y), X1=Ln(x)та b1=lnb отримаємо приведену лінійну регресію Y1= b1+aX1 .Оцінки параметрів і для цієї регресії визначаються за формулами:
n n n n n
a=(nΣX1i Y1i – Σ X1iΣY1i)/(n Σ X 21i -(Σ X1i)2)=0.3695
i=1 i=1 i=1 i=1 i=1
– —
b1=Υ1-aΧ1=1.7655,b=exp(b1)=5.8444.
Складемо таблицю:
t
Y(t)
k(t)
L(t)
x=k/l
x
y
y
y
1
54.24
4,41
11,89
0,3709
-0,9918
1,5177
1,39896
4,0651
2
49.56
4,97
11,04
0,4502
-0,7981
1,5017
1,470543
4,3516
3
52.32
6,93
11,46
0,6047
-0,503
1,5185
1,579598
4,853
4
73.92
7,39
15,56
0,4749
-0,7446
1,5583
1,490325
4,4385
5
67.20
7,44
15,67
0,4748
-0,7449
1,4559
1,490214
4,438
6
64.44
8,31
17,44
0,4765
-0,7413
1,307
1,491533
4,4439
7
80.04
8,90
15,71
0,5665
0,5682
1,6282
1,555488
4,7374
8
93.12
12,12
19,91
0,6087
-0,4964
1,5427
1,582051
4,8649
9
95.40
14,77
16,52
0,8941
-0,112
1,7535
1,724102
5,6075
10
90.64
15,06
21,54
0,6992
-0,3579
1,4359
1,633232
5,1204
11
116.94
14,21
17,9
0,7939
-0,2309
1,8769
1,68017
5,3665
Коефіцієнт множинної детермінації
11 11
R2=1-Σ(y1i-ŷ1i)2/Σ(yl1-э1)2 =0,4370.
t=1 t=1
Визначемо наявність автокореляції обчисливши d-статистику за формулою:
11 11
d = Σ(lt — lt-1 )2/Σlt2 = 2,4496.
t=2 t=1
Оскільки значення d-статистики наближене до 2 то можна вважати автокореляцію відсутньою.
продолжение
–PAGE_BREAK–