Атомная энергия 2

–PAGE_BREAK–Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяющееся в активной зоне реактора 1, отбирается водой (теплоносителем) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.
Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.
Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. В СССР строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.
В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур — пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева (рис. 3). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.
При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.
К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.
В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).
Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпентиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.
При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.
Наличие биологические защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.
Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС — использование пара сравнительно низких параметров, насыщенного или слабоперегретого.
При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.
В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор — турбина. В машинном зале расположены турбогецераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.
Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30—40% (на ТЭС 60—70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности — в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского моря. 
В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.
В Советском Союзе осуществляется широкая программа ввода в строй крупных энергетических блоков (до 1000 Мвт) с реакторами на тепловых нейтронах. В 1948—49 были начаты работы по реакторам на быстрых нейтронах для промышленных АЭС. Физические особенности таких реакторов позволяют осуществить расширенное воспроизводство ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт возможность использовать не только 235U, но и сырьевые материалы 238U и 232Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования реакторов для мощных АЭС, например в г. Мелекессе построен опытный реактор БОР-60.
Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).
На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическая конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980—2000), когда АЭС станет одним из основных производителей электроэнергии.

Безопасность атомных станций с реакторами ВВЭР, РБМК, ЭГП и БН
В соответствии с федеральными законами в области использования атомной энергии, нормами и правилами по безопасности в 2003 году на атомных станциях выполнен большой объем работ по модернизации оборудования и систем с целью повышения их уровня безопасности и приведения к современным требованиям.
Продолжались работы по основным направлениям деятельности концерна «Росэнергоатом», прежде всего в области повышения безопасности энергоблоков АЭС и обеспечения централизованного управления атомными станциями:
·                    совершенствование централизованного управления и обеспечение безопасной эксплуатации АЭС со стороны подразделений эксплуатирующей организации — концерна «Росэнергоатом»;
·                    совершенствование и повышение эффективности работы Кризисного центра концерна;
·                    обеспечение эффективной научно-технической поддержки эксплуатации АЭС со стороны научного центра концерна — ВНИИАЭС, других поддерживающих научных и проектно-конструкторских организаций;
·                    укрепление материально-технической базы и готовности отраслевого Аварийно-технического центра к ликвидации проектных и запроектных аварий;
·                    расширение материально-технической базы и совершенствование работы отраслевых учебных центров подготовки эксплуатационного и ремонтного персонала;
·                    обеспечение финансирования работ по повышению безопасности АЭС из централизованных источников.
Основными приоритетами при эксплуатации энергоблоков АЭС являются:
·                    обеспечение ядерной, радиационной, технической, пожарной, экологической безопасности и техники безопасности;
·                    экономическая эффективность;
·                    культура безопасности;
·                    соблюдение норм и правил по безопасности.
Рассмотрение ситуации, предшествовавшей аварии на 4 блоке ЧАЭС показали, что возможны исключительные нарушения регламента и режимов работы оборудования которые в сочетании с положительным паровым эффектом реактивности большим по величине 4 5 эф и низкой скоростью ввода отрицательной реактивности системой управления и защиты в аварийных режимах могут привести к катастрофическим последствиям.
Поэтому основное содержание мероприятий по повышению безопасности реакторов РБМК, начиная с 1986г., сводилось к уменьшению парового эффекта реактивности и увеличению скорости ввода отрицательной реактивности системой СУЗ в режиме аварийной защиты.
Под паровым эффектом реактивности понимают ту реактивность, которая высвобождается при превращении воды, заполняющей технологические каналы в пределах активной зоны в пар, т.е. при изменении паросодержания на 100%.
Негативное влияние положительного парового эффекта реактивности на динамику реактора и его безопасность проявляется в том, что при таких изменениях параметров реактора как рост мощности, снижение давления в КМПЦ, снижение расхода питательной воды, снижение расхода воды в КМПЦ и др. приводит рост паросодержания, вносится положительная реактивность, приводящая к росту мощности.
При анализе мощностного эффекта реактивности сделан вывод о том, что при величине парового коэффициента реактивности 0,05 эф, который является составной частью быстрого мощностного коэффициента реактивности, устойчивость общей мощности реактора РБМК при больших выгораниях существенно зависит от взаимодействия всего оборудования энергоблока и настройки тепловой автоматики. В итоге при нормальной работе тепловой автоматики, эффект саморегулирования за счет отрицательного быстрого мощностного эффекта реактивности отсутствовал, все функции управления и обеспечения безопасности ложились на систему управления и защиты. Задачи управления реактором при нормальных условиях эксплуатации были решены путем разработки и внедрения системы локальных автоматических регуляторов.
При анализе безопасности считалось, что паровой коэффициент реактивности положительный при рабочих параметрах.
При дальнейшем снижении плотности воды расчетный паровой коэффициент уменьшался по величине и становился отрицательным. В итоге полный эффект обезвоживания считался нулевым и даже отрицательным.
После аварии на ЧАЭС этот вывод был подвергнут критике и расчетам с использованием более совершенных методик (метод Монте-Карло и др.). Было показано, что плотностной коэффициент реактивности топливной ячейки остается отрицательным во всем диапазоне изменения плотности воды, а суммарный эффект реактивности при обезвоживании активной зоны без ДП при рабочих параметрах в критическом состоянии положительный и примерно равен паровому эффекту реактивности.
Этот вывод был экспериментально подтвержден при экспериментах по обезвоживанию КМПЦ на реакторах 1, 2 блоков ЧАЭС и 1 блоке САЭС.

Радиационная безопасность атомных станций

Исходя из принципов обеспечения радиационной безопасности, принятых мировым сообществом, одной из основных задач АЭС концерна в 2003 году было дальнейшее уменьшение степени воздействия ионизирующего излучения на человека посредством создания условий для поддержания на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц.
Основные дозовые пределы облучений персонала соблюдаются на всех АЭС концерна. Кроме того, уже в течение многих лет продолжается процесс снижения облучаемости персонала.
    продолжение
–PAGE_BREAK–В результате выполненных в 2003 году организационных и технических мероприятий коллективные дозы облучения персонала и командированных на АЭС лиц снизились по сравнению с 2002 годом примерно на 20 %, а с начала переходного периода на новые, более жесткие дозовые пределы (1996 год) — в 1,9 раза.
На АЭС с реакторами ВВЭР и БН достигнуты предельно низкие уровни доз облучения, сравнимые с показателями лучших АЭС мира.

Результатом реализации принятой концерном в 2002 году Программы работ по снижению дозозатрат персонала на АЭС с РБМК-1000 в соответствии с требованиями НРБ-99 стало уменьшение в 2003 году коллективной дозы облучения персонала АЭС с реакторами РБМК примерно на 24 % (в 1,3 раза). Однако задача по снижению облучаемости персонала на АЭС с реакторами РБМК будет актуальна и в будущем.
Средние индивидуальные дозы облучения персонала и командированных на АЭС лиц близки к дозе облучения населения от природных источников излучения (1,5 — 15 мЗв, в отдельных регионах — до 50 мЗв в год).
Следует отметить, что благодаря целенаправленной работе эксплуатирующей организации и АЭС в 2003 году на атомных станциях концерна отсутствует персонал, получивший дозу облучения более 20 мЗв,
Дальнейшее снижение облучаемости персонала АЭС будет определяться совершенствованием управления ремонтными работами посредством применения методологии ALARA, внедрения и широкого использования быстросъемных защитных экранов, электронных прямопоказывающих дозиметров, а также за счет оптимизации длительности ремонтов и т. д.
Многолетние данные радиационного контроля в районах расположения АЭС свидетельствуют о том, что в режиме нормальной эксплуатации атомные станции не оказывают обнаруживаемого влияния на население и окружающую среду.
В 2003 году газоаэрозольные выбросы и жидкие сбросы всех АЭС были значительно меньше установленных допустимых значений и создали дополнительную к фоновому облучению населения от природных источников излучения дозу не более:
·                    0,1 мкЗв на АЭС с ВВЭР-1000;
·                    0,5мкЗв на АЭС с ВВЭР-440;
·                    2,0 мкЗв на АЭС с РБМН-1000.
Таким образом, уровень радиационного воздействия АЭС на население и окружающую среду в 2003 году составил 0,003 — 0,06 % от дозы, создаваемой природными источниками излучения, и не может быть измерен на фоне естественной радиации. Радиационный риск воздействия АЭС на население составляет менее 10-6 в год и согласно Нормам радиационной безопасности (НРБ-99) является безусловно приемлемым.

Белоярская АЭС
 Белоярская атомная станция — единственная АЭС с энергоблоками разных типов на которых отрабатывались принципиальные технические решения для большой ядерной энергетики.
 На станции сооружены три энергоблока: два с реакторами на тепловых нейтронах и один с реактором на быстрых нейтронах.
 Энергоблок 1 с водографитовым канальным реактором АМБ-100 мощностью 100 МВт остановлен в 1981 г., энергоблок 2 с реактором АМБ-200 мощностью 200 МВт остановлен в 1989 г.
 В настоящее время эксплуатируется третий энергоблок с реактором БН-600 электрической мощностью 600 МВт, пущенный в эксплуатацию в апреле 1980 г., — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.
Опыт создания и освоения энергоблока 3, проводимые на его оборудовании научно-исследовательские работы, опыт совершенствования его систем широко используются для дальнейшего развития энергетики с реакторами на быстрых нейтронах. Блок 3 является прототипом более мощных энергоблоков будущего с реакторами БН-800.
 В 1999 году после многих лет разработки и изготовления на станцию поставлен учебный тренажер блочного щита управления энергоблока БН-600. Это новое средство подготовки и поддержания квалификации персонала существенным образом дополнило действующую систему подготовки и должно увеличить надежность и безопасность энергоблока.
 Тренажер полностью соответствует существующему блочному щиту управления третьего энергоблока БАЭС.
 Для строителей и энергетиков
Белоярской АС построен благоустроенный город, расположенный недалеко от водохранилища и окруженный живописным сосновым бором. В городе имеется энергетический техникум для подготовки специалистов в области ядерной энергетики.

История создания Белоярской АЭС
 Белоярская АС им. И.В. Курчатова —
первенец большой ядерной энергетики СССР. Станция расположена на Урале, в 3-х километровой зоне от станции построен город энергетиков — Заречный.
 Строительство первой очереди было начато в 1958 г., а в апреле 1964 г.
вступил в строй энергоблок с водографитовым канальным реактором мощностью 100
МВт. Второй энергоблок мощностью 200 МВт был введен в эксплуатацию в 1967 г.
 В настоящее время эти энергоблоки выведены из промышленной эксплуатации как выработавшие свой ресурс. Топливо из реакторов выгружено и находится на длительном хранении в специальных бассейнах выдержки, расположенных в одном здании с реакторами. Все технологические системы, работа которых не требуется по условиям безопасности, остановлены. В работе находятся только вентиляционные системы для поддержания температурного режима в помещениях и система радиационного контроля, работа которых обеспечивается круглосуточно квалифицированным персоналом.
 В 1980 г. пущен третий энергоблок мощностью 600 МВт с реактором на быстрых нейтронах. Белоярская АС с уникальной реакторной установкой БН-600 наряду с выработкой электроэнергии выполняет функцию воспроизводства ядерного топлива. Это крупнейший в миреэнергоблок с реактором на быстрых нейтронах, который успешно эксплуатируется до настоящего времени. Опыт эксплуатации реактора БН-600 позволил развить новое направление в реакторостроении — создание реакторов-воспроизводителей с жидкометаллическими теплоносителями.
Планируется запуск энергоблока №4 с реактором БН-800 в 2009 году.

Билибинская атомная станция
Билибинская атомная теплоэлектроцентраль — это первенец атомной энергетики в Заполярье, уникальное сооружение в центре Чукотки, обеспечивающее жизнедеятельность горнорудных и золотодобывающих предприятий Чукотки (800 км к югу от Певека, 2000 км к северу от Магадана и 12000 км от Москвы).
 Зима длится более 10 месяцев в году, зимняя температура иногда достигает — 55 ОС и зимой круглые сутки темно. Город, окруженный сотнями километров огромных озер, болот, куда добраться можно только по воздуху, или долгая дорога в 2000 км от Магадана. И то это возможно только зимой, когда земля сильно промерзает, на санях, запряженных оленями. Сельская местность, где в изобилии водятся дикие животные: огромные полярные волки, медведи, северные олени, лоси и росомахи.
 Билибинская атомная теплоэлектроцентраль сооружена в 1974 — 1976 гг. и является комбинированным источником электрической и тепловой энергии. Она обеспечивает энергоснабжение промышленных объектов и поселков в автономном режиме.
 При разработке и проектировании реакторной установки учитывались наличие вечной мерзлоты и необходимость работы ATЭЦ в изолированной энергосистеме. Станция состоит из четырех однотипных энергоблоков суммарной электрической мощностью 48 МВт с реакторами ЭГП-6 (водно-графитовый гетерогенный реактор канального типа). Прототипами данного типа реактора послужили — реактор первой в мире АЭС в Обнинске и два реактора на Белоярской АЭС.
 Реакторы для станции спроектировали в Обнинском ФЭИ. Проект станции разработал Урал ТЭП.
 Удачным решением надо считать блокировку технических сооружений в одном здании — главном корпусе станции; а также применение несущего каркаса здания металлоконструкций, что позволило произвести их изготовление на заводах «материка», а на месте в Билибино осуществить монтаж главного корпуса станции на все четыре блока. Все это в условиях Крайнего Севера дало возможность организовать 3-х сменную непрерывную работу станции (включая работу в выходные дни) в помещениях с положительной температурой.
 АТЭЦ работает в изолированном Чаун-Билибинском энергоузле и связана с этой системой линией электропередачи длиной 1000 км. В состав энергоузла помимо БиАТЭЦ входит плавучая дизельная электростанция, с поэтическим названием «Северное сияние» (24 МВт) и Чаунская ТЭЦ (30,5 МВт). Общая установленная мощность системы 80 МВт. Но существующие экономические трудности края сократили потребности в электричестве. Поэтому, несмотря на проектную мощность Билибинской АЭС в 48 МВт последние пять лет, её средняя нагрузка составляла 15-25 МВт. Станция способна работать при весьма неравномерном суточном графике нагрузок энергосистемы.
 БиАТЭЦ также снабжает теплом прилегающий промышленный комплекс и жилой массив, будучи единственным источником тепловой энергии в районе. Основная доля потребляемой тепловой энергии приходится на коммунально-бытовое потребление многонационального населения края, занятого в основном золотодобычей.
 В поселке Билибино с населением около 10 тысяч человек проживают работники АС, геологи, строители, золотодобытчики. При этом персонал БиАТЭЦ составляет 670 человек.
 Здесь имеются спортивно-оздоровительный комплекс, горнолыжная трасса, школы, детские сады и другие учреждения.

История создания Билибинской АЭС
В тридцатые годы русский ученый Билибин из Москвы, был убежден, что на крайнем севере России есть золото. Через два десятилетия в этом районе действительно было найдено золото. В семидесятые годы этот край был уже заселен, и город золота получил название Билибино в честь ученого.
 Атомная энергия в этом отдаленном уголке земли оказалась самым эффективным средством снабжения золотодобывающей промышленности и поэтому построили Билибинскую АТЭЦ. В годы расцвета в городе насчитывалось 15000 жителей, большинство которых жило в домах, построенных на шестах, защищающих их от вечной мерзлоты. Каждый год добывалось приблизительно 5 тонн золота. Сейчас эта отрасль переживает спад.
 12 января 1966 года принято постановление Совета Министров СССР о строительстве Билибинской атомной электростанции.
 Стройка в 1967 году была объявлена Всесоюзной ударной. Коллектив стройки в основном был укомплектован молодежью комсомольского возраста, в своем большинстве прибывшим по комсомольским путевкам.
 Монтажные работы по сооружению БиАТЭЦ начались в 1969 г. участком треста «Дальэнергомонтаж». СУ БиАЭС подготовило фундамент под будущую станцию. ДЭМ притупил к монтажу металлоконструкций главного корпуса.
 В начале 1971 года ДЭМ сменил Билибинский монтажный участок треста «Востокэнергомонтаж», который имел опыт монтажа оборудования крупнейших ГРЭС. Монтажники ВЭМа продолжили монтаж каркаса главного корпуса, выполнив более половины объёма работ (а всего более 300 тонн). Монтаж был выполнен с высоким качеством. Каркас главного корпуса собран на высокопрочных болтах — современной по тем временам технологии. Одновременно развернулись работы по монтажу радиаторных охладителей трубопроводов и оборудования первого блока.
 В 1973 году был произведен пробный пуск турбины первого блока с испытательным прокручиванием её до 3000 оборотов в минуту и продувкой всех технических паропроводов БиАЭС. Пар давала пусковая котельная.
 К декабрю 1973 г. основные работы пускового комплекса 1-го блока БиАТЭЦ были завершены.
 14 января 1974 г. БиАТЭЦ дала первый промышленный ток в сеть Чаун-Билибинского узла.
 Четкая организация строительства, внедрение недельно-суточного планирования и ежедневный диспетчерский контроль сетевого графика производства работ при централизованном завозе материалов и конструкций в технологической последовательности всем участникам строительства, высокий технический уровень специалистов и рабочих кадров позволил в кратчайшие сроки с 1974 по 1976 годы ввести в эксплуатацию все четыре блока Билибинской АТЭЦ.
 Блоки №1 и №2 были введены в эксплуатацию в 1974 г. В 1975 году был запущен блок №3 и 28 декабря 1976 года блок №4.

Волгодонская атомная станция
Проект строительства Волгодонской АЭС в составе четырех энергоблоков мощностью 1 млн. кВт каждый утвержден приказом Минэнерго СССР от 12.10.79 № 133пс.
  В связи с решением сессии Волгодонского областного Совета народных депутатов от 28 06 90 Советом Министров СССР было принято решение о прекращении строительства Волгодонской АЭС. С 01.01.91 Волгодонская АЭС находилась на консервации по специальному технологическому режиму. С целью возобновления работ по достройке Волгодонской АЭС в 1994 г. был выполнен Проект по оценке воздействия Волгодонской АЭС на окружающую среду (ОВОС).
  В соответствии с поручением Правительства РФ (от 12.08.98 № БН-П7-23423) выполнена доработка проектных материалов с учетом замечаний государственной экспертизы Повторная государственная экологическая экспертиза доработанного проекта Волгодонской АЭС (заключение от 10.02.2000 № 62) отметила соответствие указанного проекта требованиям законодательных и нормативных документов РФ и рекомендациям МАГАТЭ и сочла возможным реализацию проекта в составе двух энергоблоков.
  Получены лицензии Госатомнадзора России на сооружение энергоблока 1 (№ ГН-02-101-0481 от 10.05.2000) и его эксплуатацию (№ ГН-03-101-0582 от 19.01.2001).
  Объединенная энергетическая система (ОЭС) Северного Кавказа, в которую включена Волгодонскую АЭС, обеспечивает энергоснабжение 11 субъектов Российской Федерации обшей площадью 431,2 тыс. км с населением 17,7 млн. человек.
  Проектом, кроме выработки электроэнергии, предусмотрена возможность теплоснабжения г. Волгодонска и его промузла.
  Проект Волгодонской АЭС относится к серии унифицированных проектов с реакторами ВВЭР-1000. Каждый из энергоблоков мощностью по 1000 МВт размещается в отдельно стоящем главном корпусе.
  Энергоблок включает в себя реакторную установку В-320 и турбоустановку. Тепловая, схема энергоблоков двухконтурная. Первый, контур (радиоактивный) состоит из реактора, главных циркуляционных насосов, парогенераторов и компенсатора давления. Второй, нерадиоактивный, контур состоит из турбоустановки, водопитательной установки, паровой части парогенераторов и связывающих это оборудование трубопроводов.
  Топливо размещается в корпусе реактора в активной зоне, содержащей 163 тепловыделяющих сборок. В этих сборках топливо находится в виде таблеток слабообогащенного по урану-235 оксида урана, заключенных в герметичные трубки из циркониевого сплава.
    продолжение
–PAGE_BREAK–  Теплоносителем первого контура является вода высокой чистоты под давлением 160 кг/см2 (16.0 МПа) с растворенной в ней борной кислотой.
  Применение в качестве теплоносителя и замедлителя нейтронов воды позволяет получить в реакторе ВВЭР-1000 отрицательный температурный коэффициент реактивности, определяющий высокую стабильность и саморегулируемость реактора.
 Проектом Волгодонской АЭС намечено благоустройство и озеленение территории промплощадки, пристанционной площади и санитарно-защитной зоны.
  В административном отношении площадка АЭС расположена в Дубовском районе Волгодонской области в 13,5 км от г. Волгодонска и в 19 км от г. Цимлянска.
  Ближайшие населенные пункты — хутор Харсеев и хутор Подгоренская — расположены вне санитарно-защитной зоны АЭС на расстоянии 3,5 и 5 км.
  В зону наблюдения АЭС радиусом 30 км входят части территории четырех административных районов Волгодонской области — Волгодонского, Цимлянского, Дубовского и Зимовниковского с общей численностью населения 227 тыс. человек.
  Плотность населения в зоне наблюдения АЭС (радиусом 30 км) составляет 81 чел/км2.
  В зоне расположения Волгодонской АЭС наблюдаются пыльные бури продолжительностью 6 дней в году и туманы в течение 50 дней в году преимущественно в холодный период. Среднее количество осадков в данном регионе колеблется от 388 до 428 мм/год при максимальных значениях 434 мм/год.
  Природная радиационная обстановка в районе размещения АЭС благополучная.
  Площадка АЭС расположена на левом берегу Цимлянского водохранилища, созданного в нижнем течении р. Дон в 1952 г. Площадь зеркала Цимлянского водохранилища при нормальном подпорном уровне 36,0 абс. м составляет 2700 км2, а полный его объем близок к объему среднегодового стока р. Дон и составляет около 24 км3. Расстояние от главных корпусов до Цимлянского водохранилища около 2 км, так как граница водохранилища отделена от промплощадки дамбой водоема-охладителя.

История создания Волгодонской АЭС
 Технический проект Ростовской (Волгодонской) АЭС разработан Горьковским отделением института «Атомэнергопроект» в соответствии с постановлением Совета Министров СССР от 21.10.76 № 87Д.
 Технический проект Ростовской АЭС был утвержден Минэнерго СССР 13.10.79 г. приказом № 133 и Постановлением СМ СССР от 15.11.79 г. № 1000.
 В октябре1979 года начато строительство Ростовской АЭС.
 29 августа 1990 года, строительство РоАЭС было приостановлено, станция переведена в режим консервации. Готовность первого энергоблока составила 95%, второго энергоблока — 30%; сооружена фундаментная плита третьего энергоблока, и вырыт котлован для четвертого энергоблока.
 Однако в связи с получившими широкое распространение выступлениями против пуска в эксплуатацию Ростовской АЭС по просьбе Совета народных депутатов Ростовской и Волгоградской областей было принято решение Совета Министров СССР и РСФСР о приостановлении с 01.09.90 г. строительства Ростовской АЭС (протокол совещания у Председателя Совета Министров РСФСР И. С. Силаева и заместителя Председателя Совета Министров СССР Л. Д. Рябева от 29.08.90).
 Этим же решением Минатомэнергопрому СССР было предписано обеспечить полную сохранность построенных зданий и сооружений и смонтированного в них оборудования, а Госкомприроды СССР обеспечить проведение экологической экспертизы проекта.
 Приказом Минприроды России от31.03.95 г. № 131 была образована экспертная комиссия государственной экологической экспертизы по проекту Ростовской АЭС, согласно заключению которой от 14.07.95 г. проект строительства АЭС был одобрен при условии реализации замечаний и предложений экспертной комиссии и ограничения мощности АЭС двумя энергоблоками.
 В соответствии с поручением Правительства Российской Федерации от 12.08.98 г. № БН-П7-23423 Нижегородским институтом «Атомэнергопроект» с привлечением многочисленных научно-исследовательских организаций, в том числе из Ростовской области, выполнена доработка проекта. Минатомом России представлен на государственную экологическую экспертизу в Госкомэкологии России доработанный проект Ростовской АЭС с учетом замечаний и предложений «Сводного заключения экспертной комиссии государственной экологической экспертизы Минприроды России по проекту Ростовской АЭС» от 14.07.95 г. и «Решения Совета государственной экологической экспертизы Минприроды России по результатам государственной экологической экспертизы проекта Ростовской АЭС» от 03.10.95 №22.
 7 февраля 2000 года экспертная комиссия Государственной экологиче-ской экспертизы дала заключение о соответствии проекта Ростовской АЭС требованиям природоохранного законодательства РФ.
 10 мая 2000 года Госатомнадзор России выдал лицензию на продолжение сооружения энергоблока № 1 Ростовской АЭС с реактором ВВЭР-1000.
 В сентябре 2000 года проведены испытания гермооболочки реакторного отделения, Госатомнадзором были подписан акт об успешном их завершении.
 В октябре 2000 года успешно проведена «холодная» и «горячая» обкатка оборудования энергоблока.
 19 января 2001 года Госатомнадзором России выдал лицензию на эксплуатацию энергоблока №1 Ро АЭС.
 21 января 2001 года в 12 часов 48 минут в реактор была загружена первая из 163 кассет с ядерным топливом.
 23 февраля 2001 года был осуществлен вывод реактора первого энергоблока на минимально контролируемый уровень мощности (МКУ).
 30 марта 2001 года в 8 часов 47 минут осуществлено включение турбогенератора I-го энергоблока РоАЭС в сеть ЕЭС России.
 4 июля 2001 года в 7 часов 49 минут первый энергоблок выработал первый миллиард киловатт-часов электроэнергии.
 5 сентября 2001 года в 23 часа тепловая мощность была доведена до проектной — 100% номинальной.
 В течение 11 по 26 ноября 2001 года — успешно проведено комплексное опробование энергоблока № 1 на номинальной проектной мощности.
 19.10.2001 года Александр Васильевич Паламарчук назначен директором обособленного структурного подразделения концерна «Росэнергоатом» — «Волгодонская АЭС». Одновременно он же, в соответствии с приказом министра по атомной энергии Александра Юрьевича Румянцева, № 814 от 19.10.2001 года, стал директором государственного унитарного предприятия «Дирекция строящейся Ростовской АЭС».
 25 декабря 2001 года Приказом № 681 Министра по атомной энергии Румянцевым Александром Юрьевичем утверждён Акт Государственной приёмочной комиссии о приёмке в промышленную эксплуатацию первого энергоблока Ростовской АЭС.
 На 2007 год запланирован ввод в эксплуатацию 2 блока Волгодонской АЭС.
Полномасштабный тренажер для Волгодонской АЭС
13 июля 2004 года Волгодонскую АЭС посетили представители Международной программы ядерной безопасности (МПЯБ). В составе американской делегации на ВДАЭС прибыли руководители программы: представитель департамента энергетики США Ричард Райстер, представитель Тихоокеанской Северо-Западной Национальной лаборатории Боб Моффитт, а также руководитель проекта «Разработка полномасштабного тренажера для Волгодонской АЭС» Джеффри Эйс и представитель департамента энергетики США (московский офис) Михаил Циклаури.
Основная цель визита – передача в учебно-тренировочное подразделение станции полномасштабного тренажера ВДАЭС, сооруженного при содействии правительства США и участии американских фирм.
Передача полномасштабного тренажера состоялась в торжественной обстановке в присутствии руководителя департамента международной деятельности концерна «Росэнергоатом» Анатолия Кириченко, первого заместителя руководителя департамента по управлению персоналом концерна «Росэнергоатом» Николая Карелина, представителя фирмы «Джэт» Владимира Дрозкова и исполняющего обязанности директора Волгодонской АЭС Андрея Петрова.
Занятия оперативного персонала Волгодонской АЭС на новом тренажере, который представляет собой сплав самых передовых технологий и опережает по своим возможностям и техническим характеристикам большинство существующих в мире аналогов, начнутся уже с 1 сентября нынешнего года.
Управляющей компанией по реализации проекта и основным исполнителем работ по изготовлению полномасштабного тренажера Волгодонской АЭС стала фирма «ДЖЭТ» (General Energy Technologies), специалисты которой подготовили полномасштабные тренажеры более чем для 30 атомных электростанций мира.
Монтаж, наладка и испытания тренажера были выполнены на площадке ВНИИАЭС

Калининская атомная станция
 Калининская атомная станция расположена на севере Тверской области вблизи города Удомля.
 С потребителями энергии Калининскую АС связывают три линии электропередачи напряжением 750 кВ (Москва, Санкт-Петербург и Владимир) и две линии напряжением 330 кВ (Тверь).
 Современные проектные решения, мероприятия по реконструкции и модернизации устаревшего и отработавшего срок оборудования, высокое профессиональное мастерство персонала являются надежной базой безопасной и эффективной эксплуатации АС.
 Строящийся энергоблок №3 имеет 80% готовность. По графику строительства его пуск предусматривается в 2005 г.
Основные технические характеристики оборудования КАЭС:
 Тепловая схема КАЭС — двухконтурная. Первый контур состоит из одного реактора типа ВВЭР-1000 (В-320,  малая серия) и четырёх циркуляционных петель охлаждения. Теплоносителем и  замедлителем служит обычная вода с дозированным содержанием бора. Второй контур состоит из одной турбоустановки с системой регенерации, испарительной и водопитательной установок.
 На Калининской АЭС используются реакторные установки типа ВВЭР-1000 ПО «Ижорский завод», конструкция которой соответствует требованиям национальных стандартов, действовавших в период проектирования АЭС:
 • автоматическая остановка реактора при незначительных нарушениях в работе основного оборудования;
 • трехканальное построение систем
безопасности, каждая из которых функционирует совершенно независимо и автономно;
 • наличие защитной герметичной оболочки, в которой
расположено всё реакторное оборудование;
 • способность реакторной
установки к саморегуляции.
 Парогенератор ПГВ-1000 — однокорпусный теплообменный аппарат горизонтального типа с погруженным трубным пучком. Парогенератор предназначен для производства сухого насыщенного пара из воды второго контура. Калининская АЭС — единственная из атомных электростанций с реакторами ВВЭР-1000, построенных по российским проектам, эксплуатирует парогенераторы первого энергоблока более 100 000 часов, без замены.
 Турбина К-1000-60/1500 — паровая, конденсационная, одновальная, четырёхцилиндровая. Турбина является приводом электрического генератора переменного тока типа ТВВ-1000-4УЗ мощностью 1000 МВт и напряжением 24 кВ.
 Система технического водоснабжения — оборотная.
В качестве пруда-охладителя используется естественная система озёр Удомля — Песьво.
 Профессиональное мастерство персонала является необходимым условием безопасной и эффективной эксплуатации АЭС. В связи с этим обеспечению высокого уровня квалификации персонала, а также оценке и развитию необходимых профессиональных качеств операторов уделяется особое внимание. Эта работа проводится в учебно-тренировочном пункте.
 Подготовка ведется на основании типовых программ, в основном индивидуально, и включает в себя теоретическую подготовку, практическое обучение, проверку знаний. Практическое обучение реализуется в форме стажировки на рабочем месте. Для оперативного персонала стажировка обязательно дополняется дублированием, а для ответственных оперативных должностей обязательной является также тренажерная подготовка. С этой целью ведется создание двух полномасштабных тренажеров — прототипы энергоблока №2 и строящегося блока №3.
 9 февраля 2000 г. учебно-тренировочное подразделение КАЭС получило первые две секции полномасштабного тренажера блочного щита управления энергоблока №3. Тренажер размещен в новом здании УТП
 Ведутся работы по созданию аналитического тренажера, где будет возможна инсталляция математических моделей второго и третьего (строящегося) энергоблоков КлнАЭС.
 Население г. Удомля составляет 33700 человек, население района — 11600, всего 45300 человек.
 Основу инфраструктуры города составляют медико-санитарная часть с современным диагностическим оборудованием, физкультурно-оздоровительный комплекс с плавательным бассейном и спортивными залами, киноконцертный зал «Звездный», телевизионная студия.
История создания Калининской АЭС
 Калининская АЭС расположена на севере Тверской области в 150 км от города Тверь. Расстояние до Москвы — 330 км; до Санкт-Петербурга — 400 км. Площадка АЭС примыкает к южному берегу озера Удомля, сообщающимся естественной протокой с озером Песьво.
 Проектом станции было предусмотрено строительство четырех энергоблоков по 1000 МВт (эл.) каждый.  1970 год: Май — На заседании НТО Минэнерго принято решение Центральную АЭС №1 построить в пункте оз. Удомля в Калининской области.
 1973 год: Ноябрь — Совет
Министров СССР утвердил технический проект Калининской АЭС.
 1975
год: Март — Началось строительство открытого отводящего канала. Сентябрь — Началось строительство главного корпуса.
 1978 год: Ноябрь — Началось строительство БНС Na1 и №2. Декабрь — Началась укладка бетона на РО №1.
1978 год Май — Началось строительство объединенного вспомогательного корпуса.
 1981 год: Ноябрь — Началось строительство блока №1.
 1983 год: Декабрь — ВПО
«Союзатомэнерго» утвержден график энергетического пуска и освоения мощности блока №1.
 1984: начало строительства второй очереди Калининской
АЭС. 10 октября 1985 приказом Минэнерго СССР утвержден проект расширения Калининской АЭС до 4000 МВт.
  1985 — 1997: годы вынужденного простоя. Экономический и политический кризис в стране отразился и на темпах строительства блока №3.
  1988: осуществлен монтаж турбины.
  1997 декабрь: установлен на штатное место корпус реактора.
  1998 июль: установлен на штатное место первый парогенератор.
  1999 ноябрь: подано напряжение 0,4 кВ по схеме собственных
нужд.
  2000 июнь: получена лицензия ГАН на достройку 3 блока.  
 2001 июль: закончен монтаж главного циркуляционного трубопровода.
  2002 сентябрь: завершено строительство железобетонной части градирни №1.
  2003г.: после модернизации установлен на штатное место статор генератора, закончен механомонтаж оборудования; получено положительное заключение Государственной экологической экспертизы; произведен пролив технологических систем на открытый реактор; завершено строительство градирни №2; утвержден откорректированный пусковой комплекс; проведена контрольная сборка реактора; начаты комплексные испытания АСУ ТП ХВО; проведены испытания системы герметичного ограждения на прочность и плотность.
  2004 январь: завершена наладка панелей блочного пункта управления РО и ТО в составе АСУ ТП.
  2004 февраль: проведена прокрутка электродвигателей ГЦН, выдан первый куб химобессоленной воды.
  2004 март: осуществлена загрузка в реактор имитационной зоны.
  2004 апрель: выполнены гидроиспытания I и II контура на прочность и плотность, сдан в постоянную эксплуатацию узел свежего топлива.
  2004 май: началась горячая обкатка оборудования реакторной
установки.
  2004 июнь: поставлены под напряжения блочный трансформатор и рабочие трансформаторы собственных нужд, закончены автономные испытания ТПТС
  2004 август: начата ревизия основного оборудования I контура, постановка турбогенератора на валоповорот, сданы БНС, санитарно-бытовой блок СК
    продолжение
–PAGE_BREAK–  2004 сентябрь: сдан спецкорпус, открытый отводящий канал
  2004 октябрь: получена лицензия на эксплуатацию энергоблока №3, проведена загрузка активной зоны ядерным топливом, начался этап «физический пуск» энергоблока.
  2004 ноябрь: осуществлен выход на МКУ.
 22 октября 2002 года министром РФ по атомной энергии и губернатором Тверской области была подписана «Декларации о намерениях по возобновлению строительства блока №4 Калининской АЭС». Целью данного инвестиционного проекта является создание энергетических мощностей энергоблока №4 для замещения и удовлетворения потребности в электроэнергии на федеральном и региональном рынке энергии по оценке складывающегося топливно-энергетического баланса на долгосрочный период.
 В соответствии с Федеральной Целевой программой «Энергоэффективная экономика на 2002-2005 гг. и на период до 2010 г.», предполагаемый срок ввода в действие мощности энергоблока №4 Калининской АЭС — 2010 год. Окончательный срок строительства и ввода объекта в эксплуатацию будет определен после проведения полномасштабной экспертизы материалов «Обоснования инвестиций» в соответствии с действующим законодательством.

Кольская атомная станция
 Бурное развитие промышленности Кольского полуострова требовало и соответствующих темпов роста энергетики. Для Мурманской области, имевшей территориально изолированную государственную энергосистему «Колэнерго», это было особо важно, так как приходилось рассчитывать на собственные ресурсы. Чтобы удовлетворить растущие потребности предприятий Кольского полуострова в электроэнергии, был один путь — производить ее на ядерных установках.
 Кольская АС расположена за Полярным кругом на берегу озера Имандра.
 За период с 1973 по 1984 гг. введены и эксплуатируются четыре энергоблока с реакторами ВВЭР-440:
 – два энергоблока с реакторами В-230, ст.№ 1,2
 – два энергоблока с реакторами ВВЭР-440 В-213, ст. № 3,4.
 Установленная тепловая мощность АЭС составляет 5500 МВт, что соответствует электрической мощности 1760 МВт.
 Кольская АЭС поставляет электроэнергию в энергосистемы «Колэнерго» Мурманской области и «Карелэнерго» Республики Карелия. Связь с ЕЭС России осуществляется четырьмя линиями электропередачи напряжением 330 кВ.
 Выработка электроэнергии Кольской АЭС составляет около 60 % выработки электроэнергии в Мурманской области.
 В 1987 г. на АС организован Учебно-тренировочный центр, который обеспечивает подготовку оперативного персонала реакторного, турбинного, электрического цехов и цеха тепловой автоматики и измерений.
 Город энергетиков — Полярные Зори расположен в южной части Кольского полуострова на расстоянии 220 км от г. Мурманска. Полярные Зори располагается на берегу реки Нива и занимает площадь в 3,6 квадратных километров. Численность постоянно проживающего населения составляет 21,9 тыс. человек. На территории подведомственной городу расположены 2 поселка городского типа (Африканда и Зашеек) и 2 сельских населенных пункта. Поселок Африканда возник как поселение горняков, обогатителей и железнодорожников.
 Кольская АЭС — это единственное градообразующее предприятие, на котором работает около 30% работоспособного населения. Численность работающих в городе Полярные Зори — 8,6 тыс. человек.
 Социальную сферу составляют: 1 гимназия;4 средних образовательных школы, вечерняя школа, ПУ-18. Число учащихся — 3532 человека, (без ПУ-18), 7 садов-яслей.
 В городе две детских музыкальных школы (г. Полярные Зори, п. Африканда), городской Дворец культуры, Дом культуры в п. Африканда, центр творчества учащейся молодежи, клуб патриотического воспитания молодежи, плавательный бассейн, спортивный комплекс, 4 библиотеки. Достопримечательностью города является современная горнолыжная трасса.
 Для медицинского обслуживания работников атомной станции и населения города построены МСЧ, больница в п.Африканда и амбулатория п. Зашеек. Имеется санаторий-профилакторий.
 Центр социального обслуживания включает:
·                     центр дневного пребывания пенсионеров;
·                     социальный приют для детей;
·                     центр реабилитации женщин.
 Кольский полуостров располагает уникальными природными ресурсами. Это — апатитовый, нефелиновый, железорудный концентраты, медь, никель, кобальт, слюда, алюминий, лес и, наконец, рыбная промышленность.
 В городе развита промышленность строительных материалов. Четвертая часть производимых в области сборных железобетонных изделий и конструкций производится на ОАО «ЖБИ». Также это предприятие занимается производством щебня и песка.
 Агропромышленный комплекс: с/х «Полярные Зори» который специализируется по производству мяса, молока и растениеводству.
История создания Кольской АЭС
В 1963 году начались изыскательские работы по выбору площадки под строительство АЭС. В 1967 году Госстрой СССР утвердил проектное задание на ее строительство. 18 мая 1969 года уложен первый кубометр бетона в основание АЭС. Через 5 лет строительство первой очереди было успешно завершено. 17 мая 1973 года закончилась горячая обкатка реактора. 22 июня 1973 года произведены гидравлические испытания систем трубопроводов первого контура. 29 июня 1973 года первенец атомной энергетики Заполярья пущен в эксплуатацию.
 Четыре энергоблока станции с реакторами ВВЭР-440, которые сооружены в 1973-1984 гг. находятся в эксплуатации до настоящего времени.
 В 2003 году на 15 лет сверх первоначально заложенного в проекте продлен срок службы энергоблока №1.

Курская атомная станция
 Курская АС расположена в 40 км юго-западнее г. Курска на левом берегу реки Сейм.
 На АС эксплуатируются четыре энергоблока с канальными реакторами РБМК-1000.
 Курская АС является важнейшим узлом Единой энергетической системы России. Основным потребителем является энергосистема «Центр», которая охватывает 19 областей, в основном центральной России.
Около 30% электроэнергии, вырабатываемой Курской АЭС, используется для нужд Курской области.
 Курская АЭС выдает электроэнергию по 11 линиям электропередачи:
 2 линии (110 кВ) — для электроснабжения собственных нужд;
 6 линий (330 кВ) — 4 линии для электроснабжения области, 2 для севера Украины;
 3 линии (750 кВ) — 1 линия для Старооскольского металлургического комбината, 1 линия для северо-востока Украины, 1 линия для Брянской области.
 Каждая очередь Курской АЭС состоит из двух энергоблоков. Энергоблок включает в себя следующее оборудование:
 – уран-графитовый реактор большой мощности канального типа, кипящий со вспомогательными системами;
 – две турбины К-500-65/3000;
 – два генератора мощностью 500 МВт каждый.
 Каждый блок имеет раздельные помещения для реакторов и их вспомогательного оборудования, систем транспортировки топлива и пультов управления реакторами. Каждая очередь имеет общее помещение для газоочистки и систем спецочистки воды. Все четыре блока Курской АЭС имеют общий машинный зал.
 Режим работы АЭС — базовый, водный режим — бескоррекционный, нейтральный.
 Курская АЭС — станция одноконтурного типа: пар, подаваемый на турбины, образуется непосредственно в реакторе при кипении проходящего через него теплоносителя. В качестве теплоносителя используется обычная очищенная вода, циркулирующая по замкнутому контуру. Для охлаждения отработанного пара в конденсаторах турбин используется вода из пруда — охладителя. Площадь зеркала пруда — охладителя для четырех блоков — 22 квадратных километра. Источником для восполнения потерь служит р. Сейм. Подпитка осуществляется насосной станцией с четырьмя агрегатами суммарной производительностью 14 кубометров в сек.
 В 1986 г. начато сооружение пятого блока третьей очереди АС. Необходимость в нем вызвана потребностями устойчивого электроснабжения Центра России.
 Доработанный проект 3-ей очереди Курской АЭС в составе одного энергоблока мощностью 1000 МВт утвержден Минатомом России в декабре 1995 года, его ввод в эксплуатацию намечен на 2006 г.
 На 5-ом энергоблоке смонтирован реактор третьего поколения с принципиально новыми ядерно-физическими характеристиками, оснащенный новыми системами управления и защиты, который соответствует современным требованиям безопасности.
 Основное оборудование 5-го энергоблока по составу и типам аналогично оборудованию действующих энергоблоков, однако имеет улучшенные технические характеристики, обеспечивающие повышение надежности и безопасности при эксплуатации.
 Выявленные после Чернобыльской аварии конструктивные и другие недостатки блоков с реакторами типа РБМК учтены на стадиях проектирования и сооружения энергоблока №5.
 Население г. Курчатова около 49 тыс. человек. Имеется 11 детских садов, 6 школ. Как собственность Курской АЭС построен профилакторий и детский оздоровительный лагерь. Гордостью г. Курчатова является спортивный комплекс со стадионом нa 500 мест, с плавательным бассейном и дорожками олимпийского стандарта и тремя спортзалами.
История создания Курской АЭС
 Решение о строительстве было принято в середине 60-х годов. Началось строительство в 1971 году. Необходимость была вызвана быстро развивающимся промышленно-экономическим комплексом Курской Магнитной Аномалии (Оскольского и Михайловского горно-обогатительных комбинатов и других промышленных предприятий). Генеральный подрядчик — Управление строительства Курской АЭС.
 1 энергоблок сдан в эксплуатацию в 1976г.
 2 энергоблок сдан в эксплуатацию в 1979г.
 3 энергоблок сдан в эксплуатацию в 1983г.
 4 энергоблок сдан в эксплуатацию в 1985г.
 Установленная электрическая мощность каждого энергоблока 1000 МВт.
 В 2002 году на энергоблоке №1 Курской АЭС завершена модернизация и получена лицензия на эксплуатацию энергоблока на номинальном уровне мощности.
 В настоящее время строится 5-ый энергоблок третьей очереди. Его ввод в эксплуатацию намечен на 2006 год.

Ленинградская атомная станция
 Ленинградская АЭС — крупнейший производитель электроэнергии на Северо-Западе России — расположена на живописном побережье Финского залива, в 80 км к юго-западу от Санкт-Петербурга в г. Сосновый Бор.
  Начало строительства Ленинградской АЭС — сентябрь 1967 года.
  Генеральный подрядчик — Северное управление строительства.
  Станция включает в себя 4 энергоблока электрической мощностью 1000 МВт каждый. 
  На Ленинградской АЭС установлены водо-графитовые реакторы РБМК-1000 канального типа на тепловых нейтронах. 
  Первый блок введен в эксплуатацию в 1973 году, четвертый — в 1981 году. 
  При образовании государственного предприятия «Российский государственный концерн по производству электрической и тепловой энергии на атомных станциях » (концерн «Росэнергоатом») в 1992 Ленинградская АЭС не вошла в его состав, а осталась самостоятельной эксплуатирующей организацией, подчиняющейся непосредственно Минатому.
  С 1 апреля 2002 года Ленинградская АЭС, как и месяцем ранее другие атомные станции России, стала филиалом государственного предприятия «Российский государственный концерн по производству электрической и тепловой энергии на атомных станциях» (Концерн «Росэнергоатом») утратив статус самостоятельного юридического лица.
  Образование Единой генерирующией компании (ЕГК) перестроило отношения с потребителями электроэнергии. Теперь атомные станции на рынке будут представлены единой компанией, и потребители будут рассчитываться с единым продавцом, а не с каждой АЭС в отдельности, как это было ранее. 
Технические характеристики энергоблоков АЭС
  Проектная годовая выработка электроэнергии — 28 млрд. кВт·ч.
  На собственные нужды потребляется 8,0 — 8,5 % от выработанной электроэнергии. 
  ЛАЭС успешно занимается реконструкцией энергоблоков, связанной с внедрением мероприятий по повышению безопасности в соответствии с международными и национальными правилами Госатомнадзора России. 
  Каждый энергоблок включает в себя следующее основное оборудование:
·                    реактор РБМК с контуром циркуляции и вспомогательными системами,
·                    2 турбоустановки типа К-500-65/3000 с паровым и конденсатно-питательным трактом.
·                    2 генератора типа ТВВ-500-2.
  Реактор и его вспомогательные системы размещены в отдельных корпусах. Машинный зал является общим на 2 энергоблока. Вспомогательные цеха и системы для двух энергоблоков являются общими и территориально расположены вблизи каждой из очередей (2 энергоблока) станции. 
  Общая площадь, занимаемая Ленинградской АЭС, 454 га.
Технологическая схема АЭС
  Тепловая схема каждого энергоблока Ленинградской АЭС — одноконтурная. 
  Теплоносителем в реакторе является вода, циркулирующая через технологические каналы по контуру многократной принудительной циркуляции (КМПЦ). 
  Пароводяная смесь из реактора направляется в барабан-сепаратор. Отсепарированный сухой насыщенный пар подается на лопатки турбины. 
  На одном валу с турбинами установлены генераторы, вырабатывающие электроэнергию.
Реакторная установка
  Реактор размещается в шахте на опорной конструкции и окружен биологической защитой — верхней, нижней и боковой. 
  Реакторное пространство заполнено колоннами из графитовых блоков, в центральных отверстиях которых установлены технологические каналы (ТК) и каналы системы управления и защиты (СУЗ). В ТК помещены тепловыделяющие сборки с ядерным топливом — таблетками двуокиси урана. В каналы СУЗ помещены исполнительные органы — стержни, поглощающие нейтроны, заполненные карбидом бора. 
  Для предотвращения окисления графита и улучшения его охлаждения в реакторном пространстве циркулирует смесь гелия с азотом. 
  В реакторе РБМК-1000 предусмотрена возможность замены ТК и каналов СУЗ на остановленном и расхоложенном реакторе.
Ядерное топливо
  Топливом для РБМК является двуокись урана с начальным обогащением по урану-235 — 2,6%. Загрузка реактора ураном — 190 т.
  С января 2001 г. ЛАЭС приступила к экспериментальной загрузке опытной партии топливных кассет с обогащением по урану-235 — 2,8% и содержанием выгорающего эрбиевого поглотителя. Это позволит в дальнейшем при переходе на это топливо увеличить глубину выгорания по отношению к топливу с обогащением 2,6 % и получить дополнительный экономический эффект.
  В реакторе РБМК предусмотрена возможность перегрузки отработанного ядерного топлива на работающем реакторе посредством разгрузо-загрузочной машины (РЗМ).

Барабан-сепаратор
  Представляет собой цилиндрический сосуд горизонтального типа. 
  Внутрисепарационные устройства обеспечивают сепарацию и осушку пара, направляемого на лопатки турбины. 
  При реконструкции энергоблоков 1 и 2 выполнена замена внутрисепарационных устройств с увеличением объема воды в каждом барабане-сепараторе на 50 мЗ и подвод воды к каждому технологическому каналу через барабан-сепаратор для длительного аварийного расхолаживания (верхняя система САОР). 
Турбина
  Турбина К-500-65/3000 — паровая, конденсационная, одновальная, пятицилиндровая (ЦВД + 4ЦНД), номинальной мощностью 500 МВт и частотой вращения ротора — 3000 об/мин. ЦВД и все ЦНД — двухпоточные. После ЦВД осуществляется промежуточный перегрев пара в сепараторе — пароперегревателе. 
    продолжение
–PAGE_BREAK–