Использование измерений и решение задач на местности при изучении некоторых тем школьного курса геометрии

–PAGE_BREAK–
    продолжение
–PAGE_BREAK–3. Объяснение нового материала – 20 минут.
4. Обсуждение с учащимися прошедшего урока – 5 минут.
5. Выдача домашнего задания – 5 минут.
Ход урока:
1. Организационный момент. Добиться внимания учеников, проверить готовность к уроку.
2. Актуализация знаний.
а) свойства равнобедренного треугольника;
б) подобие треугольников.
3. Объяснение нового материла.
         Существуют различные способы измерения высоты деревьев [6]. Рассмотрим некоторые из них.
1.Самый простой способ состоит в том, что в солнечный день можно пользоваться любой тенью, какой бы длины она ни была. Измерив свою тень или тень какого-нибудь шеста, вычисляют искомую высоту из пропорции (рис. 15)
                               AB:ab=BC:bc
т.е. высота дерева во столько раз больше вашей собственной высоты (или высоты шеста), во сколько раз тень дерева длиннее тени человека (или тени шеста). Это вытекает из геометрического подобия треугольников ABCи abc (по двум углам).
 

Рис. 15
Вполне возможно обойтись при измерении высоты и без помощи теней. Таких способов много.
2. Можно воспользоваться свойствами равнобедренного прямоугольного треугольника, обратившись к весьма простому прибору, который легко изготовить из дощечки и трех булавок. На дощечке любой формы, даже на куске коры, если у него есть плоская сторона, намечают три точки – вершины равнобедренного  прямоугольного треугольника – и в них втыкают торчком по булавке (рис. 16).
Рис. 16
Если нет под рукой чертежного треугольника для построения прямого угла, нет и циркуля для отложения равных сторон, то можно перегнуть любой лоскут бумаги один раз, а затем поперек первого сгиба еще раз так, чтобы обе части первого сгиба совпали, — и  получим прямой угол. Та же бумага пригодиться и вместо циркуля, чтобы отмерить равные расстояния.
 Отойдя от измеряемого дерева, нужно держать прибор так, чтобы один из катетов треугольника был направлен отвесно, для чего можно пользоваться ниточкой с грузиком, привязанным к верхней булавке. Приближаясь к дереву или удаляясь от него, всегда можно найти такое место А (рис.17), из которого, глядя на булавки а и с, можно увидеть, что они покрывают верхушку С дерева: это значит, что продолжение гипотенузы ас проходит через точку С. Тогда, очевидно, расстояние аВ равно СВ, так как угол а=.
Рис. 17
Следовательно, измерив расстояние аВ (или на ровном месте, одинаковое с ним расстояние АD) и прибавив BD, т.е. возвышениеаА глазанад землей, получите искомую высоту дерева.
3. Можно обойтись даже и без булавочного прибора. Здесь нужен шест, который придется воткнуть отвесно в землю так, чтобы выступающая часть как раз равнялась росту человека. Место для шеста надо выбирать так, чтобы, лежа, как показано на рис. 18,  было видно верхушку дерева на одной прямой линии с верхней точкой шеста. Так как треугольник Abc – равнобедренный и прямоугольный, то угол А= и, следовательно, АВ равно ВС, т.е. искомой высоте дерева.

Рис. 18
4. В качестве прибора для приблизительной оценки недоступной высоты можно использовать карманную записную книжку и карандаш. Она поможет построить в пространстве те два подобных треугольника, из которых получается искомая высота.

Рис. 19
Книжку надо держать возле глаз так, как показано на упрощенном рис. 19. Она должна находиться в отвесной плоскости, а карандаш выдвигаться над верхнем обрезом книжки настолько, чтобы, глядя из точки а видеть вершинуВ дерева покрытой кончиком b карандаша. Тогда вследствие подобия треугольников abcи аВС высота  ВС определяется из пропорции
BC: bc=aC:ac
Расстояние bc, acи аС измеряются непосредственно. К полученной величине  ВС надо прибавить еще длину CD, т.е. – на ровном месте – высоту глаза над почвой. Так как ширина ас книжки неизменна, то если всегда становиться  на одном и том же расстоянии от измеряемого дерева, высота дерева будет зависеть только от выдвинутой части  bcкарандаша.. Поэтому можно заранее вычислить, какая высота соответствует тому или иному выдвижению, и нанести эти числа не карандаш. Записная книжка превратиться тогда в упрощенный высотомер. 
5.Своеобразный способ определения высоты дерева при помощи зеркала. На некотором расстоянии (рис. 20 ) от измеряемого дерева, на ровной земле в точке С кладут горизонтально зеркальце и отходят от него назад в такую точку  D, стоя в которой наблюдатель видит в зеркальце верхушку  А дерева. Тогда дерево (АВ) во столько раз выше роста наблюдателя (ЕD), во сколько раз расстояние ВС от зеркала до дерева больше расстояния СD от зеркала до наблюдателя. Почему?

Рис. 20
Решение:
         Способ основан на законе отражения света. Вершина  А (рис. 21 ) отражается в точке А’ так что АВ=А’В. Из подобия же треугольников ВСА’ иCED следует, что
A’B:ED=BC:CD.
         В этой пропорции остается лишь заменить А’В равным ему АВ, чтобы обосновать указанное соотношение.

Рис. 21
Этот удобный и нехлопотливый способ можно применять во всякую погоду, но не в густом насаждении, а к одиноко стоящему дереву.
4. Итоги урока.
         На уроке были рассмотрены различные способы измерения высоты деревьев. Изучены различные приборы для измерения высоты деревьев. Полученные знания достаточно легко применяются на практике.
5. Домашнее задание.
№1. Как с помощью зеркала можно измерить высоту дерева, если к нему невозможно подойти вплотную?
№2. В 40 метрах одна от другой растут две сосны. Высота одной 31м, другой – 6м. Как вычислить расстояние между их верхушками?
§6. Педагогический эксперимент
По проблеме исследования был проведен естественно – педагогический эксперимент.
Эксперимент проходил в три этапа:
1 этап – констатирующий эксперимент. При его проведении были выявлены знания учащихся по теме «Использование и измерений и решение задач на местности при изучении некоторых тем школьного курса геометрии», при этом использовались различные формы и методы выявления знаний, такие как: анкетирование, беседы с учащимися и учителями, наблюдение за учащимися.
2 этап – поисковый. На этом этапе производился отбор заданий для проведения факультатива. В результате был подобран комплекс заданий, при работе с которым учащиеся знакомятся с задачами, решаемыми на местности, осуществляется повторение и систематизация знаний школьного курса геометрии, пропедевтика ряда геометрических понятий, повышается интерес школьников к математике, вырабатывается осознанный подход к применению знаний на практике.
3 этап – обучающий (формирующий), когда была проведена экспериментальная проверка знаний, полученных в ходе проведения факультативных занятий, в виде опроса.
На третьем этапе эксперимента проводилась проверка гипотезы.
Выводы: факультативные занятия способствуют углублению и расширению знаний, развитию интереса учащихся к предмету, развитию математических способностей, привитию школьникам интереса и вкуса к самостоятельным занятиям, воспитанию  и развитию инициативы и творчества, развитию определенных сторон мышления и черт характера учащихся. Также занятия содействуют профессиональной ориентации учащихся. На факультативах осуществляется подготовка к выпускным экзаменам за счет повторения теории и решения различных задач.  У учащихся в процессе изучения темы повысился интерес к геометрии, чего не наблюдается в классах, где факультативные занятия не проводились.
Таким образом, эксперимент подтвердил выдвинутую гипотезу: если систематически и целенаправленно включать в школьный курс геометрии разнообразный материал, то это повысит интерес учащихся к геометрии и разовьет их творческие способности.

ГЛАВА 2
Существует множество различных способов производить измерения при помощи незамысловатых приборов и даже без всяких приспособлений.
Самый легкий и самый древний способ – без сомнения, тот, который греческий мудрец Фалес за шесть веков до нашей эры определил в Египте высоту пирамиды [10]. Он воспользовался ее тенью. Фалес, – говорит предание, — избрал день и час, когда длина собственной его тени равнялась его росту; в этот момент высота пирамиды должна также равняться длине отбрасываемой ею тени. Конечно, длину тени надо было считать от средней точки квадратного основания пирамиды; ширину этого основания Фалес мог измерить непосредственно.  
Фалес жил задолго до Евклида, автора замечательной книги, по которой обучались геометрии в течение двух тысячелетий после его смерти. Заключенные в ней истины не были открыты в эпоху Фалеса. А чтобы воспользоваться тенью для решения задачи о высоте пирамиды, надо было знать уже некоторые геометрические свойства треугольника, — именно следующие два:
1) что углы при основании равнобедренного треугольника равны, и обратно — что стороны, лежащие против равных углов треугольника, равны между собою;
2) что сумма углов всякого треугольника (или по крайней мере прямоугольного) равна двум прямым углам.
Только вооруженный этим знанием Фалес вправе был заключить, что, когда его собственная тень равна его росту, солнечные лучи встречают ровную почву под углом в половину прямого, и, следовательно, вершина пирамиды, середина ее основания и конец ее тени должны обозначать равнобедренный треугольник. Однако способ Фалеса в указанном виде применим не всегда.
§1. Задачи с измерениями при различных ограничениях
При решении задач, связанных с измерениями на местности не всегда применимы непосредственные геометрические измерения. Существуют трудности, связанные с такими измерениями. При решении задач необходимо, чтобы используемые способы были осуществимы на практике и применялся минимум необходимых средств для построений, измерений и вычислений.
1.1. Выясним как по длине тени, падающей от дерева в солнечный день, определить высоту этого дерева?
Так как лучи солнца можно считать практически параллельными, то тень от дерева во столько же раз длиннее тени от какого-либо шеста, во сколько раз дерево выше шеста. Поэтому, установив вертикально шест известной высоты а и измерив отношение kдлины тени от дерева к длине тени от шеста, можно вычислить искомую высоту дерева ka.
Заметим, что указанный способ не слишком надежен, так как отбрасываемая при свете солнца тень не имеет отчетливой границы из-за присущей ей неясно очерченной каймы полутени.
1.2. В городе установлен большой памятник. Имеется почтовая карточка с фотографией этого памятника, сделанной с почтительного расстояния от него Можно ли воспользоваться этим снимком для определения высоты памятника?
Для приблизительного нахождения высоты памятника по снимку можно выбрать две точки, расположенные у фундамента этого памятника, и измерить расстояние между ними на фотографии и на местности (второе расстояние нас интересует скорее не в чистом виде, а как проекция на прямую, перпендикулярную направлению, в котором был сфотографирован памятник). Найдя отношение kпервого из расстояний ко второму, мы узнаем масштаб снимка, после чего останется замерить на нем высоту памятника и поделить ее на k…
1.3. Необходимо измерить на местности расстояние между двумя объектами, разделенными зданием или другим препятствием, не позволяющим непосредственно про­ложить прямую между этими объектами. Как тем не менее можно произвести указанное измерение?
 
Рис. 22.
           Пусть А и В — данные точки на местности, между которыми определяется расстояние. Выберем точку С, из которой видны обе точки А иВ (рис. 22). На продолжении отрезка АС за точку С отметим точку Dна расстоянии АС от точки С. Аналогично на продолжении отрезка ВС за точку С отметим точку Е, для которой СЕ=ВС. Тогда отрезки EDи АВ равны, поскольку они симметричны относительно точки С.
Если же из-за недостатка места точки Е и Dвыйдут за пределы досягаемости, то их можно в определенное число раз приблизить к точке С. Тогда отрезок EDбудет в то же число раз короче отрезка АВ, так как треугольники ABCи DECбудут подобны.
1.4. Можно ли воспользоваться для измерения глубины озера торчащим из воды камышом, не вырывая его?
Слегка отклонив камыш и держа его в натянутом состоянии, замерим расстояние а между точками А и В, в которых камыш пересекает поверхность воды соответственно в вертикальном и наклоненном положении (рис. 23). Возвратим камыш в исходное состояние и определим высоту bнад водой, на которую поднимется при этом точка В наклоненного камыша, заняв исходное положение С. Тогда, обозначив через Dоснование камыша, а через х — искомую глубину AD, из прямоугольного треугольника ABDнаходим

откуда  и .

 Рис. 23                                           Рис. 24
1.5. Каким способом можно измерить высоту дерева, не взбираясь на него и не прибегая к помощи теней?
Установив вертикальный шест на некотором расстоянии от дерева, нужно стать в такую точку, из которой верхний конец шеста загораживает в точности верхушку дерева (рис. 24). Тогда, если высота части шеста над уровнем глаз равна а, а расстояния от глаз по горизонтали до шеста и до дерева равны bи у соответственно, то из подобия треугольников можно найти высоту х дерева над уровнем глаз. Наконец, зная свой рост hдо уровня глаз, получаем полную высоту дерева
.
Заметим, что вычисления и измерения можно упростить, если добиться равенства b=a, которое достигается выбором места установки шеста. Кроме того, можно лечь на землю, что позволит считать h=0, а в результате высота дерева окажется равной x=y.
1.6. Существует огромный пруд круглой формы, обойти который по окружности нельзя из-за имеющихся на его берегу различных препятствий в нескольких местах. Кроме того, представляется затруднительным измерять расстояние между какими-либо точками, если только соединяющий их отрезок проходит над водой. Можно ли при таких ограничениях измерять диаметр пруда?
 Рис. 25
Встав в точку А на некотором расстоянии от пруда (рис. 25), можно расположить перед собой горизонтальную палку длины а так, чтобы расстояния от обоих ее концов до одного глаза (второй глаз при этом лучше закрыть) были равны одному и тому же значению b, а сами концы палки зрительно совместились с крайними точками пруда, видимыми из точки А. Тогда, измерив расстояние у от А до ближайшей точки пруда по прямой, проходящей через середину палки, можно вычислить радиус х пруда, а значит, и его диаметр 2х. Действительно, из по­добия соответствующих прямоуголь­ных треугольников находим
,
откуда 2bx=ax+ay, т.е. x=y.
Заметим, что если добиться равенства b=а (что достигается выбором точки А), то коэффициент при у в последней формуле будет равен 1, а искомый диаметр пруда окажется рав­ным 2х=2у.
1.7. Как узнать, на какой высоте находится шпиль, расположенный на здании, внутри и вблизи которого измерения затруднительны?
Необходимо установить вертикальный шест на некотором расстоянии от здания и станем в такую точку, из которой

Рис. 26
верхушка шпиля зрительно совмещается с верхним концом шеста (рис. 26). Затем, пройдя некоторое расстояние в направлении от здания по прямой, на которой лежит первая точка и проекция А шпиля на горизонтальную плоскость, еще раз проделайте такую же операцию. Пусть высота шеста над уровнем глаз равна а, расстояние от глаз до шеста в первом положении оказалось равным b , а во втором с. Тогда, измерив расстояние у между точками В и С, в которых мы стояли в первом и во втором случаях, можно сосчитать высоту х шпиля над уровнем глаз. В самом деле, обозначим через zрасстояние между точками А и В. Из подобия соответствующих треугольников имеем
 ,
откуда   и , т.е.

Коэффициент при у в последнем равенстве можно сделать равным 1, если в первом положении шеста добиться равенства b—а, а во втором — равенства с=2а.
1.8. Как находясь на берегу реки измерить ее ширину, не имея возможности перебраться на другой берег. Для этого необходимо отыскать глазами на противоположном берегу реки близко к воде какой-либо заметный ориентир А — камень, деревце и т. п. — и отметить на своем берегу точку В, расстояние от которой до точки А представляет собой, по-вашему, ширину реки. Как измерить длину отрезка АВ?
Выберем точку С на продолжении прямой АВ за точку В, а также точку D, не лежащую на прямой АВ (рис. 27). Затем выберем точки Е и F на продолжениях прямых BDи CDсоответственно за точку Dтак, чтобы выполнялись равенства BD=DE, CD=DF. Наконец, найдем точку Gпересечения прямых EFи AD. Тогда искомое расстояние между точками А и В будет равно длине отрезка EG. Действительно, из равенства треугольников BDCи EDF(по двум сторонам и углу между ними) имеем равенство углов CBDи FED. Поэтому треугольники BADи EGDравны (по стороне и двум прилежащим к ней углам), а значит, равны и их соответствующие стороны АВ и GE.
    продолжение
–PAGE_BREAK–
Рис. 27                                   Рис. 28
1.9. Необходимо узнать расстояние до высокого здания, которое можно увидеть прямо со двора дома Естественно, в городских условиях непосредственно пройти к зданию по прямой линии вам не удастся. Более того, геометрические построения можно осуществлять лишь на сравнительно небольшой площадке перед домом. Укажем способ для определения искомого расстояния.
Для нахождения расстояния от данной точки В до недоступной точки А можно использовать построения, аналогичные приведенным в решении задачи 1.8. с той лишь разницей, то точки Е и Fна рис. 27 следует выбрать ближе к точке D, т. е. на расстоянии, в одинаковое число раз меньшем длин отрезков BDи CDсоответственно. Во столько же раз отрезок GEокажется меньшим отрезка АВ, что вытекает из подобия треугольников BADи EGD.
1.10. Человек находится на одном берегу реки, а на другом, недоступном для него берегу расположены два объекта. Как измерить расстояние между ними?
Пусть А иВ — недоступные точки, между кото­рыми надо найти расстояние. Выберем на некоторой прямой три точки D, Е и Fтак, чтобы выполнялось равенство DE= —EF(рис. 28). При этом заранее побеспокоимся о том, чтобы точка С пересечения прямых AFи BDоказалась доступной и лежала с той же стороны от прямой DF, что и отрезок АВ: этого можно достичь уменьшением отрезка DFи переобозначением его концов. На продолжении отрезка СЕ за точку Е отметим точку Gна расстоянии СЕ от точки Е. Далее найдем точку Н пересечения прямых DGи АЕ, а также точку К, пересечения прямых FGи BE. Тогда искомое расстояние будет равно КН. Действительно, при преобразовании симметрии относительно центра Е точка С переходит в точку G, точка D— в точку F, прямая CD— в прямую GF, прямая BE— в себя, а точка В пересечения прямых CDи BE— в точку К пересечения GFи BE. Аналогично точка А при этом преобразовании переходит в точку Н, поэтому отрезок НК симметричен отрезку АВ относительно точки Е.
§2. На равном расстоянии
В настоящем параграфе рассматривается несколько практических задач, в которых нужно использовать геометрический материал для нахождения точек или линий на местности из соображений равенства каких-либо расстояний. Построения, которые понадобятся для решения этих задач, должны быть по возможности более простыми. Если они не потребуют никаких средств, выходящих за рамки простейшей геометрии на местности, то такие построения можно будет осуществить в обычных условиях без использования сколько-нибудь сложных измерительных приборов [2]. В противном случае для реализации построений можно изобразить исходную конфигурацию на плане и, решив задачу на бумаге с помощью циркуля и линейки, перенести результат на местность.
Ниже предполагается, что все населенные пункты имеют незначительные размеры и могут быть приняты в задачах за точки, а магистрали, каналы и железные дороги являются прямыми и имеют пренебрежимо малую ширину, т.е. могут быть представлены как прямые линии.
Задачи
2.1. Невдалеке от двух населенных пунктов проходит шоссе. В каком месте этого шоссе нужно построить автозаправочную станцию, чтобы расстояния от нее до обоих пунктов были одинаковыми?
Обозначим через А и В данные в задаче населенные пункты и проведем на местности серединный перпендикуляр к отрезку АВ. Так как все точки этого перпендикуляра равноудалены от пунктов А и В и никакие другие точки этим свойством не обладают, то автозаправочную станцию нужно построить в точке пересечения перпендикуляра с шоссе (если такая точка найдется).
2.2. Жильцы трех домов решили совместными усилиями построить колодец. Какое место для колодца следует выбрать, чтобы все три расстояния от него до домов были одинаковыми?
Пусть А, В и С — точки расположения трех данных домов. Проведем серединные перпендикуляры к отрезкам АВ и ВС. Тогда точка О их пересечения будет единственной точкой, равноудаленной от точек А, В иС, поскольку для этой точки выполнены равенства АО=ОВ и ВО=ОС, а если точку О выбрать иначе, то для нее хотя бы одно из указанных равенств будет несправедливо. Заметим, что проведенные перпендикуляры могут и не пересечься, но только в случае, когда точки А, В и С лежат на одной прямой. Таким образом, искомое место для колодца — точку О — можно найти приведенным способом, но лишь при ус­ловии, что дома расположены не на одной прямой.
2.3. Две магистрали пересекаются под углом, внутри которого протекает речка. Где построить мост через речку, чтобы расстояния от него до обеих магистралей были одинаковыми?
Проведем биссектрису угла, образованного магистралями. Так как все точки этой биссектрисы равноудалены от магистралей и никакие другие точки внутри угла этим свойствам не обладают, то мост через речку нужно построить в точке пересечения биссектрисы с речкой (если такая точка найдется).
2.4. Две магистрали пересекают канал в разных местах. Где нужно разместить пионерский лагерь, чтобы расстояния от него до канала и до каждой магистрали оказались одинаковыми? Укажите место расположения пионерского лагеря, при котором эти расстояния минимальны?
Каждая магистраль, пересекаясь с каналом, образует две пары вертикальных углов, а четыре их биссектрисы составляют две прямые (рис. 29). Так как все точки этих биссектрис равноудалены от канала и соответствующей магистрали, а никакие другие точки этим свойством не обладают, то все возможные места расположения пионерского лагеря, лежат на пересечениях биссектрис углов при раз­ных вершинах А иВ.

Рис. 29
Таких точек пересечения может быть, вообще говоря, четыре, поскольку любая из двух прямых, проходящих через вершину А, может пересечься с любой из двух прямых, проходящих через вершину В. Если магистрали не параллельны, то никакие пары этих прямых не параллельны и все четыре точки пересечения реализуются, а наименьшее расстояние до канала (а значит, и до магистралей) достигается в той точке О пересечения биссектрис, которая лежит внутри треугольника, образованного каналом и магистралями. Действительно, из двух точек пересечения биссектрисы внутреннего угла треугольника при вершине А с биссектрисами углов при вершине В ближе к вершине А (а значит, и к каналу) лежит точка О. Аналогично из двух точек пересечения, лежащих на биссектрисе внутреннего угла треугольника при вершине В, также выбираем точку О. Наконец, последняя точка пересечения биссектрис внешних углов треугольника при вершинах А иВ лежит вместе с точкой О на биссектрисе угла треугольника при вершине С, причем точка О лежит ближе к вершине С, следовательно, ближе к магистралям и, стало быть, к каналу. Если же магистрали параллельны, то четыре биссектрисы углов при вершинах А иВ образуют параллелограмм (из-за симметрии всей картины относительно середины отрезка АВ), поэтому обе точки пересечения этих прямых равноудалены от канала.
2.5. В каком направлении через город должна проходить магистраль, чтобы два данных населенных пункта лежали по разные стороны от нее на одинаковом расстоянии?
Пусть через город А нужно провести магистраль, равноудаленную от пунктов В и С (рис. 30). Так как точки В и С должны лежать по разные стороны от искомой магистрали, то она должна пересечь отрезок ВС, причем точка пересечения должна совпадать с серединой этого отрезка (что вытекает из равенства соответствующих прямоугольных треугольников). Таким образом, искомая магистраль определена однозначно, если только сама точка А не совпадает с серединой отрезка ВС (в случае их совпадения годится любое направление).

Рис. 30
2.6. Как должна проходить магистраль, чтобы расстояния от нее до трех данных населенных пунктов были одинаковыми? Укажите положение магистрали, при котором эти расстояния минимальны.
Обозначим через А, В и С три данных населенных пункта. Если искомая магистраль может проходить так, чтобы все три точки лежали по одну сторону относительно магистрали (в том числе и на ней самой) и к тому же на равном расстоянии от нее, то точки А, В и С лежат на одной

Рис. 31
прямой, параллельной магистрали. В этом случае расстояние минимально, когда магистраль проходит через эти точки.
В противном случае две из данных точек, скажем А и В, должны лежать по одну сторону от искомой магистрали, а третья — по другую (рис. 31). Так как магистраль равноудалена от точек А и С, то она проходит через середину отрезка АС (см. решение задачи 2.5), а так как она равноудалена от точекВ и С, то проходит и через середину отрезка ВС. Таким образом, мы доказали, что искомая магистраль проходит по одной из трех средних линий треугольни­ка ABC.
Среди возможных расположений магистрали наименьшее расстояние до точек А, В и С, равное половине наименьшей высоты треугольника ABC, достигается, когда магистраль параллельна наибольшей стороне этого треугольника (точнее, какой-нибудь из наибольших сторон, если их несколько), поскольку наименьшая высота в треугольнике соответствует наибольшей стороне — ведь их произведение есть константа, равная удвоенной площади треугольника.
2.7. Магистраль пересекает канал под углом, внутри которого расположен населенный пункт. В каком направлении следует провести через этот пункт прямую дорогу, чтобы расстояния по ней до магистрали и до канала оказались одинаковыми?
Проведем прямую через точку А пересечения магистрали с каналом и через данный населенный пункт В. Рассмотрим точку С па этой прямой, удаленную от точки В на расстояние АВ (рис. 32). Тогда если искомая дорога пересекает магистраль и канал в точках Dи Е соответственно, то точка Весть центр симметрии четырехугольника ADCE, который, стало быть является параллелограммом. Теперь сами точки Dи Е можно найти, проведя через точку С прямые, параллельные каналу и магистрали, до пересечения их соответственно с магистралью (в точке D) и с каналом (в точке Е).

Рис. 32
2.8. Железная дорога пересекает канал под острым углом, внутри которого расположен населенный пункт. В каком месте железной дороги нужно расположить полустанок, чтобы расстояния от него до этого пункта и до канала оказались одинаковыми? Укажите положение полустанка, при котором эти расстояния минимальны.
Из точки А пересечения железной дороги с кана­лом через данный населенный пункт В проведем луч. Опустим из какой-либо точки О железной дороги перпенди­куляр ОС к каналу и найдем на луче АВ точки, удаленные

Рис. 33
от точки О на расстояние ОС. Таких точек окажется две — это буду точки D и Е, лежащие на окружности с центром О и радиусом ОС. Для определенности будем считать, что DA>EA(рис. 33). Проведем отрезки BFи BG, соединяющие точку В с точками Fи Gна железной дороге и параллельные отрезкам DOи ЕО соответственно. Тогда из подобия соответствующих треугольников будет следовать, что точки Fи Gравноудалены от канала и от точки В, т. е. они укажут искомые места расположения полустанка. Никаких других возможностей для расположения полустанка нет, поскольку для любой искомой точки существует преобразование гомотетии относительно точки А, переводящее искомую точку в точку О, а точку В в точку луча АВ, удаленную от точки О на расстояние ОС, т. е. в одну из точек Dили Е.
Минимальное расстояние до полустанка достигается в точке F, для которой имеем
,
ибо  и .
2.9. Две магистрали пересекаются под углом, внутри которого расположен населенный пункт. Как выбрать место для устройства пруда круглой формы, чтобы расстояния от него до этого пункта и до каждой магистрали оказались одинаковыми?
Найдем точку О, в которой должен находиться центр пруда. Поскольку точка О равноудалена от двух данных магистралей, то она лежит на биссектрисе угла между ними. Таким образом, задача сводится к нахождению на данной прямой l – биссектрисе — точки О, равноудаленной от данной точки А – населенного пункта – и от другой данной прямой – той из магистралей, которая образует с прямой l угол, содержащей точку А (этот угол будет обязательно острым, так как он равен половине угла между магистралями). Такая ситуация разобрана в решении задачи 2.8.

Рис. 34
2.10. Как выбрать место для устройства пруда круглой формы, чтобы расстояния от него до данной магистрали и до каждо­го из двух данных населенных пунктов, расположенных с одной стороны от магистрали, были одинаковыми?
Найдем точку О, в которой должен находиться центр пруда. Поскольку точку О равноудалена от двух данных населенных пунктов А и В, то она лежит на серединном перпендикуляре к отрезку АВ (рис. 34). Таким образом, задача сводится к нахождению на данной прямой h(перпендикуляре) точки О, равноудаленной от точки А или точки В и от другой данной прямой l (магистрали). Если прямые hи lне параллельны и не перпендикулярны, то они в пересечении образуют острый угол, внутри которого расположена одна из точек А иВ (ведь обе эти точки лежат по одну сторону от прямой l). Способ нахождения точки О в этом случае указан в решении задачи 2.8. Если прямые h и l перпендикулярны, то точка О должна быть равноудалена от точки их пересечения и от точки А, и этот случай также был разобран в решении задачи 2.1. Наконец, если прямые hи lпараллельны, то точка 0 должна быть удалена от точки А на расстояние, равное расстоянию dмежду прямыми hи l. Поэтому искомая точка лежит на пересечении прямой hи окружности с центром А и радиусом d(таких точек пересечения будет две, поскольку расстояние от точки А до прямой hменьше d— ведь одна из точек А или В расположена между прямыми hи l).
§3. Задачи, предлагаемые учащимся сельской школы
ОКРУЖНОСТЬ
3.1. Для возможности поворота автомобиля (или колесного трактора) направляющие (передние) колеса соединены с осью шарнирами  и так, что плоскости колес (рис. 35) могут по­ворачиваться относительно оси. Во время правильного поворота все четыре колеса катятся по дугам концентрических окружностей, причем проекции колес являются касательными к этим окружностям [19]. Докажите, что правильный поворот возможен лишь тогда, когда направляющие колеса поворачиваются на разные углы.
Решение. Допустим противное, что  Тогда равны и вертикальные им углы и , а значит, по признаку параллельности прямые  и параллельны.
С другой стороны, поскольку углы и  прямые, а прямые  и  — касательные к окружности качения, то прямые и содержат радиусы концентрических окружностей. Значит, прямые и пересекаются. Противоречие.
Замечание. Рассмотренный эффект на практике достигается с помощью так называемой рулевой трапеции.
ТЕОРЕМА ПИФАГОРА
3.2. Телевизионные радиосигналы распространяются на 15% дальше пределов прямой видимости антенны. При каком наибольшем расстоянии s от передающей антенны высоты Н можно принять телепередачу с помощью приемной антенны высоты h? Определить, при каком максимальном расстоянии можно принять передачу с помощью антенны высотой 20м с Останкинской телебашни (ее высота 538м).
Решение. Вершина В принимающей антенны (рис. 36) за счет шаровой поверхности Земли будет в крайнем случае еще видна из вершины передающей антенны А тогда, когда точки А и В лежат на касательной к земной поверхности. В этом случае  где R – радиус Земли. Так как Н очень мало по сравнению с 2R, то , а потому . Полагая в этой формуле  получаем .

Рис. 36
Определив таким же образом ВС, найдем АВ. Увеличив полученную величину на 15%, получаем искомую формулу для s (в м): s. Из нее теперь нетрудно получить ответ и на второй вопрос задачи.
ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ
3.3.Докажите, что правильный поворот (см. 3.1.) автомобиля возможен лишь тогда, когда направляющие колеса поворачиваются на такие углы и , что есть величина постоянная при любых возможных и .
Решение. В силу условия правильного поворота точка О (рис. 37) должна лежать на продолжении задней оси CD. Так как , , то из прямоугольных треуголь­ников и находим:

3.4.Величина угла на местности часто определяется линейными промерами. На сторонах угла откладывают отрезки (рис. 38) АВ = АС = 10 м и измеряют ВС. Какова величина угла, если ВС = 12 м?
Решение. Пусть D— середина ВС. Тогда AD— высота биссектриса
Рис. 37                                             Рис. 38
равнобедренного треугольника. Из прямоугольного треугольника ADBимеем:
    продолжение
–PAGE_BREAK–