Ядерно-магнитный томографический каротаж

–PAGE_BREAK–2. Петрофизические основы метода

Основными измеряемыми информативными характеристиками являются релаксационная кривая, отражающая затухание намагниченности порового флюида в породе по времени поперечной релаксации Т2 и амплитуда сигнала, соответствующая времени начала измерения( tнач= 0) релаксационной кривой (рис. 3).

Амплитудасигнала, отражающая число резонирующих ядер, пропорциональна объемному водородосодержанию. При этом во всех модификациях ЯМК к моменту начала измерения релаксация протонов водорода, входящего в состав твердой фазы породы, уже завершается, и они не вносят вклад в сигнал. Поэтому ЯМК характеризует водородосодержание только флюида (фильтрата, воды, нефти, газа) в пустотном пространстве породы, которое по данным калибровки пересчитывается в коэффициент пористости по ЯМК. Отсюда вытекает важное для практики следствие — величина полной пористости по ЯМК не зависит от литологии пород.

Затуханиеопределяется тремя параллельно проходящими процессами релаксации [12]: поверхностной релаксации ( основной механизм), диффузионной и объемной, каждая из которых контролируется комплексом петрофизических характеристик.

Поверхностная релаксациявозникает за счет эффектов взаимодействия протонов с поверхностью зерен и контролируется распределением пористости по размерам пор, формой пор и релаксационной активностью поверхности.

Диффузионная релаксацияпроявляется в неоднородном магнитном поле, где молекулярное движение вызывает расфазировку протонов. Она возникает, в частности, при использовании средств измерений, формирующих неоднородное магнитное поле, например, как при ЯМТК. В последнем случае диффузионная релаксация может контролироваться выбором методики измерений: можно либо уменьшить ее вклад до уровня, которым можно пренебречь, либо, наоборот – максимально увеличить эффект с определением принципиально нового для практики ГИС петрофизического параметра – коэффициента диффузии порового флюида.

Объемная релаксация определяется собственно свойствами флюида, насыщающего поровое пространство и по-разному проявляется для различных типов (углеводороды и вода), состава, вязкости ( увеличение вязкости уменьшает время релаксации) флюидов. Эффект объемной релаксации слабее поверхностной и становится заметным, когда взаимодействие протонов с поверхностью ограничено, например, при лабораторных ЯМР -исследованиях пластовых флюидов, в кавернозных карбонатах, для углеводородов в гидрофильных коллекторах ( протоны УВ не контактируют с поверхностью пор).

Таким образом, эффект ЯМР чувствителен к практически важным петрофизическим характеристикам, таким как емкость (распределение пористости по размерам пор и на этой основе – различные типы пористости), фильтрация (через распределение пористости по размерам пор), насыщенность и состав флюидов (на основе коэффициента диффузии). Основным негативным фактором является влияние магнитных минералов, но их содержание в осадочных разрезах обычно невелико.

Наилучшие возможности ЯМР имеет для определения характеристик емкости, поскольку эффекты поверхностной релаксации при изучении горных пород являются основными в формировании релаксационной кривой, а амплитуда характеризует водородосодержание флюида (см. рис.3). Поэтому именно в рамках интерпретационной модели пористости и проводится основная обработка данных ЯМК. Самостоятельное значение имеет оценка флюидонасыщенности, но она более сложна, поскольку требует выделения достаточно слабых эффектов диффузионной релаксации на фоне поверхностной, и реализуется при применении специальных средств и методик измерения.

3. Основные особенности ЯМТК
Область исследования. Вертикальная характеристикаЯМТК определяется длиной магнита и РЧ – катушки. Разрешение составляет 620 мм.

Радиальная характеристикаЯМТК является уникальной для практики каротажа. При выбранной фиксированной частоте РЧ поля fэффект ЯМР протонов водорода будет формироваться только в той области среды, где напряженность поля магнита Hбудет удовлетворять выражению (1). С другой стороны, из (2) видно, что для прибора с дипольным градиентным магнитом величина Hизменяется в радиальном направлении. Поэтому условия ЯМР наступают только на некотором вполне определенном расстоянии от оси магнита, где частота РЧ поля, создаваемого катушкой, равна частоте прецессии ядер водорода в поле магнита.

В результате сигнал ЯМР формируется только в тонком цилиндрическом слое, коаксиальном оси магнита, почти по всей его длине. На рис.1 показаны расположение зоны исследования и направление полей в этой зоне по отношению к зонду ЯМК. Ширина резонансного слоя составляет доли миллиметра и контролируется градиентом поля магнита и интенсивностью радиочастотного поля на выбранном расстоянии. Образно говоря, область исследования ЯМТК представляет собой ватманский лист, обернутый вокруг скважины, или большой «шлиф». Вне этого тонкого слоя сигнал ЯМР не формируется и, соответственно, не регистрируется прибором. Опыт зарубежных компаний и наш собственный показал, что даже такой небольшой объем области исследований статистически достаточен для объективной оценки свойств пород в массиве.

Отметим практически важные следствия, вытекающие из особенностей конфигурации системы полей зонда .

1. Величина сигнала спин-эхо, наведенного в приемной радиочастотной катушке, не зависит от выбранного радиуса зоны исследования и, соответственно, выбранной частоты прецессии, а определяется только напряженностью радиочастотного поля в зоне исследования. Поэтому прибор с дипольным градиентным магнитом позволяет работать на относительно малых частотах (300 -800 кГц) без потери чувствительности и точности регистрации релаксационной кривой. В приборе ЯМТК частота составляет 730 кГц, а зона исследования шириной 0,5 мм располагается на расстоянии 18 см от оси зонда. В аксиальном направлении зона практически не меняется.

2. Если изменить частоту воздействующего радиоимпульса хотя бы на 15 — 20 кГц, то зона исследования сместится на 1 — 2 мм. При этом процессы, происходящие в первой зоне, не будут отражаться на процессах во второй зоне исследования, т.к. толщина каждой из них менее миллиметра. Это обстоятельство позволяет применять многочастотный метод исследования окружающего скважину пространства подобно методу магнитной резонансной томографии (МРТ) в медицине. Возможность работы на нескольких частотах позволяет также увеличить или скорость каротажа, или точность измерения релаксационной кривой при той же скорости, или независимо реализовать несколько различных методик измерений за один спуск- подъем.

3. При номинальном диаметре скважины 19 – 22 см (например, в коллекторах) зона исследования ЯМТК удалена от стенки скважины на 7 – 8,5 см. Поэтому состав бурового раствора (добавки нефти и др.) не влияет на результаты исследования, поскольку скважина находится вне зоны исследования ЯМТК. В этом принципиальное отличие от ЯМК в поле Земли, где при добавках нефти влияние скважины делает практически невозможным получение информации о разрезе.

Диапазон измерений времен поперечной релаксации. Для излучения и приема сигнала в ЯМК используется одна и та же РЧ -катушка, поэтому первая амплитуда сигнала (в момент времени tнач) регистрируется через некоторое время Dtпосле начала процесса затухания t0:Dt=tнач– t0. За это время Dtуже завершается релаксация части протонов водорода (в основном в составе минералов и небольших порах) и их содержание уже не удается восстановить при обработке. Поэтому для водонасыщенной породы
W³Кп ³КпЯМК ( 3),

где W– водородосодержание, Кп – общая пористость, КпЯМК — пористость, зарегистрированная ЯМК. Чем позже начинается регистрация (чем больше Dt), тем существеннее отличие Кп и КпЯМК.

Из этого следует, что КпЯМК зависит от технических характеристик измерительного тракта, т.е. при прочих равных условиях разными типами аппаратуры (с различными Dt) будут получены неодинаковые значения КпЯМК.

Для ЯМК в поле Землиинтервал времени между началом процесса релаксации и первой зарегистрированной точкой составляет Dt= 50 – 80 мс и принципиально не может быть существенно уменьшен в рамках используемой последовательности Паккарда — Вариана. За это время происходит полное затухание сигнала в порах небольших размеров. Регистрируемая пористость, получившая название ИСФ – индекс свободного флюида (FFI– freefluidindex), отражает емкость наиболее крупных пор.

Заметим, что широко распространенное мнение о соответствии ИСФ эффективной пористости (ИСФ = Кпэф), в общем случае может не выполняться даже в водоносных пластах по нескольким причинам.

1. ИСФ зависит от технического параметра конкретной аппаратуры Dt, а Кпэф, как петрофизический параметр, — нет. Поэтому соотношение ИСФ – Кпэф надо обосновывать.

2. Затухание релаксационной кривой (и, соответственно, амплитуда в момент tначи ИСФ) зависит не только от порометрической характеристики породы, но и от других факторов (см. п.2). Например, в водоносных песчаниках при одинаковой порометрической характеристике, но различной релаксационной активности поверхности будут получены различные релаксационные кривые и ИСФ: чем выше релаксационная активность, тем короче релаксационная кривая и меньше ИСФ. При очень высокой релаксационной активности (очень коротких релаксационных кривых) ИСФ может вообще не фиксироваться (произошло полное затухание сигнала в интервале времени Dt), несмотря на наличие эффективных пор по порометрической характеристике.

Поэтому, вероятно, ЯМК в поле Земли наиболее эффективен в породах с низкой релаксационной активностью, например, в карбонатных породах и зрелых кварцевых песчаниках. Последние распространены в нижних (преимущественно палеозойских) частях разреза платформ, например, песчаники и карбонаты девона и карбона Волго – Уральской НГП. Наоборот, высокая релаксационная активность отмечается для незрелых песчаников – граувакк и аркозов — с увеличенным содержанием обломков материнских пород, полевых шпатов и специфическим набором акцессориев. Такие породы характерны для разрезов молодых плит (в частности, Западно–Сибирской), геосинклинальных областей и обрамления складчатых сооружений. Даже при благоприятной порометрической характеристике здесь фиксируются короткие релаксационные кривые и за счет большого Dtоценка коллекторов по ИСФ бывает малоэффективна или невозможна.

При ЯМТКблагодаря использованию последовательности CPMGвремя Dtудается уменьшить на два порядка, до долей мс (рис.2). Это позволяет в общем случае выходить на оценку по ЯМТК коэффициента общей пористости Кп, а по характеристикам зарегистрированной релаксационной кривой (400 — 1000 точек на квант глубины) оценивать структуру порового пространства породы в целом и связанные с ней дифференциальные характеристики емкости (эффективная, капиллярно-связанная и др.) и фильтрации. При этом такие оценки возможны для различных типов разрезов нефтегазовых скважин.

Методики измерений. Эффект ЯМР при каротаже является сложным для интерпретации – поведение релаксационной кривой контролируется комплексом факторов и, соответственно, имеется область эквивалентных решений. Помимо стандартных способов (комплексирование, ввод априорной петрофизической информации) при ЯМТК область эквивалентных решений может быть сужена за счет дополнительных измерений, которые позволяют «высветить» вклад отдельных факторов.

Такая возможность обусловлена тем, что по способу формирования и измерения сигнала ЯМТК является методом искусственного поля, т.е. допускает направленное воздействие на разрез. Наиболее важными управляемыми параметрами являются время намагничивания TWи время задержки между импульсами ТЕ (см. рис.2).

Величина TWконтролирует степень намагниченности порового флюида. Так, изменение поведения релаксационной кривой при различных TWможет указывать на присутствие пор крупных размеров или наличие в зоне исследования углеводородов (УВ).

Изменение ТЕ регулирует активность процесса диффузии молекул порового флюида и принципиально позволяет выходить на определение коэффициента диффузии Dпо ЯМТК. Этот параметр является новым для практики каротажа. Практически важно, что он отличается для различных типов УВ (газ, легкие, тяжелые нефти) и воды и корреляционно связан с вязкостью поровых флюидов.

Именно на анализе эффектов изменения релаксационных кривых при различных TWи TEи основана оценка характера насыщенности по ЯМТК.

    продолжение
–PAGE_BREAK–4. Аппаратура ЯМТК

Аппаратура ЯМТК состоит из скважинного прибора, соединенного каротажным кабелем с универсальным наземным управляюще- регистрирующим комплексом КАРАТ — П.

Наземный комплекс организует питание скважинного прибора, передает к скважинному прибору программу измерений, осуществляет прием данных от скважинного прибора, их регистрацию, экспресс-обработку с целью получения геофизических параметров в реальном масштабе времени, визуализацию этих параметров, а также данных, характеризующих режим работы скважинного прибора. По завершению скважинных измерений в наземном комплексе осуществляются обработка и интерпретация результатов исследований.

Скважинный прибор состоит из трех частей: зондовой части, блока электроники и энергетического блока (рис. 4).

Зондовая часть включает магнит и радиочастотную катушку с настроечными емкостями.

Блок электроники предназначен для приема команд и программ от наземного комплекса, организации процесса измерений, формирования радиоимпульсов и их усиления, предварительной обработки полученных сигналов спин-эхо и передачи измерительных данных на земную поверхность.

Энергетический блок предназначен для накопления энергии, необходимой для формирования серии радиоимпульсов в радиочастотной катушке (не менее 500 — 600 Дж), а также для формирования напряжений питания блока электроники. В этом блоке находится модем, служащий для передачи измерительной информации и приема команд от наземного комплекса. Более подробная информация об особенностях аппаратуры приведена в [ 8 ].

В 2002 г. была завершена разработка новой модификации аппаратуры ЯМТК. Ее основные отличия:

·                   в три раза увеличилась чувствительность прибора;

·                   реализована возможность выполнения нескольких измерений с различными TWи TEза один спуск – подъем;

·                   реализован режим измерений на трех частотах.

5. Обработка и интерпретация данных ЯМТК

Определение характеристик разреза по ЯМТК включает три стандартные процедуры: получение исходной релаксационной кривой; геофизическую обработку кривой с получением спектров; определение компонент емкости, фильтрации, флюидонасыщенности (рис. 5).

Исходной информациейявляется непосредственно регистрируемая прибором релаксационная кривая, представляющая собой зависимость сигнала ЯМР от времени измерения. Она отражает затухание намагниченности порового флюида в породе.

Геофизическая обработка данных.При необходимости в релаксационную кривую вводятся поправки за условия измерений, а также выполняются процедуры фильтрации. Далее с использованием специальных математических процедур из релаксационной кривой рассчитывается дифференциальный спектр. Он описывает распределение сигнала ЯМР по временам поперечной релаксации T2, соответствующим разным скоростям релаксации намагниченности флюида в порах разного размера. По своему физическому смыслу эта зависимость представляет собой дифференциальное распределение пористости по времени поперечной релаксации Т2 (dКп/dТ2 от Т2). Так как время релаксации пропорционально размеру пор, то, следовательно, дифференциальное распределение пористости по временам релаксации качественно характеризует также и распределение пористости по размерам пор.

«Качественный» характер распределения пористости связан с тем, что, кроме размеров пор, спектры несут в себе информацию и о других составляющих релаксации (см. п.2). Поэтому для получения дифференциального спектра распределения пористости по размерам пор r(dКп/drот r) необходима петрофизическая калибровка в виде зависимости Т2 – r.

Определение фильтрационно – емкостных свойств основано на их прямой зависимости от структуры порового пространства, описываемой спектром ЯМТК. Так, чтобы определить пористость, соответствующую какому – либо интервалу времен релаксации ( Т2i; Т2i+DТ2 ) достаточно проинтегрировать дифференциальный спектр на этом участке (найти площадь под кривой). Этот прием и используется для определения компонент пористости по данным ЯМТК.

Пористость. Полная пористость определяется интегрированием дифференциального спектра во всем интервале времен релаксации. Как отмечалось, она не зависит от литологического и минералогического состава, но в общем случае зависит от состава флюида в зоне исследования, поскольку измеряется водородосодержание флюида. Занижение полной пористости по ЯМТК в основном может быть связано со следующими причинами:

— высокая газонасыщенность в зоне исследования (уменьшение водородосодержания);

— наличие в поровом пространстве битума, в котором релаксация протонов заканчивается до начала измерения и не вносит вклад в амплитуду сигнала. Например, если в порах присутствует битум и нефть, то по ЯМК будет фиксироваться только пористость, занятая нефтью;

— наличие «мертвого» времени аппаратуры, из–за которого возможна неполная регистрация сигналов от пор глин;

— малым временем намагничивания флюида Tw, в результате чего возможна неполная регистрация сигналов от крупных пор и каверн.

Определение компонент полной пористости производится путем интегрирования дифференциальных спектров в определенных временных интервалах. Используется два варианта.

В первом случае («Разбиение на бины» – см. рис.5) шкала Т2 разбивается на интервалы так, что каждый последующий интервал в два раза больше предыдущего (1-2, 2-4, 4–8, 8-16 мс и. т. д.). Такая разбивка является стандартной для ЯМК в искусственном поле, а пористости, соответствующие этим интервалам, получили название «бинов» (bin1, bin2 и. т. д.). Эта форма представления удобна для наглядного восприятия результатов каротажа ЯМТК, поскольку качественно отражает пористость, приходящуюся на поры разных размеров (чем правее интервал по шкале Т2, тем больше размеры пор, формирующих пористость этого интервала), а изменение картины бинов по глубине отражает вариацию структуры порового пространства пород в разрезе.

Во втором случае («Метод отсечек» — см. рис.5) определяются петрофизические компоненты пористости (см. таблицу). Интегрирование производится во временных интервалах с петрофизически обоснованными границами, т.е. реализуется методика граничных значений времен Т2, соответствующих различным механизмам удержания воды в порах разных размеров.

Использование граничных значений обусловлено как объективными ( разные породы имеют различные распределения пор по размерам и релаксационную активность поверхности), так и субъективными причинами. Так, эффективная пористость определяется с использованием Кво, а величина последнего зависит от принятого давления вытеснения. Поэтому и положение границы «капиллярно–связанная – эффективная пористость» на оси Т2 будет зависеть от принятого давления вытеснения при определении Кво. Для стандартизации результатов в практике ЯМР используется величина давления 0,7 МПа (100 psi), хотя можно оценить граничное значение Т2 при любом заданном давлении вытеснения.

Типовые граничные значения для выделения различных компонент пористости, приведены в таблице. Они достаточно стабильны, но для конкретных отложений могут уточняться по исследованиям на керне.
Таблица

Типовые интервалы Т2 для определения компонент пористости

Подобная методика определения компонент пористости применима для водонасыщенных пород. Присутствие углеводородов может вносить существенные погрешности, снижение которых возможно за счет использования специальных более сложных методик обработки результатов ЯМТК.

Проницаемость.Для оценки абсолютной проницаемости по данным ЯМТК используется два подхода.

Первый подход связан с применением широко используемых петрофизических связей типа Кво – Кпр, Кпэф – Кпр (и их зарубежных аналогов – моделей Тимура, Тимура- Коатса и др.). Расчет Кпр проводится по данным Кпэф, Кво, непосредственно определяемым по ЯМТК.

Во втором подходе используется непосредственно дифференциальный спектр ЯМТК, качественно отражающий структуру порового пространства. Расчет Кпр производится в рамках решеточной капиллярной модели пористой среды (см. рис.5) [6].

Флюидонасыщенность.Для качественных и количественных оценок насыщенности в зоне исследования ЯМТК используется информация двух и более измерений с различными параметрами последовательности CPMG. Технически задача сводится к совместному анализу нескольких спектров для каждой точки глубины. Методики количественных оценок находятся в стадии разработки и опробования и в настоящей статье не приводятся.

6. Выполнение каротажных работ

Настройка и эталонировка приборапроизводится с использованием эталонировочного устройства, которое представляет собой бочку с коаксиальными секциями, имитирующими область скважины и область породы. Область породы заполняется водой с добавкой CuSO4для уменьшения времени продольной и поперечной релаксации. Эта область имитирует 100%-ную пористость.

Настройка прибора происходит в два этапа. На первом с помощью тестовых программ калибровки производится настройка частотной характеристики приемного тракта и частоты радиоимпульса. На втором этапе выбираются оптимальные значения радиоимпульсов, т. е. их длительность и амплитуда радиочастотного поля в зоне исследования. Настройка производится сопоставлением настроечных характеристик прибора, полученных путем математического моделирования, и экспериментальных данных.

Подготовка скважины.Учитывая большой диаметр прибора (155 – 165 мм вместе с отклонителями), исследования выполняются в скважинах с номинальным диаметром 190 мм и более. ЯМТК обычно выполняется после обязательного комплекса ГИС и перед производством работ ЯМТК проводится промывка скважины. В сложных условиях (неустойчивый ствол, наклонные скважины и др.) сначала проводится контрольный спуск шаблона, который по своим размерам и весу аналогичен скважинному прибору ЯМТК.

Проведение измерений. Для контроля движения прибора при спуско – подъемных операциях в последней модификации аппаратуры используется встроенный канал ГК. Измерения выполняются от подошвы к кровле интервала каротажа.

Выбор режима измерений определяется исходя из особенностей разреза. Как правило, основное измерение выполняется во всем интервале на одном режиме измерений, в перспективных интервалах могут выполняться дополнительные измерения с использованием других режимов.

Скорость каротажа обычно составляет 100 –150 м / час и обеспечивает шаг записи по глубине 20 см. При использовании специальных режимов измерений с увеличенными временами намагничивания или сложным набором импульсных последовательностей, а также при детализационных измерениях с шагом 10 см, скорость может уменьшаться до 50 м /час. При устойчивом стволе скважины возможно выполнение измерений на точках с остановкой на 1 – 3 минуты. В этом случае за счет накопления сигнала Nизмерений в раз увеличивается соотношение «сигнал / шум», что повышает достоверность обработки.

Контроль процесса измерений и обработка в реальном времени.Для последней модификации аппаратуры программное обеспечение регистрации реализовано в среде Windows.

Оперативный контроль работы прибора проводится по регистрируемым и выводимым на монитор текущим техническим параметрам: температура в различных участках скважинного прибора, напряжение радиоимпульсов, амплитудно – частотная характеристика и др.

В процессе каротажа производится экспресс-обработка релаксационной кривой с получением текущих значений полной и эффективной пористостей и распределения пористости по бинам. Помимо этих данных в процессе каротажа оператор наблюдает на экране дисплея поле зарегистрированных релаксационных кривых и текущую релаксационную кривую. При одновременном выполнении нескольких измерений (например, с различными временами раздвижки между импульсами TЕ,) реализовано совместное представление их результатов.

При наличии на буровой спутникового канала связи возможна непосредственная трансляция процесса каротажа с результатами обработки в реальном времени Заказчику. Объем информации, получаемой непосредственно в процессе каротажа, достаточен для принятия оперативных решений по технологии дальнейших работ в скважине (выбор интервалов и точек для специальных исследований ЯМТК, отбор керна сверлящим керноотборником, проб флюидов приборами гидродинамического каротажа и испытателями в открытом стволе).

7. Геолого – технологические характеристики исследованных разрезов

К настоящему времени ЯМТК выполнен в нескольких десятках опорных, разведочных и эксплуатационных скважин с различными геолого – технологическими условиями.

Характеристики скважин.Глубины подошвы интервалов каротажа находились в диапазоне 500 – 4500 м. Максимальный угол наклона скважин составил 27 град. При этом практически все исследованные за последний год эксплуатационные скважины имели угол наклона не менее 20 град.

Максимальная температурав подошве интервала каротажа составила 123 град. За счет невысокой скорости каротажа прибор работал при температуре более 100 град несколько часов. Максимальное гидростатическое давлениедостигало 60 мПа, что меньше расчетного для скважинного прибора. Воздухо-заполненный радиопрозрачный корпус в зоне размещения магнита и РЧ катушки выполнен по той же технологии, по которой были изготовлены корпуса приборов, успешно работавших в Кольской СГ-3 на глубинах более 11 км.

В одной скважине экстремальные показатели по сочетанию этих факторов составили: глубина – 4100 м, угол наклона – 26 град., температура – 123 град., давление – 46 мПа.

Характеристики бурового раствора. При исследованиях ЯМТК скважины были заполнены пресным глинистым буровым раствором ( УЭС = 0,2 – 2 Омм), за исключением одной, где использовался полимерный раствор с УЭС 0,05 Омм.

Электропроводящий буровой раствор «нагружает» радиочастотную катушку, уменьшая ее добротность, при этом уменьшается коэффициент передачи входных цепей прибора. Кроме того, уменьшается напряжение радиоимпульса на радиочастотной катушке, напряженность радиочастотного поля в области исследования и настройка прибора становится не оптимальной. Для контроля и управления этими процессами в приборе измеряется напряжение первого радиоимпульса и его значение передается на земную поверхность.

Хотя в исследованной скважине с УЭС бурового раствора 0,05 Омм его влияние было зафиксировано при каротаже по техническим параметрам, оно существенно не сказалось на результатах обработки данных.

Установлено, что практически всегда в буровом растворе присутствуют тонкодисперсные частицы металла. Они намагничиваются магнитом зонда и налипают на стенки скважинного прибора. По опыту работ максимальная толщина отдельных фрагментов налипшего слоя достигала нескольких сантиметров. Этот эффект чаще наблюдается при роторном бурении, чем при турбинном. Слой металла на стенках зонда качественно приводит к таким же явлениям, как и проводящий буровой раствор, и, в конечном счете, снижает отношение «сигнал/шум». Однако по полученным данным это снижение не носит критического характера для количественной обработки.

Практически во всех эксплуатационных скважинах в буровом растворе были добавки нефти (4 –6 об. %). Их наличие не сказалось на результатах ЯМТК, поскольку область скважины исключена из зоны исследования.

Эксплуатационные характеристики прибора. Максимальное время работы прибора в скважине составило 16 часов ( при регистрации интервала длиной 1200 м с дополнительными измерениями). Запись обычно проводится на интервале до 600 м, что соответствует непрерывной работе прибора в течении 6 — 7 часов. Подтвердилась высокая морозоустойчивость магнита из NdFeBи виброустойчивость прибора в целом: при проведении сервисных работ в январе – марте в Западной Сибири зонд постоянно находился на открытом воздухе в стандартном хранилище каротажных приборов под кузовом подъемника, в т. ч. при передвижении по зимникам более 1000 км…

Стратиграфия исследованных разрезов. К настоящему времени исследования ЯМТК в России выполнены в осадочном чехле и фундаменте Русской платформы и Западно – Сибирской плиты. На Русской платформе исследованы продуктивные комплексы карбона, девона, а также архея в пределах Волго – Уральской НГП. В Западной Сибири проведены исследования в разрезах верхнего (сеноман) и нижнего (неоком) мела, юры и палеозоя.

Литологический состав пород.Исследованные ЯМТК разрезы включали осадочные, магматические и метаморфические породы. Продуктивные комплексы были в основном представлены терригенными (кварцевые и аркозовые песчаники) и карбонатными породами.

    продолжение
–PAGE_BREAK–