Стрела времени и необратимость, возникновение хаоса из порядка и порядока из хаоса как следствие

–PAGE_BREAK–, а шар 2 приобретет импульс которые в сумме (геометрической) дадут первоначальный импульс . Закон сохранения импульса соблюден. Разложим импульсы шаров 1 и 2 после столкновения на оси и . Проекции и дадут в сумме первоначальный импульс , а проекции , перпендикулярные первоначальному результирующему импульсу на его величину после столкновения не влияют и в сумме дают нуль-вектор. Равенство по абсолютной величине импульсов и легко видно из векторной диаграммы и вытекает из закона сохранения результирующего импульса. Однако эти два последних уравновешенных импульса (нуль-вектор) несут каждый на себе определенное количество кинетической энергии, полученной от кинетической энергии первоначального импульса .

Так как и

Массы шаров для простоты все равны. Если, как было показано выше, результирующий импульс после столкновения сложится из двух проекций на ось и остался постоянным, то кинетическая энергия, переносимая этим импульсом после столкновения, т.е. проекциями и будет составлять только часть кинетической энергии, переносимой результирующим импульсом до столкновения. Другая часть кинетической энергии, переносимая взаимно уравновешенными импульсами и (нуль-вектором) переходит в хаотическую форму. После следующего соударения теперь уже двух движущихся шаров результирующий импульс сложится из 4-х шаров и произойдет дополнительное рассеяние направленной кинетической энергии и т.д. Таким образом благодаря нецентральному соударению шаров в первоначальный направленный импульс лавинообразно вовлекается все большее и большее число шаров и происходит лавинообразный рост массы результирующего импульса. А по мере вовлечения шаров происходит все большее рассеяние первоначально направленной кинетической энергии. Это видно и из таких простых математических преобразований:

; ;

; m-масса шара; ; (1)

Так как в результате столкновений в перенос результирующего импульса вовлекается все большее число молекул, то масса результирующего импульса постоянно растет, а скорость результирующего импульса, т.е. общего переноса падает. После рассмотренного соударения масса результирующего импульса возросла вдвое, а скорость уменьшилась вдвое.

 

Но в кинетическую энергию скорость входит в квадрате, поэтому при увеличении массы в два раза и уменьшении в два раза скорости общего переноса кинетическая энергия общего переноса, т.е. та, которую несет результирующий импульс, уменьшилась вдвое.

 

Речь идет о кинетической энергии общего переноса (кооперативной энергии), связанной с результирующим импульсом, т.е. той энергии, которая совершает макроскопическую работу. Закон сохранения общей кинетической энергии системы не нарушается, т.к. адекватно увеличивается хаотическая составляющая кинетической энергии. При увеличении массы, переносящей результирующий импульс, в 10 раз кинетическая энергия, переносимая этим импульсом, и остающаяся в направленной форме, уменьшается в 10 раз. И при стремлении массы результирующего импульса к бесконечности кинетическая энергия общего переноса стремится к нулю. Таким образом при стремлении массы результирующего импульса к бесконечности, т.е. вовлечении в процесс переноса импульса огромного числа частиц, скорость результирующего импульса стремится к нулю и направленное движение затухает. Результирующий импульс, оставаясь постоянным по величине и направлению, вырождается как носитель кооперативной энергии, равносильно тому, что и система приходит в равновесное состояние. Вся кооперативная энергия переходит к нуль-вектору хаоса.

Этим разрешается парадокс который мы выявили в начале. В случае центрального удара рассеяние вообще не происходит. В этом примере мы рассматривали столкновение шара с покоящимися шарами. Картина рассеяния и затухания не изменится, если шары будут не покоиться, а хаотически двигаться с , т.к. причиной рассеяния является не состояние системы, а нецентральное соударение.

Теперь о самом главном – о применении закона сохранения результирующего импульса к многочастичным (термодинамическим) системам. Когда я рассматриваю механизм релаксации термодинамических систем через рассеяние направленной кинетической энергии, переносимой результирующим импульсом, то для замкнутой системы неукоснительно соблюдаю закон сохранения результирующего импульса. Если выше я пишу: “Каким образом кинетическая энергия направленного движения с переходит в кинетическую энергию хаотически движущихся частиц с как вектор”, то это относится не к утверждению, а к постановке задачи. Это утверждение давным давно сделал Клаузиус, когда сформулировал второй закон в форме, что направленный процесс в замкнутой термодинамической системе неизбежно приходит в равновесное состояние. Ведь если процесс направленный, то это кооперативное (совместное) движение многих частиц, а значит имеется результирующий импульс, который должен в замкнутой системе оставаться постоянным как вектор что бы не происходило. Но если система придет в равновесное состояние, т.е. реализуется Максвеловское распределение по скоростям, то легко показывается что в системе Вот это и породило сомнение, появилась необходимость согласовать эти противоречащие друг другу фундаментальные опытные факты. Причём предпочтение отдано закону сохранения результирующего импульса как более фундаментальному закону на том основании что закон сохранения результирующего импульса сформулирован для любых замкнутых систем, а 2-й закон сформулирован только для многочастичных термодинамических замкнутых систем. Однако применяя закон сохранения импульса к диссипативным системам необходимо учитывать одну тонкость, которая и позволяет снять ранее отмеченное противоречие и примирить 2-й закон и закон сохранения результирующего импульса. Эта тонкость является важным свойством диссипативных (термодинамических) систем. Под скоростью центра масс результирующего импульса (см. формулу (1)) нужно понимать не скорость центра масс всей замкнутой системы, которой передан импульс, а скорость центра масс частиц вовлечённых в результате не центрального соударения в перенос первоначального импульса (который относился к первоначальному шару). Это открытая система, активно взаимодействующая с остальной несоизмеримо большей частью всей замкнутой системы и вовлекающая в первоначальный импульс всё большее число молекул через не центральное соударение. Учитывая число частиц реальных термодинамических систем (достаточно вспомнить порядок числа Лошмидта), понятно что в доли времени и на минимальных расстояниях первоначальная масса частиц из которых складывался импульс возрастает в миллиарды и миллиарды раз. Хотя будет составлять малую часть всей замкнутой системы. И далее я показываю, рассматривая механизм релаксации, что кооперативная кинетическая энергия связанная с этим импульсом убывает обратно пропорционально росту массы. Кооперативная энергия разносится взаимно уравновешенными импульсами (см. рис.-1) и направленная кооперативная кинетическая энергия переходит в тепловую форму с . Хотя первоначальный импульс остался постоянным по величине и направлению как вектор ( сложившись из огромного числа микро импульсов вовлеченных частиц), он вырождается как носитель кооперативной энергии, которая перешла к нуль вектору, складывающемуся из пар взаимно уравновешенных импульсов. Даже если будут сталкиваться одновременно три и более частиц (вероятность чего пренебрежимо мала), то и тогда импульсы, разносящие кооперативную энергию перпендикулярно первоначальному импульсу, в сумме должны дать нуль вектор. Иначе будет нарушен закон сохранения результирующего импульса. Так как скорость центра масс открытой системы стремится к нулю (), то я и утверждаю, что с продолжающимся лавинообразным нарастанием массы открытой системы с некоторого момента следующий миллиметр пути импульс не преодолеет никогда, а это значит что перенос кооперативной энергии прекратится. Оставаясь постоянным по величине и направлению как вектор, импульса не стало как энергетического носителя кооперативной энергии. Вот что я понимаю под вырождением результирующего импульса. Он остался постоянным по величине и направлению, но без энергии. Вся его первоначальная энергия перешла к нуль вектору хаоса. Именно это я имею в виду когда пишу . И если ещё учесть что кооперативная энергия не только уменьшается обратно пропорционально суммарной массе вовлеченных в первоначальный импульс частиц, но в процессе развития экспоненциально расширяется и площадь проходного сечения потока кооперативной энергии, то плотность потока энергии (вектор Умова-Пойтинга) убывает ещё быстрее и польза от этой кооперативной энергии с точки зрения совершения полезной работы против сил убывает быстрее убыли её величины. Это и есть механизм релаксации через диссипацию кооперативной энергии, через вырождение результирующего импульса при не центральном соударении.

Теперь рассмотрим другой пример рассеяния направленной кинетической энергии, исключающий соударение шаров (молекул) между собой. Пусть имеем адиабатную полость с отверстием. В отверстие полости влетает n шаров, причем скорости шаров строго параллельны (молекулярный пучок). После того как шары влетают в полость, отверстие за ними закрывается. Рассмотрим как будут развиваться события в этой замкнутой системе. Эта задача решается в теории бильярдов Синая. В начале результирующий импульс равен скалярной сумме всех импульсов шаров, т.к. импульсы шаров параллельны и вся кинетическая энергия переносима результирующим импульсом, находится в кооперативной форме. В следствие того что шары не зависимы друг от друга, то после соударения со стенкой они разлетаются в различных направлениях в зависимости от углов соударения каждого шара со стенкой, а так как стенка имеет кривизну, то углы различны. Строго говоря и здесь нужно вести речь не о кривизне, а о нецентральном соударении по причине корпускулярного строения стенки. Налетающая частица сталкивается со стенкой представляющей для этой частицы потенциальный барьер из суперпозиции силовых полей частиц стенки. Соударение происходит с какой-то отдельной частицей стенки по законам не центрального соударения как и в случае газа. Только частицу в стенке нужно принимать практически бесконечно большой массы, из-за её жестких связей с огромной совокупностью частиц стенки, с которыми она выступает как единое целое. После отражения от стенки результирующий импульс шаров уменьшается, т.к. скорости шаров уже не параллельны. И кинетическая энергия, переносимая результирующим импульсом, соответственно уменьшается. То есть и здесь вырождение импульса, диссипация кооперативной энергии вызывается не центральным соударением и большой массой. И если шаров в пучке много, то после серии столкновений со стенками результирующий импульс будет стремиться к нулю. Здесь стенка изменяет геометрию каждого отдельного импульса, в результате уменьшается результирующий и уменьшается кинетическая энергия общего переноса. Этим и определяется рассеяние кооперативной энергии в ситуации рассматриваемой в теории бильярдов Синая.

Всесилие механизма релаксации, приводящего систему к равновесию, заключается в том, что материя имеет корпускулярное строение, т.е. частицы имеют конечные размеры, а значит соударение нецентральное. Частиц же великое множество и затухание происходит очень быстро. Механизм диссипации направленной энергии через вырождение результирующего импульса имеет универсальный характер не зависимо от среды (газ, жидкость, твердое тело или их совокупность). Именно благодаря этому простому, но всесильному механизму обратимые законы механики в приложении к многомолекулярным системам, вырождаются в необратимые законы статистики. Ведь для обращения процесса релаксации назад необходимо, чтобы в один и тот же момент все частицы системы, вовлеченные так или иначе в процесс релаксации, да и не только они, столкнулись по закону центрального абсолютно-упругого удара с каким-то препятствием, чтобы отлететь с той же скоростью в строго обратном направлении. Это невозможно в принципе. Во — первых в реальности не возможен абсолютно-упругий удар. Во — вторых как в многомолекулярной системе вообще организовать внедрение этих очень массивных, теоретически с бесконечной массой, препятствий? Причём бесконечные массы перед каждой из частиц нужно внедрить мгновенно, в один момент времени, и при этом обеспечить строго центральное соударение, чтобы все частицы одновременно повернуть назад. Кто знает, как это сделать, учитывая порядок числа Лошмидта и то, что реальные частицы не шары? Сказанное и является основой необратимости процесса вырождения импульса в термодинамических макро системах. Релаксация и необратимость вытекают из обратимых законов механики при их действии в среде многомолекулярных систем. Обратим особое внимание на это свойство диссипативных сред, их способность качественно вырождать закон сохранения результирующего импульса и как следствие качественно изменять динамику, когда детерминизм динамики уступает место вероятности статистической механики. Это происходит в результате действия эффекта вырождения результирующего импульса, который является стержневым свойством много частичных (диссипативных) сред. Механизм вырождения результирующего импульса как носителя связанной с ним кооперативной кинетической энергии – самое главное в моей работе. Без этого механизма всё остальное не имеет логического базиса. Остается только удивляться что в так долго длившейся борьбе между двумя подходами к проблеме неравновесности, представителями которых были скажем А. Пуанкаре и Л. Больцман, ускользнул этот объединяющий обе точки зрения момент. Связано это видимо было с тем, что в термодинамике закон сохранения импульса как системный закон всегда был в тени. Его прослеживают только в молекулярно-кинетической теории при каждом акте соударения, не прослеживая его системный характер. Хотя как уже отмечалось выше Больцман в своём первом, механическом варианте H-теоремы был очень близок к решению задачи аналитического доказательства второго закона термодинамики и вывода равновесного состояния из законов динамики. Его ошибкой было принятие модели частиц как материальных точек, что приводило к центральному соударению при рассмотрении столкновений частиц. При центральном соударении рассеяния не происходит в принципе. Причина рассеяния в нецентральном соударении. Вызывают удивление многочисленные возражения механицистов против механического варианта H-теоремы Больцмана. Например возражение высказанное Лошмидтом и известное как “парадокс Лошмидта”. Лошмидт предложил при достижении системой равновесного состояния изменить направления всех молекул на прямо противоположные и тогда система вернётся в исходное неравновесное состояние. Странно, но вместо того, чтобы спросить, а как это сделать хотя бы теоретически, Больцман соглашается с возражением и отказывается от динамического обоснования второго закона.

Особенность нецентрального соударения такова что оно не только способно диссипировать направленную энергию (вырождать , но благодаря нецентральному соударению возникают хвосты из быстрых частиц в распределении Максвелла по скоростям в равновесном состоянии. Именно благодаря нецентральному соударению появляется вероятность того что много медленных частиц могут разогнать одну до очень больших скоростей. Это хорошо видно на такой простой модели. Если быструю частицу перпендикулярно её скорости ударит в нужный момент медленная частица и передаст ей свой малый импульс, то импульс быстрой частицы, векторно сложившись с полученным малым, дополнительно увеличится. Уменьшающаяся вероятность подобного последовательного воздействия медленных частиц на быструю может разогнать её до очень больших скоростей. К самоорганизации (синергетике) этот процесс не имеет ни какого отношения, он имеет отношение к механическому обоснованию теории флуктуаций. Этим примером я хотел подчеркнуть особое значение для диссипативной среды не центрального соударения, которое не только рассеивает кооперативное движение частиц в хаотическую форму, но и хаотическая форма кинетической энергии в диссипативной среде подвергается рамочному воздействию (в виде Максвеловского распределения по скоростям) не центрального удара.

Таким образом при диссипации направленная кооперативная энергия с вырождается и приходит в состояние когда фактически . Я подчеркиваю фактически, имея ввиду что результирующий импульс уже не несет направленной кинетической энергии. Хотя теоретически он остался постоянным по величине и по направлению. Система приходит в равновесие, энтропия достигает максимума:

и ;

В условиях полного порядка, когда все частицы летят в одном направлении с одинаковыми скоростями (молекулярный пучок):

и ;

В общем случае полная энергия диссипативной системы состоит из двух подсистем: подсистемы порядка с и подсистемы хаоса с .

В системе предоставленной самой себе, в следствие эффекта вырождения импульса, подвергается диссипации и уменьшается направленная доля полной энергии с и , (подсистема направленной энергии в общей системе), а диссипированная часть полной энергии с и увеличивается (подсистема хаоса).

Из изложенного следует что результирующий импульс системы и энтропия системы величины взаимозависимые и находятся в обратной зависимости: если в результате действия причин и механизма релаксации диссипирует и снижается доля направленной энергии (подсистемы порядка с ), то по закону сохранения энергии увеличивается доля хаотической тепловой энергии (подсистемы хаоса с ) и энтропия системы растет, достигая максимума при полном вырождении результирующего импульса, при полной диссипации направленной энергии. Законы сохранения результирующего импульса и роста энтропии замкнутых диссипативных систем нужно рассматривать в единстве, их поведение результат единого развития событий. Закон роста энтропии есть следствие эффекта вырождения результирующего импульса в диссипативной среде, своеобразное выражение закона сохранения импульса в применении к специфичности многомолекулярных диссипативных систем. И учитывая механизм диссипации можно сделать вывод, что 2-й закон термодинамики есть следствие вытекающее из закона сохранения результирующего импульса при его действии в многочастичной диссипативной среде.

Я ни в коем случае не отрицаю второй закон термодинамики, а напротив пытаюсь обосновать причины его всесилия, механизм его реализации, границы его применимости, условия необходимые для его реализации. Я показываю на глубинную связь между вторым законом термодинамики и законом сохранения результирующего импульса, на первичность закона сохранения результирующего импульса и вторичность 2-го закона термодинамики. В динамике малого количества частиц механизм вырождения импульса не заметен, он проявляется только при большом количестве частиц. Обычно никто не возражает что 2-ой закон термодинамики не действует в среде из малого числа частиц, это кажется само собой разумеющимся. Но это не так. Рассеяние происходит и при малом числе соударений, но возможностей такой системы для полного вырождения импульса не хватает. Отметим что эффект вырождения результирующего импульса в много частичной среде является обоснованием гипотезы молекулярного хаоса (принципа элементарного беспорядка), на базисе которой построена статистическая механика.

Необходимо также отметить что эффект вырождения результирующего импульса проявляется в многочастичных средах не только в области классической динамики, но и в квантовой и релятивистской динамике, т.к. нецентральное соударение имеет место во всех областях физической реальности.

Теперь наряду с процессом рассеяния направленной энергии в диссипативной среде рассмотрим противоположный ему процесс самоорганизации хаоса, возникновения диссипативных структур. В этом процессе диссипативная среда с , т.е. не имеющая выраженного направления движения, проходит стадию выравнивания в результате которой возникает диссипативная структура, обладающая кооперативным движением, движением общего переноса с , а стало быть возникает энергия общего переноса способная совершать полезную работу. Вообще в диссипативной (много частичной) среде формируются два типа структур: в литературе они называются статические структуры и динамические структуры. Примером статических структур могут служить кристаллы, агрегаты дипольных молекул жидкостей или химические соединения, в том числе очень сложные, например белки. Эти структуры изучает физическая химия. Здесь мы рассматриваем условия и механизмы самоорганизации в много частичной среде динамических структур, потоков массы и энергии (гидродинамический поток, электрический ток, фононный тепловой поток, фотонный поток лазера).

Согласно положений нелинейной неравновесной термодинамики, необходимым условием самоорганизации открытых диссипативных систем является наличие сильной неравновесности в таких системах.

Во-первых отметим что говоря об открытых системах мы должны оговаривать условие их закрытости в совокупности с какими-либо окружающими телами (окружающей средой) или оговаривать условие энергообмена с ними. В противном случае при анализе таких систем невозможно применять законы сохранения энергии, сохранения результирующего импульса и закон энтропии, сформулированные для замкнутых систем.

Всякая неравновесность состояния термодинамической системы вызвана какой-либо разностью потенциалов (разность давлений, температур, разность химических потенциалов, разность энергетических уровней). Уже в разности потенциалов, в наличии потенциальной энергии и заложена самоорганизация, заложены условия возникновения кооперативного движения. Если в термодинамической системе есть неравновесность, т.е. разность потенциалов, то в этой системе имеется градиент потенциальной энергии. Если в системе есть градиент потенциальной энергии, то в этой системе действует сила, имеющая выделенное направление, против градиента потенциальной энергии:

где – потенциальная энергия, запасенная в системе, ; F — сила, действующая в системе; r — расстояние на котором имеется разность потенциалов .

В этом природа термодинамических сил в многочастичной среде. Она едина с природой любых сил, рассматриваемых в любых средах и всех во областях физики. Далее если в динамической системе (в системе где частицы имеют возможность перемещаться) действует сила, то она вызывает ускоренное движение массы в соответствии с основным законом динамики, (). Так как разность потенциалов действует на всю много частичную систему, то и сила действует на систему в целом, вызывая коллективное совместное движение частиц диссипативной системы. В форме массового (гидродинамического) потока, когда частицы свободны (газ, жидкость) или в форме фононного потока, потока бегущих волн, когда частицы связаны (кристалл) и могут совершать только колебательные движения. Возникают термодинамические потоки массы и энергии, потоки энергии Умова-Пойтинга. Осуществляется переход потенциальной энергии, запасенной в неравновесной системе, в кинетическую энергию общего переноса, имеющей результирующий импульс по направлению силы (-grad).

Это и есть механизм самоорганизации (синергетики) диссипативных структур, основополагающего понятия сильно неравновесной термодинамики. Потенциальная энергия, являющаяся источником неравновесности, не может быть ни направленной, ни хаотической, это энергия положения частиц системы. У потенциальной энергии нет результирующего импульса, но потенциальная энергия может преобразовываться в кинетическую. А вот когда идет преобразование потенциальной энергии (разности потенциалов, неравновесности) в кинетическую энергию, то здесь возникает кинетическая энергия общего переноса по направлению общего градиента потенциальной энергии, (газовый поток при разности давлений, тепловой поток через теплопроводную стенку или в термопаре при разности температур, электрический ток при химической разности потенциалов в аккумуляторной батарее) с и тогда говорим о самоорганизации или кинетическая энергия выделяется с , т.е. в хаотической форме при химических реакциях горения, когда нет общего, выделенного направления, т.к. нет общего градиента потенциальной энергии.

Таким образом самоорганизация диссипативных структур проявляется в возникновении термодинамических потоков массы и энергии, потоков Умова-Пойтинга, имеющих результирующий импульс отличный от нуля. Потоки же возникают под действием сил, порождаемых градиентом потенциальной энергии термодинамической системы в следствии ее неравновесного состояния.

Более ста лет назад профессором Умовым было введено понятие потоков энергии в диссипативной среде, даны их характеристики. Здесь ставится задача выявить механизмы, динамику возникновения потоков энергии в многочастичной среде, понять условия существования этих потоков во времени, причины затухания, рассеяния этих потоков в диссипативной среде. При этом я пытаюсь указать на тесную связь между потоками энергии Умова-Пойтинга в диссипативной среде и диссипативными структурами, введёнными Пригожиным.

Принято считать что “физическая природа синергетики состоит в том что в нелинейной области, вдали от равновесного состояния, система теряет устойчивость и малые флуктуации приводят к новому режиму – совокупному движению многих частиц”.[Л-1]. Это не так. Здесь действует детерменизм, а не вероятность. Механизм возникновения кооперативного движения в неравновесной диссипативной среде не несёт в себе ничего нового по сравнению со вторым, основным законом динамики Ньютона. Просто нужно иметь в виду что сила действует одновременно на огромное число малых масс термодинамической системы и они начинают вместе ускоренно двигаться. Появляется совместное движение, поток частиц. Всё предельно просто, исходя из имеющихся физических знаний о динамике малого (счётного) числа частиц. Сложность заключается в том что не всегда в неравновесной термодинамической системе (системе из не счётного числа частиц) под действием силы в соответствии с основным законом динамики происходит зримое ускорение массы, возникает кооперативное движение, совместный поток частиц. Для понимания причин этого необходимо уяснить очень важное для диссипативных сред понятие. Назовем его – диссипативный порог многочастичной системы. Всё дело в том, что как только в неравновесной многочастичной системе, в силу действия основного закона динамики, возник кооперативный поток, обладающий результирующим импульсом, то тут же начинает действовать механизм вырождения импульса, диссипирующий кооперативное движение.

Но прежде чем рассмотреть влияние на состояние и динамику диссипативной среды этих прямо противоположных, но всегда действующих в единстве процессов, рассмотрим закон сохранения и превращения энергии в применении к термодинамическим системам.

Существуют два вида энергии: -кинетическая энергия, энергия перемещения, энергия движения и – потенциальная энергия, энергия положения, зависящая от координат составляющих систему частиц. Кинетическую энергию и импульс всегда нужно рассматривать в единстве. Кинетическая энергия переносима импульсом. Импульс и кинетическая энергия две взаимосвязанные и дополняющие друг друга характеристики движения массы. Другое дело что кинетическая энергия в диссипативной среде существует в двух формах:

1) Кооперативная кинетическая энергия с (потоки энергии Умова-Пойтинга).

2)Тепловая форма кинетической энергии с

Но всегда и ;

– внутренняя энергия.

Причем тепловая форма кинетической энергии измеряется в системе центра масс.

Потенциальная энергия также связана с выделенным направлением по .

Закон сохранения и превращения энергии состоит из двух частей:

1). Сохранение энергии. Сумма кинетической и потенциальной энергии замкнутой сиcтемы остается постоянной не зависимо от протекающих в системе процессов.

(2)

2). Превращение энергии. При превращении одного вида энергии в другой выполняются равенства:

; ; ( 3 )

где: F — сила, – перемещение, – давление, – изменение объема.

Наряду с выделенным направлением для энергии важнейшим моментом, который необходимо отметить, является время. Изменения и превращения энергии не происходят вне динамики процессов, следовательно протекают во времени. Всё это в равной степени относится и к термодинамике, в том числе и классической, где процессы только обозначены в статике. Параметр времени в неявной форме присутствует во всех математических формулировках связанных с превращениями энергии, а в выражении (3), отвечающем за динамику процессов энергопревращений, он присутствует в явном виде. Превращение одного вида энергии в другой происходит при обязательном совершении работы, т.е. совершается перемещение под действием или против действующих сил. Силы в системе возникают только при наличии , т.е. если в системе есть неравновесность. Причем если перемещение возникает под действием сил, когда направление перемещения массы совпадает с направлением действующей силы, то происходит ускорение массы () и увеличивается кинетическая энергия, а значит соответственно уменьшается потенциальная энергия системы. Такие процессы наблюдаются при адиабатном расширении рабочего тела в сопле, при движении маятника вниз, при разрядке конденсатора и увеличении тока в колебательном контуре. Если перемещение происходит против действующих в системе сил, то увеличивается потенциальная энергия и работа совершается за счет уменьшения кинетической энергии и в системе накапливается неравновесность. Такие процессы наблюдаются при адиабатном сжатии в диффузоре, при перемещении маятника вверх, при зарядке конденсатора в колебательном контуре. И еще отметим: когда говорят о взаимопревращении тепловой, химической, механической и других видах энергии имеется в виду сохранение и взаимопревращение кинетической и потенциальной энергий в различных физических явлениях (тепловых, химических, механических и др.).

Подводя итог отметим, что в макро среде (сплошной среде), являющейся совокупностью огромного (не счётного) числа корпускул, может формироваться только четыре вида макроскопических потоков энергии в зависимости от свойств среды и природы разности потенциалов:

гидродинамический поток, когда разность потенциалов вызвана перепадом давлений или высот. Частный случай звуковой поток, когда происходит объёмное сжатие упругой среды.

фононный тепловой поток, когда разность потенциалов вызвана перепадом температур.

поток заряженных частиц (электрический ток), вызванный разностью электрических потенциалов.

Электромагнитный фотонный поток частиц (частный случай лазер), вызванный разностью потенциалов различных уровней энергии в атоме.

Именно эти четыре вида потоков энергии лежат в основе всех многочисленных, в том числе и очень сложных диссипативных структур.

Вернемся к рассмотрению событий в неравновесных диссипативных средах под влиянием совместного действия механизмов самоорганизации и релаксации, совместного действия в многочастичной среде 2-го закона Ньютона и эффекта вырождения результирующего импульса. Неравновесность состояния диссипативной среды, согласно идей выдвинутых Брюссельской школой, служит источником упорядоченности. Это необходимое, но не достаточное условие возникновения кооперативного движения, возникновения потоков энергии Умова-Пойтинга с . Необходимо также чтобы возникающий по причине неравновесности состояния системы поток тут же не рассеивался под действием причин релаксации. Выше уже отмечалось что как только в много частичной системе возник кооперативный поток, обладающий результирующим импульсом, то тут же начинает действовать механизм вырождения импульса, диссипирующий кооперативное движение. И теперь всё определяется мощностями этих двух прямо противоположных процессов, зависящих от состояния и свойств системы. Если мощность возникновения (производства) кооперативных потоков больше мощности процесса диссипации кооперативной энергии, то в системе наблюдаются кооперативные потоки, возникают потоки энергии Умова-Пойтинга, формируются диссипативные структуры. Если свойства системы по вырождению результирующего импульса таковы что превосходят по мощности возникающие кооперативные потоки, пропорциональные имеющейся в системе неравновесности, то в такой системе кооперативные потоки возникают в микро областях и тут же рассеиваются. В термодинамической системе в данной ситуации кооперативного движения не наблюдается, а идёт квазиравновесный процесс установления равновесия. Для возникновения кооперативного движения в диссипативной среде необходимо преодоление главного порогового соотношения. Мы назвали его диссипативным порогом.

где – энергия направленного кооперативного движения, переносимая результирующим импульсом и получаемая из потенциальной энергии неравновесности в единицу времени.

– максимальная энергия направленного кооперативного движения, переносимая результирующим импульсом, которую данная много частичная система способна в единицу времени переводить в хаотическую форму под действием причин релаксации.

Величина главного порогового соотношения, величина диссипативного порога определяется максимальной мощностью процесса релаксации, максимальной мощностью диссипации кооперативной кинетической энергии и является свойством, параметром данной много частичной системы.

Именно главное пороговое соотношение, определяющее соотношение между мощностью процесса самоорганизации и мощностью процесса диссипации определяет направление событий, направление эволюции в неравновесной диссипативной среде:

а) при – область линейной неравновесной термодинамики, когда мы говорим о локальном равновесии и не возникает потоков энергии с. В данной ситуации система под действием причин релаксации стремится к равновесию, к состоянию с и .

б) при – область нелинейной, сильно неравновесной термодинамики. При этом условии возникают потоки энергии Умова-Пойтинга с , происходит формирование диссипативных структур и появляется возможность совершать макроскопическую работу. Причём для получения кооперативного движения вовсе не обязательно чтобы в каждый момент времени мощность процесса производства кооперативного движения была больше мощности процесса вырождения результирующего импульса. Необходимо чтобы за наблюдаемый промежуток времени образовалось больше кооперативной энергии чем её диссипировало.

где: – мощность производства кооперативной энергии в неравновесной системе.

– это максимальная мощность кооперативной энергии, которую способна диссипировать данная термодинамическая система. Это важнейшая характеристика диссипативной системы.

Максимальная мощность диссипации кооперативной энергии – это характеристика присущая данной системе и зависящая от многих факторов (размеры системы, плотность частиц в системе, масса частиц, прочность связей между частицами, энергетическое состояние системы и её возможности по энергообмену с внешней средой и др.). Максимальная мощность процесса диссипации и есть тот порог не преодолев который не возможно в системе получить кооперативные потоки энергии, потоки Умова-Пойтинга, не возможно сформировать стабильную диссипативную структуру. Именно величина главного порогового соотношения, величина диссипативного порога присущая данной системе и определяет направление событий в данной системе.

Кстати наличие порогового соотношения качественно в термодинамике замечено уже достаточно давно. Так в (Л-7) автор пишет: «Таким образом, происходит своеобразное противоборство между процессами переноса, нарушающими равновесие, и внутренними (релаксационными) процессами, стремящимися его восстановить. В разреженном газе внутренние процессы — это процессы столкновения. Если процессы, возмущающие равновесие, менее интенсивны, чем процессы, которые его формируют, то можно говорить с определенной степенью точности о локальном равновесии в физически бесконечно малом объеме. Точность такого утверждения будет тем выше, чем меньше отношение скорости изменения состояния за счет внешних условий к скорости восстановления равновесия за счет внутренних релаксационных процессов. Подчеркнем, что существование локального равновесия еще не означает малости отклонения всей системы от равновесия». От себя добавим, что для возникновения потоков энергии Умова-Пойтинга, для формирования диссипативных структур вовсе не обязательно наличие общей сильной неравновесности системы. И процессы самоорганизации и процессы диссипации энергии зависят от многих причин, от них зависит и величина диссипативного порога главного порогового соотношения.

Рассмотрим поведение диссипативной системы при ее нахождении по ту или иную сторону от диссипативного порога.

а) при потоки энергии образуются в микрообластях и тут же рассеиваются. Вся потенциальная энергия неравновесности сразу переходит в хаотическую форму и не способна производить макроскопическую работу. В зоне локального равновесия также существуют потоки энергии от высшего потенциала к низшему, но из-за того что эти потоки не обладают кооперативным движением, т.е. у них , то эти потоки не способны совершать макроскопическую работу, а стало быть и резкие видоизменения (бифуркации) в среде. Эти потоки приводят только к постепенному изменению системы к состоянию равновесия. Отнесём к потокам энергии Умова-Пойтинга только потоки энергии, имеющие , т.е. обладающие кооперативным движением. Возникновение этих потоков и есть результат самоорганизации кооперативного движения в диссипативной среде. Из выше сказанного и понимания механизма релаксации легко видна справедливость универсального критерия эволюции Гленсдорфа-Пригожина. Согласно этому критерию, в любой неравновесной системе с фиксированными граничными условиями процессы идут так, что скорость изменения производства энтропии, обусловленная изменением термодинамических сил, уменьшается. Из механизма релаксации вытекает что в неравновесной системе, где безгранично действуют причины релаксации и из вне не поддерживается неравновесность неизбежно наступает равновесие, а из рисунка -1, поясняющего механизм релаксации, видно что после первого соударения частицы ее направленная энергия уменьшилась в двое. Затем уже после столкновения двух движущихся частиц оставшаяся направленная энергия снова уменьшилась вдвое, но это уже будет четвертая часть от первоначально направленной энергии и так далее. По мере развития процесса релаксации доля направленной энергии переходящая в хаотическую уменьшается, а следовательно уменьшается производство энтропии и ее производная отрицательна. Условие а) -определяет направление эволюции неравновесной системы к равновесию.

б) При выполнении данного условия в неравновесной системе возникают потоки направленной кинетической энергии, связанной с результирующим импульсом, и у системы появляется возможность совершать макроскопическую работу, при этом в системе формируется динамический процесс. Происходит первая бифуркация, в диссипативной среде формируется диссипативная структура. Диссипативная структура в зависимости от конкретных условий имеет определенные пространственные и временные рамки. Для открытой диссипативной структуры возможны три варианта развития:

Вариант 1): при равенстве подводимого из вне потока энергии для поддержания неравновесности и отводимой во внешнюю среду диссипированной энергии и энтропии, полученной в результате диссипации кооперативного движения при функционировании структуры плюс внешняя работа, структура может существовать сколь угодно долго.

(4)

Назовем ( 4 ) соотношением стабильности. Для отдельного процесса это условие его стационарности, для сложной диссипативной структуры, состоящей из согласованно действующей совокупности многих процессов, это условие её существования во времени.

Мы не говорим о внесении отрицательной энтропии. Мы говорим о подводе в открытую систему потенциальной или направленной энергии для подержания неравновесности, энтропия которой равна нулю. А отводим в окружающую среду диссипированную энергию, в результате энтропия закрытой системы (диссипативная структура + окружающая среда) возрастает.

По причине того, что в стационарных процессах действие причин релаксации ограничено (энергия передается на ограниченную массу, когерентность делает соударение близким к центральному удару, что также снижает рассеяние) по сравнению с условиями когда в процессе релаксации масса вовлекается лавинообразно, то становятся понятными принцип Онсагера о минимальном рассеянии энергии и принцип Пригожина о минимальном производстве энтропии в стационарных процессах.

Вариант 2):

Здесь также возможны два случая: во-первых весь избыток направленной энергии, получаемый диссипативной структурой сверх необходимого для функционирования самой структуры, структура расходует на совершение внешней работы и может как и в варианте 1) существовать сколь угодно долго. Во-вторых, если внешняя работа не совершается, идет накопление кооперативной энергии или неравновесности в системе и диссипативная структура идет к новой бифуркации, в результате которой формируется новое состояние, новая диссипативная структура. Принципиальный механизм бифуркации одной диссипативной структуры в другую заключается в следующем: при нарастании кооперативной энергии или неравновесности в диссипативной структуре, за счет увеличения мощности преобразования потенциальной энергии в направленную кинетическую, возникает излишнее для данной диссипативной структуры направленное кооперативное движение, способное совершать работу по преодолению оказывающихся на его пути потенциальных барьеров. Момент времени и совершаемая при этом работа и представляют собой бифуркацию: переход одной диссипативной структуры в другую. Бифуркации возникают не спонтанно, а в момент преодоления потенциального барьера, возникающего на пути кооперативного движения. Если после бифуркации в новой диссипативной структуре устанавливается равновесие по варианту 1), то новая структура будет устойчивой. Если в новой диссипативной структуре вновь при определенных условиях с некоторого момента начинает накапливаться кооперативная энергия или неравновесность, то система вновь готова к очередной бифуркации, к формированию последующей структуры. Описанное выше представляет собой механизм, динамику эволюции структур. Потенциальные барьеры, встающие на пути кооперативного движения, могут иметь самую различную величину и форму и тем самым определяют величину кооперативной энергии которую должна приобрести диссипативная структура для последующей бифуркации. Потенциальные барьеры, несмотря на самую различную величину и форму, по своей природе бывают только двух типов: создаваемые силами притяжения или силами отталкивания. На величину кооперативной энергии, необходимую для бифуркации данной структуры может влиять присутствие катализаторов, способствующих преодолению барьеров. Величина производства энтропии от одной диссипативной структуры к другой не имеет никакой тенденции, а определяется механизмом релаксации данной структуры, мощностью диссипации направленной энергии и отводом ее в окружающую среду. За главным пороговым соотношением, в зоне эволюции структур, энтропия не играет ту фундаментальную роль как в зоне локального равновесия. При эволюции структур вновь на первое место выходят законы динамики в понимании динамики Ньютона, главенствует эволюционный детерминизм. Хотя фундаментальное свойство диссипативных систем, их способность вырождать результирующий импульс, постоянно присутствует в жизни диссипативной структуры, определяя характер и время ее существования. Рассмотрим это в третьем варианте существования диссипативной структуры.

Вариант 3):

Как только выполняется условие 3), то диссипативная структура начинает затухать и разрушаться. Диссипативная система переходит на низшую структуру, а если затухающая диссипативная структура сложная, например биоструктура, состоящая в свою очередь из совокупности согласованных подпроцессов, подсистем, то такая структура или разрушается совсем, вплоть до равновесного состояния или должна восстановить равновесие соответствующее данной диссипативной структуре.

Принципиальная схема эволюции неравновесных диссипативных систем изображена на Рис. – 3.

Рис. 3

Необходимо также отметить, что оба противоположных направления эволюции диссипативных систем протекают благодаря имеющейся в природе неравновесности и срабатывают ее, диссипируя кооперативное движение. Таким образом, если в природе не будет процессов по воссозданию неравновесности из уже равновесной подсистемы общей энергии Вселенной, то, исходя из закона сохранения энергии, Клаузиус прав в своем выводе о тепловой смерти Вселенной.

Подчеркнём, что динамика много частичных сред отличается от хорошо изученной динамики малого числа взаимодействующих частиц тем, что в много частичной среде на известные законы динамики накладывается эффект вырождения результирующего импульса. Следствием эффекта вырождения импульса становится присущий каждой многочастичной системе диссипативный порог, разделяющий динамику многочастичной среды на два направления эволюции: по Клаузиусу – в направлении равновесного состояния, соответствующего максимуму энтропии и по Дарвину – в направлении формирования и усложнения диссипативных структур.

Хотелось бы особо отметить, что эффект вырождения результирующего импульса ни в коей мере не противоречит ни работам Больцмана и всему, что с ними связано, ни работам Пригожина и всему, что с ними связано. Напротив, эффект вырождения результирующего импульса является тем мостом, который связывает воедино всю классическую динамику от динамики Ньютона до динамики структур Пригожина и является фундаментом для идей Больцмана. Именно эффект вырождения результирующего импульса приводит к единообразию описания природы, т.к. вся классическая динамика от динамики Ньютона (динамики счётного числа частиц) до динамики не счётного числа частиц (термодинамика, теплопередача, гидродинамика, электродинамика токов, биофизика) строится исходя из трёх постулатов, лежащих в основе динамики Ньютона:

1) закон сохранения и превращения энергии;

2) закон сохранения результирующего импульса (момента импульса);

3) корпускулярный характер строения материи.

Эффект вырождения результирующего импульса объёдиняет также оба направления эволюции (по Клаузиусу и по Дарвину), объясняя их с единых позиций.

В [Л-6] И. Пригожин пишет: “… мы вправе задать фундаментальные вопросы: какое место занимают необратимые процессы в нашем описании физического мира? Как эти процессы связаны с динамикой?”. Надеюсь нам здесь удалось дать ответы на эти вопросы.

    продолжение
–PAGE_BREAK–