САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ МОРСКОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра физики Реферат на тему Эффект Холла Выполнил студент группы 32СУ1 Лазарев Герасим Проверил преподаватель Скидан В.В. 2000 Содержание. Общие сведения Объяснение эффекта Холла с помощью электронной теории Эффект Холла в ферромагнетиках
Эффект Холла в полупроводниках Эффект Холла на инерционных электронах в полупроводниках Датчик ЭДС Холла Список используемой литературы 1.Общие сведения. Эффектом Холла называется появление в проводнике с током плотностью j, помещнном в магнитное поле Н, электрического поля Ех, перпендикулярного Н и j. При этом напряжнность электрического поля, называемого ещ полем
Холла, равна Рис 1.1 Ex RHj sin , 1 где угол между векторами Н и J 180. Когда Hj, то величина поля Холла Ех максимальна Ex RHj. Величина R, называемая коэффициентом Холла, является основной характеристикой эффекта Холла. Эффект открыт Эдвином Гербертом Холлом в 1879 в тонких пластинках золота. Для наблюдения Холла эффекта вдоль прямоугольных пластин из исследуемых веществ, длина которых l значительно
больше ширины b и толщины d, пропускается ток I jbd см. рис. здесь магнитное поле перпендикулярно плоскости пластинки. На середине боковых граней, перпендикулярно току, расположены электроды, между которыми измеряется ЭДС Холла Vx Vx Ехb RHjd. 2 Так как ЭДС Холла меняет знак на обратный при изменении направления магнитного поля на обратное, то Холла эффект относится к нечтным гальваномагнитным явлениям. Простейшая теория Холла эффекта объясняет появление
ЭДС Холла взаимодействием носителей тока электронов проводимости и дырок с магнитным полем. Под действием электрического поля носители заряда приобретают направленное движение дрейф, средняя скорость которого дрейфовая скорость vдр0. Плотность тока в проводнике j nevдр, где n концентрация числа носителей, е их заряд. При наложении магнитного поля на носители действует Лоренца сила F eHvдp, под действием которой частицы отклоняются в направлении, перпендикулярном vдр и Н. В результате в обеих гранях проводника конечных размеров происходит накопление заряда и возникает электростатическое поле поле Холла. В свою очередь поле Холла действует на заряды и уравновешивает силу Лоренца. В условиях равновесия eEx еНvдр, Ex 1ne Hj, отсюда R 1ne cмзкулон. Знак R совпадает со знаком носителей тока.
Для металлов, у которых концентрация носителей электронов проводимости близка к плотности атомов n1022См-3, R10-3см3кулон, у полупроводников концентрация носителей значительно меньше и R105 см3кулон. Коэффициент Холла R может быть выражен через подвижность носителей заряда еm и удельную электропроводность jE еnvлрЕ R 3 Здесь m эффективная масса носителей, среднее время между двумя последовательными соударениями с рассеивающими центрами. Иногда при описании
Холла эффекта вводят угол Холла между током j и направлением суммарного поля Е tg ExE, где циклотронная частота носителей заряда. В слабых полях 1 угол Холла , можно рассматривать как угол, на который отклоняется движущийся заряд за время . Приведнная теория справедлива для изотропного проводника в частности, для поликристалла, у которого m и их постоянные величины. Коэффициент
Холла для изотропных полупроводников выражается через парциальные проводимости э и д и концентрации электронов nэ и дырок nд a для слабых полей 4 б для сильных полей. При nэ nд, n для всей области магнитных полей , а знак R указывает на преобладающий тип проводимости. Для металлов величина R зависит от зонной структуры и формы Ферми поверхности.
В случае замкнутых поверхностей Ферми и в сильных магнитных полях 1 коэффициент Холла изотропен, а выражения для R совпадают с формулой 4,б. Для открытых поверхностей Ферми коэффициент R анизотропен. Однако, если направление Н относительно кристаллографических осей выбрано так, что не возникает открытых сечений поверхности Ферми, то выражение для R аналогично 4,б. 2. Объяснение эффекта Холла с помощью электронной теории. Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между гранями, параллельными направлениям тока и поля возникает разность потенциалов U1-2 смотри рис 2.1. Она называется Холловской разностью потенциалов в предыдущем пункте ЭДС Холла и определяется выражением uh RbjB 2.1 Здесь b ширина пластинки, j плотность тока,
B магнитная индукция поля, R коэффициент пропорциональности, получивший название постоянной Холла. Эффект Холла очень просто объясняется электронной теорией, отсутствие магнитного поля ток в пластинке обусловливается электрическим полем Ео смотри рис 2. Эквипотенциальные поверхности этого поля образуют систему перпендикулярных к вектору Ео скоростей. Две из них изображены на рисунке сплошными прямыми линиями.
Потенциал во всех точках каждой поверхности, а следовательно, и в точках 1 и 2 одинаков. Носители тока электроны имеют отрицательный заряд, поэтому скорость их упорядоченного движения и направлена противоположно вектору плотности тока j. При включении магнитного поля каждый носитель оказывается под действием магнитной силы F, направленной вдоль стороны b пластинки и равной по модулю FeuB 2.2 В результате у электронов появляется составляющая скорости, направленная к верхней на рисунке
грани пластинки. У этой грани образуется избыток отрицательных, соответственно у нижней грани избыток положительных зарядов. Следовательно, возникает дополнительное поперечное электрическое поле ЕB. Тогда напряженность этого поля достигает такого значения, что его действие на заряды будет уравновешивать силу 2.2, установится стационарное распределение зарядов в поперечном направлении. Соответствующее значение EB определяется условием eEBeuB. Отсюда ЕBuВ. Поле ЕB складывается с полем Ео в результирующее поле E. Эквипотенциальные поверхности перпендикулярны к вектору напряженности поля. Следовательно, они повернутся и займут положение, изображенное на рис. 2.2 пунктиром. Точки 1 и 2, которые прежде лежали на одной и той же эквипотенциальной поверхности, теперь имеют разные потенциалы. Чтобы найти напряжение возникающее между этими точками, нужно умножить
расстояние между ними b на напряженность ЕB UHbEBbuB Выразим u через j, n и e в соответствии с формулой jneu. В результате получим UH1nebjB 2.3 Последнее выражение совпадает с 2.1, если положить R1ne 2.4 Из 2.4 следует, что, измерив постоянную Холла, можно найти концентрацию носителей тока в данном металле т. е. число носителей в единице объема. Важной характеристикой вещества является подвижность
в нем носителей тока. Подвижностью носителей тока называется средняя скорость, приобретаемая носителями при напряженности электрического поля, равной единице. Если в поле напряженности Е носители приобретают скорость u то подвижность их u0 равна U0uE 2.5 Подвижность можно связать с проводимостью и концентрацией носителей n. Для этого разделим соотношение jneu на напряжнность поля
Е. Приняв во внимание, что отношение j к Е дает , а отношение u к Е – подвижность, получим neu0 2.6 Измерив постоянную Холла R и проводимость , можно по формулам 2.4 и 2.6 найти концентрацию и подвижность носили тока в соответствующем образце. Рис 2.1 Рис 2.2 3. Эффект Холла в ферромагнетиках. В ферромагнетиках на электроны проводимости действует не только внешнее, но
и внутреннее магнитное поле В Н 4М Это приводит к особому ферромагнитному эффекту Холла. Экспериментально обнаружено, Ex RB RаMj, где R обыкновенный, a Ra необыкновенный аномальный коэффициент Холла. Между Ra и удельным электросопротивлением ферромагнетиков установлена корреляция. 4. Эффект Холла в полупроводниках. Эффект Холла наблюдается не только в металлах, но и в полупроводниках, причем по знаку эффекта можно судить о принадлежности полупроводника к n- или p-типу, так как в полупроводниках n-типа знак носителей тока отрицательный, полупроводниках p-типа положительный. На рис. 4.1 сопоставлен эффект Холла для образцов с положительными и отрицательными носителями. Направление магнитной силы изменяется на противоположное как при изменении направления движения заряда, так и при изменении его знака. Следовательно, при одинаковом направлении тока и поля магнитная сила,
действующая на положительные и отрицательные носители, имеет одинаковое направление. Поэтому в случае положительных носителей потенциал верхней на рисунке грани выше, чем нижней, а в случае отрицательных носителей ниже. Таким образом, определив знак холловской разности потенциалов, можно установить знак носителей тока. Любопытно, что у некоторых металлов знак Uн соответствует положительным носителям тока. Объяснение этой аномалии дает квантовая теория.
Рис 4.1 5. Эффект Холла на инерционных электронах в полупроводниках. Предсказан новый физический эффект, обусловленный действием силы Лоренца на электроны полупроводника, движущегося ускоренно. Получено выражение для поля Холла и выполнены оценки холловского напряжения для реальной двумерной гетероструктуры. Выполнен анализ возможной схемы усиления холловского поля на примере двух холловских
элементов, один из которых генератор напряжения, а второй нагрузка. Известен опыт Толмена и Стюарта, в котором наблюдался импульс тока j, связанный с инерцией свободных электронов. При инерционном разделении зарядов в проводнике возникает электрическое поле напряженностью E. Если такой проводник поместить в магнитное поле B, то следует ожидать появления эдс, аналогичной эффекту Холла, обусловленной действием силы Лоренца на инерционные электроны. В проводнике, движущемся с ускорением dvxdt, возникает ток jx и поле Ex , 1 , 2 где en проводимость, подвижность. В магнитном поле B0 0 Bz возбуждается поле Ey 1ne jxBz или 3 Последнее выражение эквивалентно Ey ExBz. Наиболее подходящий объект для экспериментального наблюдения эффекта двумерные электроны в
гетеросистеме n-AlxGa1-xAsGaAs. В единичном образце 1×1 см2 в поле 1 Тл и 104 см2 В с для dvxdt 10 мс2 следует ожидать сигнал Vy 610-11B, что вполне доступно для современной техники измерений. Рассмотрим одну из возможностей усиления эффекта на примере двух холловских элементов, один из которых I является генератором поля Холла, а второй II нагрузкой.
Схема соединений холловских элементов I и II показана на рисунке. Итак, в магнитном поле Bz направление которого на рисунке обозначено знаком в первом холловском элементе I возбуждается ток j1x , поле E1x и холловское поле E1y, даваемые выражениями 1 3. Замкнув потенциальные холловские контакты X1-X1 на токовые контакты T2-T2 холловского элемента
II, в последнем дополнительно к первичному полю E2x E1x, определяемому выражением 2, имеем и поле E1y. Так что результирующее поле имеет два компонента E2x E1x E1y. Это возможно, если холловский элемент I рассматривать как генератор напряжения, нагруженный на холловский элемент II. В этом случае должен выполняться режим холостого хода, для чего необходимо
выполнить условие RX1-X1 RT2-T2, где R сопротивление между соответствующими контактами. В таком случае в холловском элементе II возбуждается поле E2yE1y E1yBz 4 Учитывая соотношение E1yE1xBz, получаем E2y1BzBzE1x 5 Непосредственное наблюдение эффекта, видимо, затруднено. Более реально осуществить опыты с вибрацией образца в магнитном поле. Полезный сигнал y при этом может быть отделен от наводки y по квадратичной зависимости от частоты колебаний наводка пропорциональна 1-й степени частоты колебаний. В самом деле, для данной геометрии опыта см рисунок в магнитном поле B0 0 Bz при изменении координаты x со временем по закону x x0 cos t, где частота задающего генератора, нагруженного на пьезоэлемент, и x0 амплитуда колебаний последнего, имеем из соотношения 3 6 где ly
расстояние между холловскими контактами образца X1-X1 т. е. Ey Eyly. Паразитная наводка y, возникающая в соединительных проводах в соответствии с законом электромагнитной индукции Фарадея, определяется выражением 7 где ly эффективная длина соединительных проводников, включающих образец в схему измерений. Таким образом, полезный сигнал y имеет отличительные особенности по отношению к наводке y. Первая особенность это пропорциональность величине 2, тогда как y.
Одновременно y во времени изменяется синфазно, а y противофазно напряжению задающего генератора. Существенно отметить, что масса, входящая в выражения 1-3, это масса свободного электрона величина же подвижности определяется эффективной массой. Рис 5.1 Схема усиления холловского поля из двух элементов I и II. Указаны направления знаком магнитного поля Bz стрелками ускорения dVxdt полей
Холла E1y , E2y плотностей тока j1x , j2x . 6. Датчик ЭДС Холла. Датчик ЭДС Холла это элемент автоматики, радиоэлектроники и измерительной техники, используемый в качестве измерительного преобразователя, действие которого основано на эффекте Холла. Представляет собой тонкую прямоугольную пластину площадь несколько мм2, или пленку, изготовленную из полупроводника Si, Ge, InSb, InAs, имеет четыре электрода для подвода тока и съма ЭДС Холла. Чтобы избежать механических повреждений, пластинки Холла ЭДС датчика монтируют а пленку напыляют в вакууме на прочной подложке из диэлектрика слюды, керамики. Для получения наибольшего эффекта толщина пластины плнки делается возможно меньшей. Датчики ЭДС Холла применяют для бесконтактного измерения магнитных полей от 10-6 до 105 Э. При измерении слабых магнитных полей пользуются
Холла ЭДС датчиками, вмонтированными в зазоре ферро или ферримагнитного стержня концентратора, что позволяет значительно повысить чувствительность датчика. Так как в полупроводниках концентрация носителей зарядов а следовательно, и коэффициент Холла может зависеть от температуры, то в случае точных измерений необходимо либо термостатировать Холла ЭДС датчик, либо применять сильнолегированные полупроводники последнее снижает чувствительность датчика. При помощи Холла ЭДС датчика можно измерять любую физическую величину, которая
однозначно связана с магнитным полем в частности можно изменять силу тока, так как вокруг проводника с током образуется магнитное поле, которое можно измерить. На основе Холла ЭДС датчика созданы амперметры на токи до 100 кА. Кроме того Холла ЭДС датчики применяются в измерителях линейных и угловых перемещений, а также в измерителях градиента магнитного поля, магнитного потока и мощности электрических машин, в бесконтактных преобразователях
постоянного тока в переменный, и, наконец, в воспроизводящих головках систем звукозаписи. 8. Список используемой литературы. 1 Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика, т. VIII. Электродинамика сплошных сред М Наука, 1982 с. 309. 2 И.М. Цидильковский УФН, 115, 321 1975. Редактор Т.А. Полянская 3 Физика и техника полупроводников, 1997, том 31, 4 4 И.В. Савельев Курс общей физики, т. II. Электричество и магнетизм. Волны. Оптика Учебное пособие. 2-е издание, переработанное М Наука, главная редакция физико-математической литературы,1982 с.233 235. 5 Большая советская энциклопедия, том 28, третье издание М издательство Советская энциклопедия, 1978 с.338-339.