А.Кожуркин Теория и методика подтягиваний на перекладине. Часть 3. Содержание А.Кожуркин 1Теория и методика подтягиваний на перекладине. Часть 3. 1Содержание 1Глава 7. Развитие динамической силовой выносливости мышц, участвующих в подтягивании. 27.1 Мышцы, производящие подъём/опускание туловища. 27.2 Строение мышечных волокон и механизм мышечных сокращений 57.2.1 Строение и химический состав скелетных мышц 57.2.1.1 Митохондрии 67.2.1.2 Миофибриллы 97.2.2 Механизм мышечного сокращения. 107.2.3 Изменение величины силы в фазе подъёма 12^ 7.3 Изменения в мышечных волокнах под влиянием различных тренировочных воздействий. 157.3.1 Особенности различных типов мышечных волокон 167.3.2 Увеличение количества миофибрилл в быстрых мышечных волокнах 177.3.3 Увеличение количества митохондрий в быстрых мышечных волокнах 197.3.4 Параллельное увеличение количества митохондрий и миофибрилл в быстрых мышечных волокнах 227.3.5 Увеличение количества миофибрилл в медленных мышечных волокнах 237.3.6 Увеличение количества митохондрий в медленных мышечных волокнах 257.3.7 Схема изменений в мышечных волокнах под воздействием нагрузки. 26^ 7.4 Энергообеспечение динамической работы при подтягивании. 277.4.1 Энергообеспечение динамической работы при подтягивании в оптимальном соревновательном темпе 277.4.2 Энергообеспечение динамической работы при подтягивании в низком темпе 297.4.3 Энергообеспечение динамической работы при подтягивании в повышенном темпе 307.4.4 Энергообеспечение динамической работы при подтягивании в максимальном темпе 307.5 Оценка уровня развития силовых способностей по внешним признакам. 317.7 Условия для повышения динамических силовых способностей 38 ^ Глава 7. Развитие динамической силовой выносливости мышц, участвующих в подтягивании. Анализируя соревновательные раскладки ведущих спортсменов-полиатлонистов, способных подтянуться 60 и более раз, можно придти к простому выводу. Для того чтобы за 4 минуты подтянуться 60 и более раз, нужно за 3 минуты подтягиваться не менее 50 раз. Для того чтобы за 3 минуты подтянуться не менее 50 раз, нужно за 2 минуты подтягиваться не менее 37 раз. Для того чтобы за 2 минуты подтянуться не менее 37 раз, нужно за первую минуту успеть подтянуться не менее 22 раз. Но ведь для того чтобы после 22 подтягиваний за минуту спортсмен был способен выполнять упражнение ещё в течение 3 минут, у него к началу второй минуты должен оставаться достаточный для этого резерв силовых способностей. Следовательно, 22 раза в минуту – это далеко не предельные возможности спортсмена, т.к. в противном случае на второй минуте произошло бы закисление рабочих мышц, и спортсмен был бы вынужден прекратить выполнение подтягиваний. Попробуем оценить необходимый резерв силы, исходя из следующих данных: спортсмен на соревнованиях подтягивается за 4 минуты 45 раз, выполняя на первой минуте 18 подтягиваний. При этом в тесте на максимальное количество подтягиваний за 1 минуту его результат составляет 28 раз. Тогда в соревновательном подходе спортсмен использует свои динамические силовые способности на 18/28*100%=65%, т.е. его резерв силы составляет 35%. Для того чтобы с таким же запасом силы подтягиваться в темпе 22 раза за первую минуту, спортсмену нужно развить свои силовые способности до уровня, позволяющего в 1 минутном тесте подтянуться 22*100/65=34 раза. Аналогичным образом можно оценить силовой потенциал спортсмена для двух, трёх и четырёх минут выполнения упражнения. Какие механизмы энергопродукции обеспечивают динамическую работу по подъёму туловища на 1, 2 ,3 и 4 минутах выполнения упражнения, как сократительные свойства мышечных волокон влияют на результат, каким образом различные структурные элементы мышечных волокон связаны с силой и продолжительностью мышечных сокращений – эти и другие вопросы будут рассмотрены в данной главе. Таким образом, будет сделана попытка раскрыть взаимосвязь между сократительными возможностями, метаболическими свойствами, морфологическим строением мышечных волокон и проследить их влияние на спортивный результат в подтягивании. ^ 7.1 Мышцы, производящие подъём/опускание туловища. Вис на прямых руках (ИП). Наибольшее напряжение в ИП падает на мышцы верхних конечностей, которые должны не только удерживать пальцы на перекладине, но и предохранять суставы и связки от растяжений и разрывов. На предплечье и кисти сокращёнными оказываются сгибатели пальцев, в области плечевого и локтевого суставов – все окружающие их мышцы, которые, обладая большей суммарной силой, находятся в менее напряжённом состоянии, чем сгибатели пальцев. В локтевом суставе работу мышц облегчает сама конструкция сустава: локтевой отросток локтевой кости, как крючок, охватывает блок плечевой кости. Большую нагрузку несут мышцы, удерживающие туловище около свободных верхних конечностей. Непосредственно туловище около плечевых костей удерживают большие грудные и широчайшие мышцы спины. При этом если используется узкий хват, большие грудные мышцы в основном противодействуют силе тяжести. При увеличении ширины хвата всё большая часть усилий этой мышцы идёт на укрепление плечевого сустава. Головка плечевой кости удерживается в суставной впадине лопатки напряжением длинной головки трёглавой мышцы плеча. Через лопатку туловище около плечевой кости фиксируют мышцы, удерживающие лопатку около туловища и мышцы, удерживающие лопатку около плечевого пояса. Лопатку около туловища удерживают главным образом ромбовидные мышцы, которые находятся в сильно растянутом состоянии, а также трапециевидные, передние зубчатые, мышцы, поднимающие лопатку, широчайшие мышцы спины. Лопатку около плечевого пояса удерживают подлопаточные, большая и малая круглые мышцы, подостные мышцы. В укреплении плечевого сустава также принимают участие клювовидно-плечевая, дельтовидная и двуглавая мышца плеча. Позвоночный столб в разогнутом положении находится за счёт силы тяжести и мышц-разгибателей позвоночника. Тазобедренный сустав в разогнутом положении удерживается силой больших ягодичных, полусухожильной и полуперепончатой мышц; четырёхглавая мышца бедра удерживает в разогнутом положении коленный сустав. Носки ног в ИП оттянуты книзу усилием икроножных мышц.^ Подъём/опускание туловища. Подъём туловища («скользящий» вис на согнутых руках) характерен тем, что вклад в общее усилие различных мышечных групп изменяется в ходе движения в связи с изменением длины мышц и величины суставных углов. Так, двуглавая мышца плеча, развивающая максимальное усилие где-то в середине траектории движения, в верхней её точке укорачивается настолько, что перестаёт играть существенную роль в положении виса на согнутых руках в момент перехода подбородка через уровень грифа перекладины. А плечевая и плечелучевая мышцы, напротив, в верхней части траектории выполняют настолько большую работу, что могут находиться в этом положении сравнительно короткое время.Рисунок 7.1 Мышцы верхней конечности, вид спереди А – расположение мышц по [31] Б – схема расположения мышц по [27]1 – грудино-ключично-сосцевидная мышца; 2 – трапециевидная мышца; 3 – большая грудная мышца; 4 – передняя зубчатая мышца; 5 – широчайшая мышца спины; 6 – большая круглая мышца; 7 – клювовидно-плечевая мышца; 8 – дельтовидная мышца; 9 – двуглавая мышца плеча; 10 – плечевая мышца; 11 – трёхглавая мышца плеча; 12 – круглый пронатор; 13 – плечелучевая мышца; 14 – мышцы-сгибатели кисти и пальцев; 15 – подключичная мышца; 16 – малая грудная мышца; 17 – подлопаточная мышцаРисунок 7.2 Мышцы верхней конечности, вид сзади А – расположение мышц по [31] Б – схема расположения мышц по [27]1 – трапециевидная мышца; 2 – дельтовидная мышца; 3 – подостная мышца; 4 – малая круглая мышца; 5 – большая круглая мышца; 6 – широчайшая мышца спины; 7 – трёхглавая мышца плеча; 8- плечевая мышца; 9 – двуглавая мышца плеча; 10 – мышцы-разгибатели кисти и пальцев; 11 – надостная мышца; 12 – мышца, поднимающая лопатку; 13 – малая ромбовидная мышца; 14 – большая ромбовидная мышцаНапряжение длинной головки трёхглавой мышцы плеча тесно связано со сгибанием руки в локтевом суставе: чем больше степень этого сгибания, тем больше напряжение данной мышцы, т.к. по мере сгибания отдаляется место её прикрепления от места начала [4]. Поскольку подтягивание на перекладине производится при верхней опоре, считается, что при этом происходит сгибание плеча по отношению к предплечью, а не наоборот (но по отношению к туловищу происходит разгибание плеча). В зависимости от ширины хвата изменяется состав и степень включения участвующих в подъёме/опускании мышц. При широком хвате локти разведены и во время подъёма «смотрят» в стороны. При этом в плечевом суставе происходит движение, которое называется приведением плеча (к туловищу). Приведение плеча осуществляется по правилу параллелограмма сил мышцами, расположенными спереди (большая грудная) и сзади плечевого сустава (широчайшая и большая круглая) при одновременном их сокращении. Этим мышцам помогают подостная, малая круглая, подлопаточная, а также длинная головка трёхглавой мышцы плеча. Когда спортсмен выполняет подтягивание узким хватом, локти сближены и в фазе подъёма туловища «смотрят» вперёд. При этом в плечевом суставе происходит разгибание плеча по отношению к туловищу. Мышцы-разгибатели плеча находятся сзади плечевого сустава. В разгибании плеча (при фиксированной верхней конечности) принимают участие широчайшая мышца спины, малая круглая, большая круглая, подостная, длинная головка трёхглавой мышцы плеча, нижний отдел большой грудной мышцы, задняя часть дельтовидной мышцы. Таким образом, при увеличении ширины хвата увеличивается роль мышц, участвующих в приведении плеча. Когда спортсмен, привыкший на тренировках подтягиваться широким хватом, вынужден после замечания судьи перейти на более узкий хват, это, как правило, отрицательно сказывается на спортивном результате, поскольку из-за перераспределения нагрузки та часть мышц, которая оказывается под непривычно высокой нагрузкой, быстро закисляется и ограничивает темп выполнения подтягиваний. По мере нарастания утомления некоторые спортсмены плавно выносят прямые ноги вперёд, производя сгибание в тазобедренных суставах (и разгибание в коленных). Это способствует переводу туловища из наклонного в более вертикальное положение, в результате чего мышцы, производящие подъём туловища, получают более выгодные условия для сокращения. Сгибание в тазобедренных суставах происходит за счёт усилий мышц, располагающихся спереди от оси тазобедренного сустава. Подъём ног происходит при активном участии мышц живота («пресс»). ^ 7.2 Строение мышечных волокон и механизм мышечных сокращений Статическая сила, динамическая сила, статическая силовая выносливость, динамическая силовая выносливость… – физические качества, уровень развития которых определяет спортивный результат в подтягивании. Миофибриллы, митохондрии, саркоплазматический ретикулум… – структурные элементы мышечной клетки, участвующие в преобразовании потенциальной химической энергии в полезную механическую работу или мышечное напряжение. Креатинфосфатная реакция, гликолиз, аэробное окисление – механизмы энергообеспечения, которые служат делу обеспечения непрерывного ресинтеза АТФ в работающих мышцах. Медленные окислительные, быстрые гликолитические, быстрые окислительно-гликолитические – типы мышечных волокон, отличающихся по скорости сокращения, активности ферментов ресинтеза АТФ, преимущественным механизмам энергопродукции. Попробуем увязать между собой физические качества спортсмена, физиологию мышечного сокращения и биохимические процессы, происходящие в мышечных клетках.Для этого предварительно рассмотрим строение мышечного волокна и механизм мышечного сокращения в той степени, в которой это необходимо для подтягиваний.^ 7.2.1 Строение и химический состав скелетных мышц Скелетная мышца состоит из мышечных волокон (миоцитов). Мышечные волокна представляют собой гигантские многоядерные клетки длиной от 0,1 до 2-3 сантиметров, а в некоторых мышцах миоциты достигают 12 сантиметров. Площадь поперечного сечения мышечных клеток составляет от 3 до 10 квадратных микрометров. Волокно покрыто эластичной оболочкой — сарколеммой и состоит из саркоплазмы, структурными элементами которой являются такие органоиды, как митохондрии, рибосомы, трубочки и пузырьки саркоплазматической сети (ретикулума) и так называемая Т-система а также различные включения. В саркоплазме условно выделяют две части – саркоплазматический матрикс и саркоплазматический ретикулум. Саркоплазматический ретикулум, представляющий собой определённым образом организованную сеть соединяющихся цистерн (содержащих в большой концентрации ионы кальция) и трубочек, играет важную роль в механизмах сокращения и расслабления мышцы. Кроме того, к части ретикулума прикреплены рибосомы, специальные сферические образования, на которых и при участии которых происходит биосинтез белков. Саркоплазматическая сеть с помощью особых трубочек, называемых Т-системой, связана с оболочкой мышечной клетки. Т-система также имеет прямое отношение к мышечному сокращению, так как по ней передаётся изменение электрического потенциала поверхностной мембраны элементам ретикулума, что приводит к освобождению ионов кальция, поступающих к миофибриллам и запускающих процесс мышечного сокращения [24].Рисунок 7.3 Строение Т-системы и саркоплазматического ретикулума мышечного волокна [из [24] по: Кроленко, 1975]. Саркоплазматический матрикс представляет собой коллоидный раствор, содержащий белки, гликоген, жировые капли и другие включения [11]. Миофибриллы – сократительные элементы мышечных клеток – также находятся в саркоплазматическом матриксе. Кроме того, в саркоплазме находятся ферменты гликолиза, расщепляющие гликоген или глюкозу до пировиноградной или молочной кислоты и креатинкиназа – фермент, ускоряющий креатинфосфатную реакцию. Особый белок саркоплазмы – миоглобин – обеспечивает некоторый запас кислорода в мышечной ткани, а также участвует в переносе кислорода от сарколеммы к митохондриям. Мышечная клетка имеет не одно, а множество ядер, которые располагаются на её периферии – под сарколеммой. Внутри каждого ядра находится ДНК, являющаяся носителем носледственной информации и состоящая из генов, в которых закодирована структура всех синтезируемых мышечными волокнами белков. Лизосомы, представляющие собой микроскопические пузырьки, содержат в растворённом виде различные ферменты, способные в условиях кислой реакции среды расщеплять различные высокомолекулярные вещества. Такая необходимость может возникать в мышечных клетках, например, при очень напряжённой мышечной деятельности. 7.2.1.1 Митохондрии Митохондрии, одни из важнейших структурных компонентов мышечного волокна, располагаются цепочками вдоль миофибрилл (рисунок 7.3), тесно соприкасаясь с мембранами ретикулума. В митохондриях протекает аэробное окисление углеводов, жиров и аминокислот, а за счёт энергии, выделяющейся при окислении, происходит ресинтез АТФ. Митохондрии ограничены двумя мембранами (рисунок 7.4). Наружняя митохондриальная мембрана имеет ровные контуры, не образует выпячиваний или складок. Наружную мембрану от внутренней отделяет межмембранное пространство. Внутренняя мембрана ограничивает внутреннее содержимое митохондрии, ее матрикс. Характерной чертой внутренней мембраны митохондрий является их способность образовывать многочисленные выпячивания внутрь митохондрий. Такие выпячивания чаще всего имеют вид плоских гребней, или крист, существенно увеличивая поверхность внутренней мембраны. Мембраны митохондрий построены из белка и содержащих фосфорную кислоту жироподобных веществ – фосфолипидов. На внутренней мембране в определённом порядке расположены биологические катализаторы – ферменты, при помощи которых происходят окислительные процессы, а также компоненты дыхательной цепи – главной системы превращения энергии в митохондриях. На внешней мембране митохондрий в определённом порядке расположены ферменты, не имеющие отношения к дыхательной цепи. Немало ферментов в растворённом виде содержится и в матриксе. Кроме того, матрикс митохондрий содержит рибосомы и митохондриальную ДНК.Рисунок 7.4 Схема строения митохондрии (по А.Кузнецов, [29])Великое множество миофибрилл, содержащихся в мышечных волокнах, требуют большого количества АТФ, которое должно быть доставлено к каждому саркомеру миофибрилл. На продольных ультратонких срезах скелетных мышц в электронном микроскопе видны многочисленные округлые мелкие сечения митохондрий, располагающихся в соседстве с саркомерами. Если же исследовать поперечные срезы мышечных волокон на уровне Z-дисков (см. п.7.2.1.2), то видно, что мышечные митохондрии представляют собой не мелкие шарики или палочки, а как бы паукообразные структуры, отростки которых могут ветвиться и простираться на большие расстояния, иногда через весь поперечник мышечного волокна. При этом разветвления митохондрий окружают каждую миофибриллу в мышечном волокне, снабжая их АТФ, необходимой для мышечного сокращения. Следовательно, в плоскости z-диска митохондрии представлены типичным митохондриальным ретикулумом – единой митохондриальной системой. Такой пласт или этаж митохондриального ретикулума повторяется дважды на каждый саркомер, а все мышечное волокно имеет тысячи поперечно расположенных поэтажных пластов митохондриального ретикулума. Было обнаружено, что между этажами вдоль миофибрилл располагаются нитчатые митохондрии, соединяющие эти митохондриальные пласты. Тем самым создается трехмерная картина митохондриального ретикулума, проходящего через весь объем мышечного волокна [28]. Предполагается, что с помощью специальных межмитохондриальных соединений или контактов может происходить функциональное объединение отдельных митохондрий и митохондриальных ретикуломов в единую энергетическую систему, позволяющую всем миофибриллам в мышечном волокне сокращаться синхронно по всей длине, поскольку механизм взаимодействия митохондрий посредством межмитохондриальных контактов может обеспечить синхронное поступление АТФ во все участки сокращающегося мышечного волокна. Механизм кооперации и синхронизации работы митохондрий позволяет вести синтез АТФ в любой точке поверхности внутренней мембраны таких разветвлённых митохондрии, обеспечивая энергией для сокращения те участки мышечного волокна, где в этом возникает необходимость. Но связывание отдельных митохондрий в единую цепь с помощью межмитохондриальных контактов наряду с очевидными преимуществами имеет и существенный недостаток. Дело в том, что при функциональном объединении митохондрий в единую митохондриальную систему любое существенное повреждение (пробой) её внутренней мембраны приводит к потере способности к ресинтезу АТФ сразу у всей объединённой группы митохондрий. При проведении серии развивающих тренировок по подтягиванию направленных на развитие статической выносливости мышц-сгибателей кисти нередко используется метод выполнения нагрузки «до отказа». Если тренировки разделены недостаточным для восстановления интервалом отдыха, после проведения 4-5 развивающих тренировок подряд, в ходе которых может наблюдаться существенный прирост времени виса (т.е. увеличение аэробных возможностей мышц), неожиданно наступает срыв адаптации и возврат времени виса к первоначальному уровню. Например, если спортсмен форсирует тренировочный процесс и выполняет через день по 4-6 подходов до отказа, подняв за 2 недели вис с подтягиванием в темпе 1 раз в 8 секунд с 2 до 4 минут (такое возможно у квалифицированных спортсменов, например, после длительного вынужденного перерыва в тренировках), то внезапно – без видимых причин – время виса может упасть до прежних двух минут и даже меньше. Долгое время было непонятно, почему так происходит. В качестве одной из возможных причин называлась перегрузка нервной системы тренировками до отказа. Но срыв адаптации обычно происходил на фоне эмоционального подъёма от быстрого прогресса тренировочных результатов и связанного с этим желания тренироваться всё больше и больше и имел мало общего с нервным срывом. Возможно, что резкое падение результатов происходит из-за пробоя внутренней мембраны митохондриальной системы мышечного волокна, вследствие, например, чрезмерного закисления мышц на предшествующей срыву адаптации тренировке. В этом случае повреждение небольшого по площади участка любой из митохондрий, входящих в митохондриальную сеть, должно приводить к отключению механизма аэробного окисления сразу во всей сети. Тренировки с облегчением в 5-7% от веса тела позволяют резко (в 1,5 – 2 раза) увеличить объём тренировочной работы за счёт увеличения количества подтягиваний в подходе с соответствующим увеличением времени выполнения подхода. При этом энергопродукция смещается в сторону аэробного окисления, всё в большей степени активизируя работу митохондриальной системы. Серия развивающих тренировок с облегчением без должного интервала отдыха между ними также может привести к скачкообразному падению результатов, что также может быть объяснено повреждением внутренних мембран митохондрий продуктами метаболизма. Можно ли каким-либо образом почувствовать приближение момента срыва адаптации и, снизив нагрузку, предотвратить это нежелательное явление? Биологическое окисление, протекающее в митохондриях, состоит в окислении органических субстратов, например глюкозы, до углекислого газа и воды с выделением около 680 ккал (в расчёте на 1 моль, т.е. 180 г глюкозы), которая в дальнейшем идёт на создание макроэнергетической связи в молекуле АТФ (фосфорилирование АДФ). Окисление и фосфорилирование – это два, в принципе, независимых процесса, которые для эффективного ресинтеза АТФ должны быть сопряжены. Сопряжение окисления и фосфорилирования происходит на внутренних мембранах митохондрий. Поэтому, когда мембраны повреждены, происходит разобщение этих процессов. Реакции окисления глюкозы продолжают идти, а ресинтез АТФ замедляется или прекращается. И сейчас даже неважно, что является причиной повреждения мембран – избыток молочной кислоты, недостаток кислорода или повышенное его потребление, свободнорадикальное окисление или это происходит по каким-то иным причинам. Важно, что при повреждении мембран митохондрий в результате чрезмерного воздействия тренировочных нагрузок нарушается процесс ресинтеза АТФ, а энергия, выделяющаяся в процессе биологического окисления, теперь может превращаться только в тепло, приводя к локальному нагреву мышечной ткани. Но одним из отдалённых признаком перетренированности является внезапная испарина, выступающая не только на лбу, но и на рабочих мышцах спортсмена в начале выполнения даже не очень напряжённой нагрузки. Возможно, таким образом организм реагирует на начинающийся процесс разобщения окисления и фосфорилирования, связанный с повреждением мембран митохондрий. Поэтому, если после серии развивающих нагрузок на очередной тренировке вы начинаете по непонятным причинам сильно потеть, стоит задуматься: а не перебрали ли вы с нагрузкой? В любом случае безопасным (но в то же время обеспечивающим прогресс) считается вариант, когда тяжёлые развивающие тренировки проводятся не чаще одного раза в 5 – 7 дней. Экспериментальные данные говорят в пользу того, что увеличение числа митохондрий происходит путём роста и деления предшествующих митохондрий. Более того, митохондрии обладают собственным генетическим аппаратом, т.е. обладают полной системой авторепродукции, хотя и находящейся под генетическим контролем со стороны клеточного ядра [28]. Все митохондрии в теле человека наследуются от матери, а не от отца, поэтому способность к длительному выполнению упражнений передаётся по материнской линии. По форме и размеру митохондрии напоминают бактерий; они содержат собственную ДНК и размножаются делением. Эти и другие факты привели к возникновению гипотезы о том, что много миллионов лет назад бактерии проникли в более высокоразвитые клетки и прочно обосновались в них, потеряв былую самостоятельность и со временем превратившись в клеточные органеллы, которые теперь называют митохондриями [30]. 7.2.1.2 Миофибриллы Сократительные элементы – миофибриллы – занимают большую часть объёма мышечных клеток. Миофибриллы состоят из многочисленных параллельно расположенных нитей – филаментов. Перегородки, называемые Z – пластинками, разделяют их на отдельные участки, называемые саркомерами. Строение саркомера мышечного волокна показано на рисунке 7.5. Мышечные нити – филаменты бывают двух типов: толстые и тонкие.Толстые имеют диаметр около 10 нм (1 нм = 10-9 м), а тонкие – около 5 нм. Толстые нити, состоящие из белка миозина, расположены в дисках А (рис. 7.3, 7.5), а тонкие, основным белком которых является актин, находятся в дисках I, частично заходя в диск А. Середину диска I пересекает Z – пластинка, соединяющая тонкие нити между собой и с сарколеммой. В поперечном сечении толстые и тонкие нити располагаются правильными шестиугольниками так, что каждая толстая нить окружена шестью тонкими, а каждая тонкая нить может вступать в контакт с тремя толстыми [24].Рисунок 7.5. Строение саркомера поперечнополосатого мышечного волокна: А — электронная микрофотография (малое увеличение), на которой четко видна структура саркомера; Б — схема саркомера; В — электронная микрофотография с высокой разрешающей способностью; Г — поперечное сечение саркомера на различных уровнях, видно положение толстых и тонких нитей в различных участках покоящегося саркомера (по Х. Хаксли)Из-за особенностей своих оптических свойств миозиновые нити, находящиеся в середине саркомера, выглядят в световом микроскопе тёмной полосой, а актиновые нити – светлой. Именно в результате такого периодического чередования светлых и тёмных полос в бесчисленных саркомерах миофибриллы выглядят поперечно-полосатыми.^ 7.2.2 Механизм мышечного сокращения. В соответствии с теорией скользящих нитей мышца сокращается в результате укорочения множества последовательно соединенных саркомеров в миофибриллах, при этом тонкие актиновые нити скользят вдоль толстых миозиновых, двигаясь между ними к середине саркомера. Миозиновые нити несут поперечные выступы с головками, состоящими примерно из 150 молекул миозина (рисунок 7.6А). Во время сокращения каждая головка (поперечный мостик) может связывать миозиновую нить с соседними актиновыми. Движение головок создаёт объединённое усилие, как бы «гребок», продвигающий актиновые нити в середину саркомера [31].Рисунок 7.6 Функция поперечных мостиков. А – модель механизма сокращения: миозиновая нить с поперечными мостиками, прикреплёнными к соседним актиновым нитям. Вверху – до, внизу – после «гребкового» движения. Б – модель механизма генерирования силы при статическом напряжении. Слева – до, справа – после «гребка» (по Й. Рюэгг[31]).В расслабленном состоянии механизм взаимодействия миозиновых головок с актиновыми нитями блокируется за счёт того, что участок актиновых нитей, предназначенный для связывания с головками миозина, перекрыт молекулами белков тропонина и тропомиозина. Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собой волну повышенной мембранной проницаемости, распространяющейся по нервному волокну. Эта волна передаётся на Т-систему саркоплазматической сети и в конечном итоге достигает цистерн, содержащих ионы кальция. Проницаемость стенок цистерн повышается, ионы кальция выходят из цистерн в саркоплазму, где их концентрация за очень короткое время (около 3милисекунд) увеличивается примерно в 1000 раз. Ионы кальция, взаимодействуя с тропонином, изменяют его пространственную форму, что вызывает смещение молекул тропомиозина, обеспечивая доступ миозиновых головок к активным участкам актиновых нитей. В результате этого между миозином и актином возникает поперечный мостик, расположенный под углом 90о (рисунок 7.6А). Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина, между мышечными нитями образуется довольно большое число поперечных мостиков. Образование связи между актином и миозином сопровождается повышением АТФ-азной активности миозина, разрешая её расщепление. За счёт энергии, выделяющейся при гидролизе АТФ, миозиновая головка подобно веслу лодки поворачивается и мостик между толстыми и тонкими нитями оказывается под углом 45о, что приводит к скольжению мышечных нитей навстречу друг другу (рисунок 7.6А) [11]. Совершив поворот, мостики между тонкими и толстыми нитями разрываются, АТФ-азная активность миозина резко снижается и гидролиз АТФ прекращается. Но если двигательный нервный импульс продолжает поступать в мышцу и в саркоплазме сохраняется высокая концентрация ионов кальция, поперечные мостики образуются снова, повторно включается гидролиз АТФ, дающий энергию для поворота поперечных мостиков с последующим их разрывом. За счёт ритмичных прикреплений и отделений миозиновых головок актиновая нить подтягивается к середине саркомера подобно тому, как группа людей тянет верёвку, перебирая её руками. Когда принцип «вытягивания верёвки» реализуется во множестве последовательно расположенных саркомеров, повторяющиеся молекулярные движения поперечных мостиков приводят к движению всей мышцы [31]. Каждый цикл сокращения, включающий образование, поворот и разрыв мостика, требует расходования одной молекулы АТФ в качестве источника энергии [11]. При сокращении мышцы происходит её укорочение. Но при статической нагрузке длина мышцы не изменяется. Что же в таком случае происходит в мышце с точки зрения «гребковой» теории Хаксли? Благодаря упругости поперечных мостиков саркомер может развивать силу даже без скольжения нитей относительно друг друга. Процесс генерирования изометрической (т.е. статической) силы показан на рисунке 7.6Б. Сначала головка миозиновой молекулы прикрепляется к актиновой нити под прямым углом. Затем она наклоняется под углом 45о, возможно благодаря притяжению между соседними точками прикрепления на ней и на актиновой нити. При этом головка действует как миниатюрный рычаг, приводя внутреннюю упругую структуру поперечного мостика в напряжённое состояние. Упругое напряжение, создаваемое индивидуальным поперечным мостиком очень мало и для создания необходимой мышечной силы требуется объединение усилий огромного количества таких соединённых параллельно мостиков. Они будут тянуть соседние актиновые нити, как команда игроков тянет канат. Но даже при изометрическом сокращении поперечные мостики не находятся в непрерывно напряжённом состоянии. Каждая миозиновая головка уже через десятые или даже сотые доли секунды отделяется от актиновой нити, прикрепляясь к ней снова через такое же короткое время. Однако несмотря на чередование прикреплений и отделений, следующих с частотой от 5 до 50 раз в секунду, сила, развиваемая мышцей, остаётся неизменной, так как статистически в каждый момент времени в прикреплённом состоянии находится одно и то же количество мостиков [31]. Расслабление мышцы происходит после прекращения поступления двигательного импульса. При этом ионы кальция переходят обратно в цистерны саркоплазматического ретикулума. Уборка ионов кальция происходит в сторону с более высокой концентрацией этих ионов, поэтому этот процесс требует дополнительных затрат энергии. Процесс уборки ионов кальция называют кальциевым насосом и производится он за счёт энергии, получаемой при расщеплении АТФ, причём на уборку каждого иона кальция затрачивается две молекулы АТФ [24]. Снижение концентрации кальция в саркоплазме вызывает изменение пространственной ориентации тропонина, что в конечном итоге приводит к невозможности образования поперечных мостиков между толстыми и тонкими нитями. За счёт упругих сил, возникших ранее (при мышечном сокращении) в коллагеновых нитях, окружающих мышечное волокно, мышца расслабляется и возвращается в исходное положение, чему также может способствовать и сокращение мышц-антогонистов [11].^ 7.2.3 Изменение величины силы в фазе подъёма Количество поперечных мостиков, связывающих актиновые и миозиновые нити, а, следовательно, и развиваемая мышечная сила согласно теории скользящих нитей, зависит от степени перекрытия толстых и тонких нитей, а значит, и от длины саркомера или мышцы. Максимум развиваемой изолированной мышцей силы будет наблюдаться при длине, примерно соответствующей состоянию покоя. При уменьшении длины сила уменьшается из-за того, что актиновые и миозиновые нити начинают мешать друг другу, а при растяжении мышцы до большей, чем в покое, длины сила уменьшается из-за того, что нити актина оказываются вытянутыми из миозиновых пучков. При этом только часть головок миозина может присоединиться к актину [31]. В реальных условиях мышцы, прикрепляющиеся к костям, вызывают движение рабочих звеньев тела. С движением рабочего звена меняется угол в суставе и, следовательно, длина обслуживающих данное сочленение мышц и угол подхода их к месту прикрепления на кости. При этом увеличиваются или уменьшаются плечо и момент силы мышц, что, в свою очередь, изменяет механические условия их работы. Эти условия могут быть выгодными, когда силовой потенциал используется полностью, и невыгодными, когда максимальное напряжение мышц используется только частично [18].Сила, проявляемая в наименее целесообразной с механической точки зрения фазе движения, часто составляет не более 50-60% (рисунок 7.7) от силы в наиболее целесообразной его фазе [23].Рисунок 7.7 А – динамика максимальной силы при сгибании руки в локтевом суставе (по Платонову В.Н.).Б – рисунок, иллюстрирующий сгибание руки в локтевом суставе (по [27]).1 – плечевая кость; 2 – двуглавая мышца плеча; 3 – плечевая мышца; 4 – плечелучевая мышца; 5 – лучевая кость; 6 – локтевая кость; 8 – трёхглавая мышца плеча (разгибатель локтевого сустава)При подтягивании на перекладине наименее благоприятным является верхний участок траектории движения в фазе подъёма, который недостаточно подготовленные спортсмены проходят с большим трудом, особенно в конечной части выполнения упражнения. В начале подтягиваний, когда силовые способности спортсмена находятся на должном уровне, он может проходить проблемный участок по инерции – за счёт набранной ранее скорости. По мере накопления усталости силовые способности спортсмена снижаются настолько, что он уже не может набрать необходимую скорость. Поэтому в случае недостаточного уровня развития силы спортсмен «зависает» на верхнем участке траектории движения, затрачивая на его прохождение неоправданно большое количество энергии. На рисунке 7.8 приведены графики зависимости резерва силовых способностей от высоты подъёма для 6 человек – 5 спортсменов (КМС и МС по полиатлону) и одного человека, не занимающегося спортом. Резервом силы в данном случае считается сила, которую способен развить испытуемый в какой-либо точке траектории движения сверх веса своего тела. Поскольку рост (а значит, и высота подъёма) и вес тела спортсменов различен, их силовые способности следует выражать в относительных единицах. Так, высота подъёма из исходного положения до уровня грифа принята за 100%, а резерв силы выражен в долях веса тела каждого из участников эксперимента.В нижней части траектории движения (от 0 до 30 %) характер изменения резерва силы может быть
Похожие работы
Альфред адлер: индивидуальная теория личности биографический очерк
АЛЬФРЕД АДЛЕР: ИНДИВИДУАЛЬНАЯ ТЕОРИЯ ЛИЧНОСТИ БИОГРАФИЧЕСКИЙ ОЧЕРКАльфред Адлер (Alfred Adler) родился в Вене 7 февраля 1870 года, третьим из шести детей. Как и Фрейд, он…
«Макроэкономические проблемы рф»
Секция 10. «Макроэкономические проблемы РФ»Руководитель – Еремина Марина Юрьевна, доцент кафедры «Экономика и управление»Место проведения: Аудитория 518 учебного корпуса 7 Голев Степан Вячеславович, «Камчатский государственный…
«Страна Буквляндия»
Всем учителям, которые убеждены в том, что при обучении иностранному языку удовольствие и успех идут вместе.УЧИМСЯ ЧИТАТЬ, ИГРАЯПисецкая Алина, НОУ “Аврора”БлагодарностьМне бы хотелось поблагодарить тех,…
Xvi международная конференция
XVI Международная конференция «Информационные технологии на железнодорожном транспорте» и выставка отраслевых достижений «ИНФОТРАНС-2011»11-12 октября, г. Санкт-Петербург, «Парк Инн Прибалтийская» IT-инновации для железнодорожного транспортаОрганизатор: ООО «Бизнес…
«фізика навколо нас»
Фізичний вечір на тему: «ФІЗИКА НАВКОЛО НАС»І. Вступ(Лунає музика.Виходять учні)Учень.УВАГА! УВАГА!На вечорі цьомуНемає артистів, еквілібристів,Дуетів,квартетів,славетних солістів.Ровесники, друзі,Тут ваші знайомі,Що разом із вами за партами сидять.Ми…
«экспресс каникулы в скандинавии» финляндия швеция обозначение тура: фш3
«ЭКСПРЕСС КАНИКУЛЫ В СКАНДИНАВИИ»ФИНЛЯНДИЯ – ШВЕЦИЯ Обозначение тура: ФШ3 Круиз по Балтийскому морю – ХЕЛЬСИНКИ – ТУРКУ – СТОКГОЛЬМ ОТЪЕЗД ИЗ САНКТ – ПЕТЕРБУРГА: на…