Физико-теоретические основы конструирования и надежности

–PAGE_BREAK–1. Выбор и обоснование применения элементной базы.

Для создания разрабатываемого устройства согласно техническому заданию необходимо применить комплектующие отечественного производства и максимально использовать стандартные компоненты и изделия. Исходя из этого выбор элементной базы будет следующим.
1.1. Резисторы, конденсаторы, диоды и другие дискретные компоненты.
Для применения в разрабатываемом устройстве были выбраны резисторы марки МЛТ мощностью 0,25 Вт. Выбор был сделан, исходя из соображений достаточной надежности, точности и низкой общей стоимости прибора. Резисторы марки МЛТ в достаточной степени удовлетворяют вышеприведенным требованиям и являются одной из наиболее распространенных марок резисторов, что сыграло решающую роль при их выборе. Другие дискретные компоненты выбраны исходя из аналогичных соображений.
1.2. Интегральные микросхемы.
Ввиду большого разнообразия серий микросхем, пригодных для использования в разрабатываемом устройстве и значительного количества параметров микросхем, их выбор аналогично выбору дискретных компонентов затруднителен. Поэтому воспользуемся методом выбора компонентов по матрице параметров. Данный метод заключается в следующем.

В матрицу параметров заносятся параметры элементов, из которых необходимо выбрать один. В нашем случае микросхемы будем выбирать среди серий  К176, К561, К155, К555. Выбор будем производить по следующим параметрам: напряжение выхода нуля Uвых0; напряжение выхода единицы Uвых1; ток потребления Iпот; входной ток Iвх. Для этих данных матрица параметров будет иметь следующий вид:

bj – весовой коэффициент параметра, который учитывает значимость параметра.

Параметры матрицы необходимо пересчитать так, чтобы большему значению параметра соответствовало лучшее свойство элемента. Так как лучшими свойствами микросхемы являются низкое выходное напряжение нуля, высокое выходное напряжение единицы, низкие входной ток и ток потребления, параметры Uвых0, Iпот, Iвх необходимо пересчитать (взять обратную величину). После пересчета параметров матрица параметров примет вид:

Далее параметры матрицы нормируют по следующей формуле:
 , где yij– элемент матрицы параметров, стоящий в i-й строке и j-м столбце аij– аналогичный элемент в нормированной матрице.

После нормирования матрица параметров примет вид:

Для обобщения анализа параметров вводят оценочную функцию Q:

 , m – количество строк в матрице параметров.

После проведения расчетов значения оценочной функции вышли следующими:

Необходимая серия ИМС выбирается, исходя из минимального значения оценочной функции. На основании проведенных расчетов для использования в разрабатываемом устройстве выбираем серию К176.

Примечание: микросхемы DD8-DD12 (см. перечень элементов) были выбраны из серии К561 т.к. в серии К176 нет элемента необходимого типа элемента, а серия К561 имеет значение оценочной функции, максимально близкое к этому значению у серии К176.

Операционный усилитель К544УД2А (DA1) выбирается аналогичным образом.
    продолжение
–PAGE_BREAK–2. Конструкторско-технологический расчет печатной платы.

При изготовлении печатной платы будем использовать в качестве основания стеклотекстолит фольгированный двусторонний толщиной 2 мм, толщина фольги 35 мкм, марки СФ-2-35-2,0. Способ нанесения рисунка        разводки – фотохимический. Класс печатной платы – 3.
2.1. Определение минимального диаметра металлизированного отверстия
, где Кgt – отношение диаметра металлизированного отверстия к толщине печатной платы (ПП), мм; hпп – толщина печатной платы. В нашем случае Кgt = 0,33; hпп = 2 мм, d01 = 0,66 мм.
2.2. Определение минимального диаметра монтажного отверстия
, где dВЭ – диаметр вывода элемента, мм; h0– толщина медного слоя, мм; D` — зазор межде выводом  конструктивного элемента (КЭ) и стенкой отверстия, мм; d0– погрешность расположения отверстий относительно узла координатной сетки (КС).

В нашем случае (при h0= 0,035 мм; D` = 0,15 мм; d0= 0,07 мм):

Элемент

dВЭ, мм

dМО, мм

ИМС

0,5

0,94

Резисторы

0,7

1,14

Постоянные конденсаторы

0,6

1,04

Подстроечный конденсатор

2,5

2,94

Т.к. диаметры отверстий рекомендуется выбирать из ряда номинальных значений, выберем все диаметры отверстий равными 1,3 мм, а диаметр отверстий под подстроечный конденсатор – 3 мм.
2.3. Определение минимального диаметра контактной площадки
Формула для расчета учитывает погрешность изготовления и подтравливание фольги при изготовлении рисунка разводки.

, где bn0– ширина пояска контактной площадки, мм; dКП – погрешность расположения контактной площадки относительно узла КС; dФФ – погрешность фотокопий и фотошаблонов; hф – толщина фольги. В нашем случае bn0= 0,1 мм; dКП = 0,05 мм; dФФ = 0,06 мм; hф = 0,035 мм. Тогда для всех элементов, кроме подстроечного конденсатора dКП = 1,465 мм, для подстроечного конденсатора dКП = 3,285 мм.
2.4. Определение ширины проводников
Минимальная ширина :

, где dСМ – погрешность смещения проводников относительно линии КС; bпр – ширина проводника. В нашем случае dСМ = 0,05 мм; bпр = 0,25 мм; bпр мин = 0,395.

Номинальная ширина:

bпр.н = bпр.мин + dТ, где dТ – ширна проводника в сторону уменьшения. dТ 0,03 мм, bпр.н = 0,425 мм.
2.5. Определение минимального расстояния между проводником и КП с МО
, где lРА – шаг КС, lПК = 0,195 мм.
2.6. Определение минимального расстояния межде двумя соседними КП
, lкп = 1,115 мм.

3. Электрический расчет печатной платы 3.1. Определение максимального падения напряжения на проводниках
, где Imax = суммарный ток потребления схемы; r — удельное сопротивление меди (материала проводников); lПР – максимальная длина проводника на плате; tпр – толщина проводящего слоя; bпр – ширина проводника.

Суммарный ток потребления схемы равен суммарному току потребления всех ИМС схемы. Токи потребления используемых ИМС следующие:

ИМС

Количество ИМС

Ток потребления, мА

К561УД2А

1

60

К176ИЕ5

1

0,25

К176ЛА7

1

0,1

К176ИЕ2

5

0,1

К561ИЕ14

5

0,1

Суммарный ток потребления схемы

61,35 мА

По чертежу печатной платы определим максимальную длину проводника: lПР = 0,155 м

tпр = 0,035 мм; r = 0,175 Ом·мм2/м; bпр = 0,425 мм; тогда DUПР = 0,11 В.
    продолжение
–PAGE_BREAK–3.2. Определение мощности потерь
, где fT – тактовая частота работы схемы; UПИТ – напряжение питания схемы; tgd — тангенс угла диэлектрических потерь материала печатной платы; С – емкость между слоями платы.

В качестве fT примем вдвое увеличенную максимальную частоту входного сигнала частотомера: fT = 200 кГц. Исходя из схемы электрической принципиальной UПИТ = 9 В. Для стеклотекстолита tgd = 0,002. Для определения емкости воспользуемся следующей формулой:

, где e — диэлектрическая проницаемость стеклотекстолита, e = 5,5; S – площадь печатных проводников. Примем площадь печатных проводников равной десяти процентам площади одной стороны печатной платы, тогда при размерах печатной платы 175 х 135 S = 2207 мм2.

При таких данных С = 54,6 пФ. Тогда РПОТ = 1,1·10-5 Вт.
3.3. Определение емкости между двумя параллельно идущими проводниками на одной стороне ПП
, где LПР – максимальная длина параллельно идущих проводников на одной стороне ПП; eЭФ – эффективная диэлектрическая проницаемость, eЭФ = 3,25; d – расстояние между краями проводников, d = ШКС – bПР. Тогда С = 1,613 пФ.
3.4. Определение взаимной индуктивности между двумя параллельно идущими проводниками на одной стороне ПП
, М=28,64·10-9 Гн
3.5. Определение емкости между двумя параллельно идущими проводниками на разных сторонах ПП
, где L= — максимальная длина двух параллельно идущих проводников на разных сторонах ПП, исходя из чертежа ПП L= = 0,02 м.

х, r(х) – коэффициенты, учитывающие краевой эффект: , х = 9,41; r(х) = 3,042; тогда С1 = 6,31·10-14 Ф.
4. Размещение конструктивных элементов
Для обеспечения минимальной длины проводников и минимального количества переходных отверстий, т.е. оптимального размещения КЭ на ПП применяется метод размещения КЭ с помощью матрицы связей. Для упрощения расчетов в матрице связей учитывается только размещение ИМС. Дискретные компоненты размещаются по возможности ближе к тем элементам, с которыми у них наибольшее количество связей.

В матрицу связей заносится количество связей между элементами. В нашем случае матрица связей имеет вид:

DA1

DD1

DD2

DD3

DD4

DD5

DD6

DD7

DD8

DD9

DD10

DD11

DD12

r

DA1

DD1

1

1

DD2

1

1

2

DD3

1

3

2

2

2

4

14

DD4

3

3

2

2

4

14

DD5

2

3

3

2

4

14

DD6

2

2

3

3

4

14

DD7

2

2

2

3

4

13

DD8

4

1

1

1

1

8

DD9

4

1

1

1

1

8

DD10

4

1

1

1

1

8

DD11

4

1

1

1

1

8

DD12

4

1

1

1

1

8

ri — число связей i-го элемента со всеми остальными (локальная степень) , где аkj – j-й элемент в k-й строке матрицы связей.

Выбираем элемент (вершину) с наименьшей локальлной степенью. В нашем случае – это вершина DA1. Элемент DA1 размещаем в позицию Р1. Далее в строке, сответствующей элементу DA1 находим ячейку с наибольшим количеством связей и в позицию Р2 помещаем элемент из соответствующего столбца матрицы связей. В нашем случае это элемент DD1. Далее анализируем строку, соответствующую элементу DD1 аналогично предыдущей и т.д. В результате получим следующее размещение ИМС по посадочным местам:

DA1

DD1

DD2

DD3

DD4

DD5

DD6

DD7

DD8

DD9

DD10

DD11

DD12

Р1

Р2

Р3

Р4

Р7

Р8

Р11

Р12

Р5

Р6

Р9

Р10

Р13

На печатной плате посадочные места разместим следующим образом:

    продолжение
–PAGE_BREAK–