Локальные сети понятие и виды

Гипероглавление:
1.3.2. Модель OSI
1.3.3. Уровни модели OSI
Физический уровень
Канальный уровень
Сетевой уровень
Транспортный уровень
Сеансовый уровень
Представительный уровень
Прикладной уровень
Сетезависимые и сетенезависимые уровни
1.3.4. Понятие «открытая система»
1.3.5. Модульность и стандартизация
1.3.6. Источники стандартов
1.3.7. Стандартные стеки коммуникационных протоколов
Стек OSI
Стек TCP/IP
Стек IPX/SPX
Стек NetBIOS/SMB
Выводы
5.2. Адресация в IP-сетях
5.2.1. Типы адресов стека TCP/IP
5.2.2. Классы IP-адресов
5.2.3. Особые IP-адреса
5.2.4. Использование масок в IP-адресации
5.2.5. Порядок распределения IP-адресов
5.2.6. Автоматизация процесса назначения IP-адресов
5.2.7. Отображение IP-адресов на локальные адреса
5.2.8. Отображение доменных имен на IP-адреса
Организация доменов и доменных имен
Система доменных имен DNS
Выводы
5.3. Протокол IP
5.3.1. Основные функции протокола IP
5.3.2. Структура IP-пакета
5.3.3. Таблицы маршрутизации в IP-сетях
Примеры таблиц различных типов маршрутизаторов
Назначение полей таблицы маршрутизации
Источники и типы записей в таблице маршрутизации
5.3.4. Маршрутизация без использования масок
5.3.5. Маршрутизация с использованием масок
Использование масок для структуризации сети
Использование масок переменной длины
Технология бесклассовой междоменной маршрутизации CIDR
5.3.6. Фрагментация IP-пакетов
5.3.7. Протокол надежной доставки TCP-сообщений
Сегменты и потоки
Соединения
Реализация скользящего окна в протоколе TCP
Выводы
5.4. Протоколы маршрутизации в IP-сетях
5.4.1. Внутренние и внешние протоколы маршрутизации Internet
5.4.2. Дистанционно-векторный протокол RIP
Построение таблицы маршрутизации
Этап 1 — создание минимальных таблиц
Этап 2 — рассылка минимальных таблиц соседям
Этап 3 — получение RIP-сообщений от соседей и обработка полученной информации
Этап 4 — рассылка новой, уже не минимальной, таблицы соседям
Этап 5 — получение RIP-сообщений от соседей и обработка полученной информации
Адаптация RIP-маршрутизаторов к изменениям состояния сети
Методы борьбы с ложными маршрутами в протоколе RIP
5.4.3. Протокол «состояния связей» OSPF
Выводы
–PAGE_BREAK–    продолжение
–PAGE_BREAK–Канальный уровень
На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок не является обязательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует, например, в Ethernet и frame relay.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда, а также структуры, полученные из них с помощью мостов и коммутаторов. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, l00VG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B. В таких случаях для доставки сообщений между конечными узлами через всю сеть используются средства сетевого уровня. Именно так организованы сети Х.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня. Примерами такого подхода могут служить протоколы технологий АТМ и frame relay.

В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами и могут допускать работу поверх них непосредственно протоколов прикладного уровня или приложений, без привлечения средств сетевого и транспортного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP. Естественно, что применение такой реализации будет ограниченным — она не подходит для составных сетей разных технологий, например Ethernet и Х.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевид-ные связи. А вот в двухсегментной сети Ethernet, объединенной мостом, реализация SNMP над канальным уровнем будет вполне работоспособна.

Тем не менее для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня оказывается недостаточно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня — сетевой и транспортный.
Сетевой уровень
Сетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Функции сетевого уровня достаточно разнообразны. Начнем их рассмотрение на примере объединения локальных сетей.

Протоколы канального уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией, например топологией иерархической звезды. Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Можно было бы усложнять протоколы канального уровня для поддержания петлевидных избыточных связей, но принцип разделения обязанностей между уровнями приводит к другому решению. Чтобы с одной стороны сохранить простоту процедур передачи данных для типовых топологий, а с другой допустить использование произвольных топологий, вводится дополнительный сетевой уровень.

На сетевом уровне сам термин сеть наделяют специфическим значением. В данном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Внутри сети доставка данных обеспечивается соответствующим канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня. Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор — это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями, илихопов (от hop — прыжок), каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

На рис. 1.27 показаны четыре сети, связанные тремя маршрутизаторами. Между узлами А и В данной сети пролегают два маршрута: первый через маршрутизаторы 1 и 3, а второй через маршрутизаторы 1, 2 и 3.

Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например надежности передачи.

В общем случае функции сетевого уровня шире, чем функции передачи сообщений по связям с нестандартной структурой, которые мы сейчас рассмотрели на примере объединения нескольких локальных сетей. Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Сообщения сетевого уровня принято называть пакетами (packets). При организации доставки пакетов на сетевом уровне используется понятие «номер сети». В этом случае адрес получателя состоит из старшей части — номера сети и младшей — номера узла в этой сети. Все узлы одной сети должны иметь одну и ту же старшую часть адреса, поэтому термину «сеть» на сетевом уровне можно дать и другое, более формальное определение: сеть — это совокупность узлов, сетевой адрес которых содержит один и тот же номер сети.

На сетевом уровне определяются два вида протоколов. Первый вид — сетевые протоколы (routed protocols) — реализуют продвижение пакетов через сеть. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией или просто протоколами маршрутизации (routing protocols). С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов — Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.
    продолжение
–PAGE_BREAK–Транспортный уровень
На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Транспортный уровень (Transport layer) обеспечивает приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного — сетевым, канальным и физическим. Так, например, если качество каналов передачи связи очень высокое и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уровня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства нижних уровней изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя максимум средств для обнаружения и устранения ошибок, — с помощью предварительного установления логического соединения, контроля доставки сообщений по контрольным суммам и циклической нумерации пакетов, установления тайм-аутов доставки и т. п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети — компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Протоколы нижних четырех уровней обобщенно называют сетевым транспортом или транспортной подсистемой, так как они полностью решают задачу транспортировки сообщений с заданным уровнем качества в составных сетях с произвольной топологией и различными технологиями. Остальные три верхних уровня решают задачи предоставления прикладных сервисов на основании имеющейся транспортной подсистемы.
Сеансовый уровень
Сеансовый уровень (Session layer) обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.
Представительный уровень
Представительный уровень (Presentation layer) имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например кодов ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.
Прикладной уровень
Прикладной уровень (Application layer) — это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Существует очень большое разнообразие служб прикладного уровня. Приведем в качестве примера хотя бы несколько наиболее распространенных реализации файловых служб: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.
Сетезависимые и сетенезависимые уровни
Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня — физический, канальный и сетевой — являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием. Например, переход на оборудование FDDI означает полную смену протоколов физического и канального уровней во всех узлах сети.

Три верхних уровня — прикладной, представительный и сеансовый — ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию. Так, переход от Ethernet на высокоскоростную технологию l00VG-AnyLAN не потребует никаких изменений в программных средствах, реализующих функции прикладного, представительного и сеансового уровней.

Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних. Это позволяет разрабатывать приложения, не зависящие от технических средств непосредственной транспортировки сообщений. На рис. 1.28 показаны уровни модели OSI, на которых работают различные элементы сети. Компьютер с установленной на нем сетевой ОС взаимодействует с другим компьютером с помощью протоколов всех семи уровней. Это взаимодействие компьютеры осуществляют опосредовано через различные коммуникационные устройства: концентраторы, модемы, мосты, коммутаторы, маршрутизаторы, мультиплексоры. В зависимости от типа коммуникационное устройство может работать либо только на физическом уровне (повторитель), либо на физическом и канальном (мост), либо на физическом, канальном и сетевом, иногда захватывая и транспортный уровень (маршрутизатор). На рис. 1.29 показано соответствие функций различных коммуникационных устройств уровням модели OSI.
Модель OSI представляет хотя и очень важную, но только одну из многих моделей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, службами, поддерживаемыми на верхних уровнях, и прочими параметрами.
    продолжение
–PAGE_BREAK–1.3.4. Понятие «открытая система»
Модель OSI, как это следует из ее названия (Open System Interconnection), описывает взаимосвязи открытых систем. Что же такое открытая система?

В широком смысле открытой системой может быть названа любая система (компьютер, вычислительная сеть, ОС, программный пакет, другие аппаратные и программные продукты), которая построена в соответствии с открытыми спецификациями.

Напомним, что под термином «спецификация» (в вычислительной технике) понимают формализованное описание аппаратных или программных компонентов, способов их функционирования, взаимодействия с другими компонентами, условий эксплуатации, ограничений и особых характеристик. Понятно, что не всякая спецификация является стандартом. В свою очередь, под открытыми спецификациями понимаются опубликованные, общедоступные спецификации, соответствующие стандартам и принятые в результате достижения согласия после всестороннего обсуждения всеми заинтересованными сторонами.

Использование при разработке систем открытых спецификаций позволяет третьим сторонам разрабатывать для этих систем различные аппаратные или программные средства расширения и модификации, а также создавать программно-аппаратные комплексы из продуктов разных производителей.

Для реальных систем полная открытость является недостижимым идеалом. Как правило, даже в системах, называемых открытыми, этому определению соответствуют лишь некоторые части, поддерживающие внешние интерфейсы. Например, открытость семейства операционных систем Unix заключается, кроме всего прочего, в наличии стандартизованного программного интерфейса между ядром и приложениями, что позволяет легко переносить приложения из среды одной версии Unix в среду другой версии. Еще одним примером частичной открытости является применение в достаточно закрытой операционной системе Novell NetWare открытого интерфейса Open Driver Interface (ODI) для включения в систему драйверов сетевых адаптеров независимых производителей. Чем больше открытых спецификаций использовано при разработке системы, тем более открытой она является.

Модель OSI касается только одного аспекта открытости, а именно открытости средств взаимодействия устройств, связанных в вычислительную сеть. Здесь под открытой системой понимается сетевое устройство, готовое взаимодействовать с другими сетевыми устройствами с использованием стандартных правил, определяющих формат, содержание и значение принимаемых и отправляемых сообщений.

Если две сети построены с соблюдением принципов открытости, то это дает следующие преимущества:

·         возможность построения сети из аппаратных и программных средств различных производителей, придерживающихся одного и того же стандарта;

·         возможность безболезненной замены отдельных компонентов сети другими, более совершенными, что позволяет сети развиваться с минимальными затратами;

·         возможность легкого сопряжения одной сети с другой;

·         простота освоения и обслуживания сети.

Ярким примером открытой системы является международная сеть Internet. Эта сеть развивалась в полном соответствии с требованиями, предъявляемыми к открытым системам. В разработке ее стандартов принимали участие тысячи специалистов-пользователей этой сети из различных университетов, научных организаций и фирм-производителей вычислительной аппаратуры и программного обеспечения, работающих в разных странах. Само название стандартов, определяющих работу сети Internet — Request For Comments (RFC), что можно перевести как «запрос на комментарии», — показывает гласный и открытый характер принимаемых стандартов. В результате сеть Internet сумела объединить в себе самое разнообразное оборудование и программное обеспечение огромного числа сетей, разбросанных по всему миру.
1.3.5. Модульность и стандартизация
Модульность— это одно из неотъемлемых и естественных свойств вычислительных сетей. Модульность проявляется не только в многоуровневом представлении коммуникационных протоколов в конечных узлах сети, хотя это, безусловно, важная и принципиальная особенность сетевой архитектуры. Сеть состоит из огромного числа различных модулей — компьютеров, сетевых адаптеров, мостов, маршрутизаторов, модемов, операционных систем и модулей приложений. Разнообразные требования, предъявляемые предприятиями к компьютерным сетям, привели к такому же разнообразию выпускаемых для построения сети устройств и программ. Эти продукты отличаются не только основными функциями (имеются в виду функции, выполняемые, например, повторителями, мостами или программными редиректорами), но и многочисленными вспомогательными функциями, предоставляющими пользователям или администраторам дополнительные удобства, такие как автоматизированное конфигурирование параметров устройства, автоматическое обнаружение и устранение некоторых неисправностей, возможность программного изменения связей в сети и т. п. Разнообразие увеличивается также потому, что многие устройства и программы отличаются сочетаниями тех или иных основных и дополнительных функций — существуют, например, устройства, сочетающие основные возможности коммутаторов и маршрутизаторов, к которым добавляется еще и набор некоторых дополнительных функций, характерный только для данного продукта.

В результате не существует компании, которая смогла бы обеспечить производство полного набора всех типов и подтипов оборудования и программного обеспечения, требуемого для построения сети. Но, так как все компоненты сети должны работать согласованно, совершенно необходимым оказалось принятие многочисленных стандартов, которые, если не во всех, то хотя бы в большинстве случаев, гарантировали бы совместимость оборудования и программ различных фирм-изготовителей. Таким образом, понятия модульности и стандартизации в сетях неразрывно связаны, и модульный подход только тогда дает преимущества, когда он сопровождается следованием стандартам.

В результате открытый характер стандартов и спецификаций важен не только для коммуникационных протоколов, но и для всех многочисленных функций разнообразных устройств и программ, выпускаемых для построения сети. Нужно отметить, что большинство стандартов, принимаемых сегодня, носят открытый характер. Время закрытых систем, точные спецификации на которые были известны только фирме-производителю, ушло. Все осознали, что возможность легкого взаимодействия с продуктами конкурентов не снижает, а наоборот, повышает ценность изделия, так как его можно применить в большем количестве работающих сетей, построенных на продуктах разных производителей. Поэтому даже фирмы, ранее выпускавшие весьма закрытые системы — такие как IBM, Novell или Microsoft, — сегодня активно участвуют в разработке открытых стандартов и применяют их в своих продуктах.

Сегодня в секторе сетевого оборудования и программ с совместимостью продуктов разных производителей сложилась следующая ситуация. Практически все продукты, как программные, так и аппаратные, совместимы по функциям и свойствам, которые были внедрены в практику уже достаточно давно и стандарты на которые уже разработаны и приняты по крайней мере 3-4 года назад. В то же время очень часто принципиально новые устройства, протоколы и свойства оказываются несовместимыми даже у ведущих производителей. Такая ситуация наблюдается не только для тех устройств или функций, стандарты на которые еще не успели принять (это естественно), но и для устройств, стандарты на которые существуют уже несколько лет. Совместимость достигается только после того, как все производители реализуют этот стандарт в своих изделиях, причем одинаковым образом.
    продолжение
–PAGE_BREAK–1.3.6. Источники стандартов
Работы по стандартизации вычислительных сетей ведутся большим количеством организаций. В зависимости от статуса организаций различают следующие виды стандартов:

·         стандарты отдельных фирм (например, стек протоколов DECnet фирмы Digital Equipment или графический интерфейс OPEN LOOK для Unix-систем фирмы Sun);

·         стандарты специальных комитетов и объединений, создаваемых несколькими фирмами, например стандарты технологии АТМ, разрабатываемые специально созданным объединением АТМ Forum, насчитывающем около 100 коллективных участников, или стандарты союза Fast Ethernet Alliance по разработке стандартов 100 Мбит Ethernet;

·         национальные стандарты, например, стандарт FDDI, представляющий один из многочисленных стандартов, разработанных Американским национальным институтом стандартов (ANSI), или стандарты безопасности для операционных систем, разработанные Национальным центром компьютерной безопасности (NCSC) Министерства обороны США;

·         международные стандарты, например, модель и стек коммуникационных протоколов Международной организации по стандартам (ISO), многочисленные стандарты Международного союза электросвязи (ITU), в том числе стандарты на сети с коммутацией пакетов Х.25, сети frame relay, ISDN, модемы и многие другие.

Некоторые стандарты, непрерывно развиваясь, могут переходить из одной категории в другую. В частности, фирменные стандарты на продукцию, получившую широкое распространение, обычно становятся международными стандартами де-факто, так как вынуждают производителей из разных стран следовать фирменным стандартам, чтобы обеспечить совместимость своих изделий с этими популярными продуктами. Например, из-за феноменального успеха персонального компьютера компании IBM фирменный стандарт на архитектуру IBM PC стал международным стандартом де-факто.

Более того, ввиду широкого распространения некоторые фирменные стандарты становятся основой для национальных и международных стандартов де-юре. Например, стандарт Ethernet, первоначально разработанный компаниями Digital Equipment, Intel и Xerox, через некоторое время и в несколько измененном виде был принят как национальный стандарт IEEE 802.3, а затем организация ISO утвердила его в качестве международного стандарта ISO 8802.3.

Далее приводятся краткие сведения об организациях, наиболее активно и успешно занимающихся разработкой стандартов в области вычислительных сетей.

·         Международная организация по стандартизации (International Organization/or Standardization, ISO, часто называемая также International Standards Organization) представляет собой ассоциацию ведущих национальных организаций по стандартизации разных стран. Главным достижением ISO явилась модель взаимодействия открытых систем OSI, которая в настоящее время является концептуальной основой стандартизации в области вычислительных сетей. В соответствии с моделью OSI этой организацией был разработан стандартный стек коммуникационных протоколов OSI.

·         Международный союз электросвязи (International Telecommunications Union, JTU)— организация, являющаяся в настоящее время специализированным органом Организации Объединенных Наций. Наиболее значительную роль в стандартизации вычислительных сетей играет постоянно действующий в рамках этой организации Международный консультативный комитет по телефонии и телеграфии (МККТТ) (Consultative Committee on International Telegraphy and Telephony, CCITT). В результате проведенной в 1993 году реорганизации ITU CCITT несколько изменил направление своей деятельности и сменил название — теперь он называется сектором телекоммуникационной стандартизации ITU (ITU Telecommunication Standardization Sector, ITU-T), Основу деятельности ITU-T составляет разработка международных стандартов в области телефонии, телематических служб (электронной почты, факсимильной связи, телетекста, телекса и т. д.), передачи данных, аудио- и видеосигналов. За годы своей деятельности ITU-T выпустил огромное число рекомендаций-стандартов. Свою работу ITU-T строит на изучении опыта сторонних организаций, а также на результатах собственных исследований. Раз в четыре года издаются труды ITU-T в виде так называемой «Книги», которая на самом деле представляет собой целый набор обычных книг, сгруппированных в выпуски, которые, в свою очередь, объединяются в тома. Каждый том и выпуск содержат логически взаимосвязанные рекомендации. Например, том III Синей Книги содержит рекомендации для цифровых сетей с интеграцией услуг (ISDN), а весь том VIII (за исключением выпуска VIII. 1, который содержит рекомендации серии V для передачи данных по телефонной сети) посвящен рекомендациям серии X: Х.25 для сетей с коммутацией пакетов, Х.400 для систем электронной почты, Х.500 для глобальной справочной службы и многим другим.

·         Институт инженеров по электротехнике и радиоэлектронике — Institute of Electrical and Electronics Engineers, IEEE)— национальная организация США, определяющая сетевые стандарты. В 1981 году рабочая группа 802 этого института сформулировала основные требования, которым должны удовлетворять локальные вычислительные сети. Группа 802 определила множество стандартов, из них самыми известными являются стандарты 802.1,802.2,802.3 и 802.5, которые описывают общие понятия, используемые в области локальных сетей, а также стандарты на два нижних уровня сетей Ethernet и Token Ring.

·         Европейская ассоциация производителей компьютеров (European Computer Manufacturers Association, ЕСМА)— некоммерческая организация, активно сотрудничающая с ITU-T и ISO, занимается разработкой стандартов и технических обзоров, относящихся к компьютерной и коммуникационной технологиям. Известна своим стандартом ЕСМА-101, используемым при передаче отформатированного текста и графических изображений с сохранением оригинального формата.

·         Ассоциация производителей компьютеров и оргтехники (Computer and Business Equipment Manufacturers Association, CBEMA)— организация американских фирм-производителей аппаратного обеспечения; аналогична европейской ассоциации ЕКМА; участвует в разработке стандартов на обработку информации и соответствующее оборудование.

·         Ассоциация электронной промышленности (Electronic Industries Association, EIA)— промышленно-торговая группа производителей электронного и сетевого оборудования; является национальной коммерческой ассоциацией США; проявляет значительную активность в разработке стандартов для проводов, коннекторов и других сетевых компонентов. Ее наиболее известный стандарт — RS-232C.

·         Министерство обороны США (Department of Defense, DoD)имеет многочисленные подразделения, занимающиеся созданием стандартов для компьютерных систем. Одной из самых известных разработок DoD является стек транспортных протоколов TCP/IP.

·         Американский национальный институт стандартов (American National Standards Institute, ANSI)— эта организация представляет США в Международной организации по стандартизации ISO. Комитеты ANSI ведут работу по разработке стандартов в различных областях вычислительной техники. Так, комитет ANSI ХЗТ9.5 совместно с фирмой IBM занимается стандартизацией локальных сетей крупных ЭВМ (архитектура сетей SNA). Известный стандарт FDDI также является результатом деятельности этого комитета ANSI. В области микрокомпьютеров ANSI разрабатывает стандарты на языки программирования, интерфейс SCSI. ANSI разработал рекомендации по переносимости для языков С, FORTRAN, COBOL.

Особую роль в выработке международных открытых стандартов играют стандарты Internet. Ввиду большой и постоянной растущей популярности Internet, эти стандарты становятся международными стандартами «де-факто», многие из которых затем приобретают статус официальных международных стандартов за счет их утверждения одной из вышеперечисленных организаций, в том числе ISO и ITU-T. Существует несколько организационных подразделений, отвечающих за развитие Internet и, в частности, за стандартизацию средств Internet.

Основным из них является Internet Society (ISOC) — профессиональное сообщество, которое занимается общими вопросами эволюции и роста Internet как глобальной коммуникационной инфраструктуры. Под управлением ISOC работает Internet Architecture Board (IAB) — организация, в ведении которой находится технический контроль и координация работ для Internet. IAB координирует направление исследований и новых разработок для стека TCP/IP и является конечной инстанцией при определении новых стандартов Internet.

ВIAB входятдвеосновныегруппы: Internet Engineering Task Force (IETF) иInternet Research Task Force (IRTF). IETF — это инженерная группа, которая занимается решением ближайших технических проблем Internet. Именно IETF определяет спецификации, которые затем становятся стандартами Internet. В свою очередь, IRTF координирует долгосрочные исследовательские проекты по протоколам TCP/IP.

В любой организации, занимающейся стандартизацией, процесс выработки и принятия стандарта состоит из ряда обязательных этапов, которые, собственно, и составляют процедуру стандартизации. Рассмотрим эту процедуру на примере разработки стандартов Internet.

·         Сначала в IETF представляется так называемый рабочий проект (draft) в виде, доступном для комментариев. Он публикуется в Internet, после чего широкий круг заинтересованных лиц включается в обсуждение этого документа, в него вносятся исправления, и наконец наступает момент, когда можно зафиксировать содержание документа. На этом этапе проекту присваивается номер RFC (возможен и другой вариант развития событий — после обсуждения рабочий проект отвергается и удаляется из Internet).

·         После присвоения номера проект приобретает статус предлагаемого стандарта. В течение 6 месяцев этот предлагаемый стандарт проходит проверку практикой, в результате в него вносятся изменения.

·         Если результаты практических исследований показывают эффективность предлагаемого стандарта, то ему, со всеми внесенными изменениями, присваивается статус проекта стандарта. Затем в течение не менее 4-х месяцев проходят его дальнейшие испытания «на прочность», в число которых входит создание по крайней мере двух программных реализации.

·         Если во время пребывания в ранге проекта стандарта в документ не было внесено никаких исправлений, то ему может быть присвоен статус официального стандарта Internet. Список утвержденных официальных стандартов Internet публикуется в виде документа RFC и доступен в Internet.

Следует заметить, что все стандарты Internet носят название RFC с соответствующим порядковым номером, но далеко не все RFC являются стандартами Internet — часто эти документы представляют собой комментарии к какому-либо стандарту или просто описания некоторой проблемы Internet.
    продолжение
–PAGE_BREAK–1.3.7. Стандартные стеки коммуникационных протоколов
Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI. Все эти стеки, кроме SNA на нижних уровнях — физическом и канальном, — используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.
Стек OSI
Следует четко различать модель OSI и стек OSI. В то время как модель OSI является концептуальной схемой взаимодействия открытых систем, стек OSI представляет собой набор вполне конкретных спецификаций протоколов. В отличие от других стеков протоколов стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, Х.25 и ISDN, — то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FTAM, протокол эмуляции терминала VTP, протоколы справочной службы Х.500, электронной почты Х.400 и ряд других.

Протоколы стека OSI отличает большая сложность и неоднозначность спецификаций. Эти свойства явились результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи жизни и все существующие и появляющиеся технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

Из-за своей сложности протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек OSI — международный, независимый от производителей стандарт. Его поддерживает правительство США в своей программе GOSIP, в соответствии с которой все компьютерные сети, устанавливаемые в правительственных учреждениях США после 1990 года, должны или непосредственно поддерживать стек OSI, или обеспечивать средства для перехода на этот стек в будущем. Тем не менее стек OSI более популярен в Европе, чем в США, так как в Европе осталось меньше старых сетей, работающих по своим собственным протоколам. Большинство организаций пока только планируют переход к стеку OSI, и очень немногие приступили к созданию пилотных проектов. Из тех, кто работает в этом направлении, можно назвать Военно-морское ведомство США и сеть NFSNET. Одним из крупнейших производителей, поддерживающих OSI, является компания AT&T, ее сеть Stargroup полностью базируется на этом стеке.
Стек TCP/IP
Стек TCP/IP был разработан по инициативе Министерства обороны США более 20 лет назад для связи экспериментальной сети ARPAnet с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоколам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном числе корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей — это Ethernet, Token Ring, FDDI, для глобальных — протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, РРР, протоколы территориальных сетей Х.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням соответственно. IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей. Действительно, только в сети Internet объединено около 10 миллионов компьютеров по всему миру, которые взаимодействуют друг с другом с помощью стека протоколов TCP/IP.

Стремительный рост популярности Internet привел и к изменениям в расстановке сил в мире коммуникационных протоколов — протоколы TCP/IP, на которых построен Internet, стали быстро теснить бесспорного лидера прошлых лет — стек IPX/SPX компании Novell. Сегодня в мире общее количество компьютеров, на которых установлен стек TCP/IP, сравнялось с общим количеством компьютеров, на которых работает стек IPX/SPX, и это говорит о резком переломе в отношении администраторов локальных сетей к протоколам, используемым на настольных компьютерах, так как именно они составляют подавляющее число мирового компьютерного парка и именно на них раньше почти везде работали протоколы компании Novell, необходимые для доступа к файловым серверам NetWare. Процесс становления стека TCP/IP в качестве стека номер один в любых типах сетей продолжается, и сейчас любая промышленная операционная система обязательно включает программную реализацию этого стека в своем комплекте поставки.

Хотя протоколы TCP/IP неразрывно связаны с Internet и каждый из многомиллионной армады компьютеров Internet работает на основе этого стека, существует большое количество локальных, корпоративных и территориальных сетей, непосредственно не являющихся частями Internet, в которых также используют протоколы ТСРДР. Чтобы отличать их от Internet, эти сети называют сетями TCP/IP или просто IP-сетями.

Поскольку стек TCP/IP изначально создавался для глобальной сети Internet, он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей.

В стеке TCP/IP очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации высоких вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, в том числе и на облегчение конфигурирования оборудования, но в то же время сама требует пристального внимания со стороны администраторов.

Можно приводить и другие доводы за и против стека протоколов Internet, однако факт остается фактом — сегодня это самый популярный стек протоколов, широко используемый как в глобальных, так и локальных сетях.
    продолжение
–PAGE_BREAK–Стек IPX/SPX
Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы сетевого и сеансового уровней Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали название стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX. Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая еще сохраняет мировое лидерство по числу установленных систем, хотя в последнее время ее популярность несколько снизилась и по темпам роста она отстает от Microsoft Windows NT.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень — в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали распространенность его только сетями NetWare. Однако с момента выпуска версии NetWare 4.0 Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на их адаптацию для работы в корпоративных сетях. Сейчас стек IPX/ SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС, например SCO UNIX, Sun Solaris, Microsoft Windows NT.
Стек NetBIOS/SMB
Этот стек широко используется в продуктах компаний IBM и Microsoft. На физическом и канальном уровнях этого стека используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBEUI и SMB.

Протокол NetBIOS (Network Basic Input/Output System) появился в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM. В дальнейшем этот протокол был заменен так называемым протоколом расширенного пользовательского интерфейса NetBEUI — NetBIOS Extended User Interface. Для обеспечения совместимости приложений в качестве интерфейса к протоколу NetBEUI был сохранен интерфейс NetBIOS. Протокол NetBEUI разрабатывался как эффективный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций. Этот протокол содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако с его помощью невозможна маршрутизация пакетов. Это ограничивает применение протокола NetBEUI локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях. Некоторые ограничения NetBEUI снимаются реализацией этого протокола NBF (NetBEUI Frame), которая включена в операционную систему Microsoft Windows NT.

Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.

Стеки протоколов SNA фирмы IBM, DECnet корпорации Digital Equipment и AppleTalk/AFP фирмы Apple применяются в основном в операционных системах и сетевом оборудовании этих фирм.

На рис. 1.30 показано соответствие некоторых, наиболее популярных протоколов уровням модели OSI. Часто это соответствие весьма условно, так как модель OSI — это только руководство к действию, причем достаточно общее, а конкретные протоколы разрабатывались для решения специфических задач, причем многие из них появились до разработки модели OSI. В большинстве случаев разработчики стеков отдавали предпочтение скорости работы сети в ущерб модульности — ни один стек, кроме стека OSI, не разбит на семь уровней. Чаще всего в стеке явно выделяются 3-4 уровня: уровень сетевых адаптеров, в котором реализуются протоколы физического и канального уровней, сетевой уровень, транспортный уровень и уровень служб, вбирающий в себя функции сеансового, представительного и прикладного уровней.
Выводы
·         В компьютерных сетях идеологической основой стандартизации является многоуровневый подход к разработке средств сетевого взаимодействия.

·         Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

·         Формализованные правила, определяющие взаимодействие сетевых компонентов соседних уровней одного узла, называются интерфейсом. Интерфейс определяет набор сервисов, предоставляемый данным уровнем соседнему уровню.

·         Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

·         Открытой системой может быть названа любая система, которая построена в соответствии с общедоступными спецификациями, соответствующими стандартам и принятыми в результате публичного обсуждения всеми заинтересованными сторонами.

·         Модель OSI стандартизует взаимодействие открытых систем. Она определяет 7 уровней взаимодействия: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический.

·         Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI.
    продолжение
–PAGE_BREAK–5.2. Адресация в IP-сетях 5.2.1. Типы адресов стека TCP/IP
В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена.

В терминологии TCP/IP под локальным адресом понимается такой тип адреса, который используется средствами базовой технологии для доставки данных в пределах подсети, являющейся элементом составной интерсети. В разных подсетях допустимы разные сетевые технологии, разные стеки протоколов, поэтому при создании стека TCP/IP предполагалось наличие разных типов локальных адресов. Если подсетью интерсети является локальная сеть, то локальный адрес — это МАС — адрес. МАС — адрес назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. МАС — адреса назначаются производителями оборудования и являются уникальными, так как управляются централизованно. Для всех существующих технологий локальных сетей МАС — адрес имеет формат 6 байт, например 11-AO-17-3D-BC-01. Однако протокол IP может работать и над протоколами более высокого уровня, например над протоколом IPX или Х.25. В этом случае локальными адресами для протокола IP соответственно будут адреса IPX и Х.25. Следует учесть, что компьютер в локальной сети может иметь несколько локальных адресов даже при одном сетевом адаптере. Некоторые сетевые устройства не имеют локальных адресов. Например, к таким устройствам относятся глобальные порты маршрутизаторов, предназначенные для соединений типа «точка-точка».

IP-адресапредставляют собой основной тип адресов, на основании которых сетевой уровень передает пакеты между сетями. Эти адреса состоят из 4 байт, например 109.26.17.100. IP-адрес назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Internet Network Information Center, InterNIC), если сеть должна работать как составная часть Internet. Обычно поставщики услуг Internet получают диапазоны адресов у подразделений InterNIC, а затем распределяют их между своими абонентами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Символьные доменные имена.Символьные имена в IP-сетях называются доменными и строятся по иерархическому признаку. Составляющие полного символьного имени в IP-сетях разделяются точкой и перечисляются в следующем порядке: сначала простое имя конечного узла, затем имя группы узлов (например, имя организации), затем имя более крупной группы (поддомена) и так до имени домена самого высокого уровня (например, домена объединяющего организации по географическому принципу: RU — Россия, UK — Великобритания, SU — США), Примеров доменного имени может служить имя base2.sales.zil.ru. Между доменным именем и IP-адресом узла нет никакого алгоритмического соответствия, поэтому необходимо использовать какие-то дополнительные таблицы или службы, чтобы узел сети однозначно определялся как по доменному имени, так и по IP-адресу. В сетях TCP/IP используется специальная распределенная служба Domain Name System (DNS), которая устанавливает это соответствие на основании создаваемых администраторами сети таблиц соответствия. Поэтому доменные имена называют также DNS-именами,
5.2.2. Классы IP-адресов
IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме и разделенных точками, например, 128.10.2.30 — традиционная десятичная форма представления адреса, а 10000000 00001010 00000010 00011110 — двоичная форма представления этого же адреса.

Адрес состоит из двух логических частей — номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая — к номеру узла, определяется значениями первых бит адреса. Значения этих бит являются также признаками того, к какому классу относится тот или иной IP-адрес.

Если адрес начинается с 0, то сеть относят к классу А и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) Сетей класса А немного, зато количество узлов в них может достигать 224, то есть 16 777 216 узлов.

Если первые два бита адреса равны 10, то сеть относится к классу В. В сетях класса В под номер сети и под номер узла отводится по 16 бит, то есть по 2 байта. Таким образом, сеть класса В является сетью средних размеров с максимальным числом узлов 216, что составляет 65 536 узлов.

Если адрес начинается с последовательности 110, то это сеть класса С. В этом случае под номер сети отводится 24 бита, а под номер узла — 8 бит. Сети этого класса наиболее распространены, число узлов в них ограничено 28, то есть 256 узлами.

Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес — multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е, Адреса этого класса зарезервированы для будущих применений.

В табл. 5.4 приведены диапазоны номеров сетей и максимальное число узлов, соответствующих каждому классу сетей.

Большие сети получают адреса класса А, средние — класса В, а маленькие класса С.
    продолжение
–PAGE_BREAK–5.2.3. Особые IP-адреса
В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов.

·         Если весь IP-адрес состоит только из двоичных нулей, то он обозначает адрес того узла, который сгенерировал этот пакет; этот режим используется только в некоторых сообщениях ICMP.

·         Если в поле номера сети стоят только нули, то по умолчанию считается, что узел назначения принадлежит той же самой сети, что и узел, который отправил пакет.

·         Если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным. сообщением (limited broadcast).

·         Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, пакет с адресом 192.190.21.255 доставляется всем узлам сети 192.190.21.0. Такая рассылка называется широковещательным сообщением (broadcast).

При адресации необходимо учитывать те ограничения, которые вносятся особым назначением некоторых IP-адресов. Так, ни номер сети, ни номер узла не может состоять только из одних двоичных единиц или только из одних двоичных нулей. Отсюда следует, что максимальное количество узлов, приведенное в таблице для сетей каждого класса, на практике должно быть уменьшено на 2. Например, в сетях класса С под номер узла отводится 8 бит, которые позволяют задавать 256 номеров: от 0 до 255. Однако на практике максимальное число узлов в сети класса С не может превышать 254, так как адреса 0 и 255 имеют специальное назначение. Из этих же соображений следует, что конечный узел не может иметь адрес типа 98.255.255.255, поскольку номер узла в этом адресе класса А состоит из одних двоичных единиц.

Особый смысл имеет IP-адрес, первый октет которого равен 127. Он используется для тестирования программ и взаимодействия процессов в пределах одной машины. Когда программа посылает данные по IP-адресу 127.0.0.1, то образуется как бы «петля». Данные не передаются по сети, а возвращаются модулям верхнего уровня как только что принятые. Поэтому в IP-сети запрещается присваивать машинам IP-адреса, начинающиеся со 127. Этот адрес имеет название loopback. Можно отнести адрес 127.0.0.0 ко внутренней сети модуля маршрутизации узла, а адрес 127.0.0.1 — к адресу этого модуля на внутренней сети. На самом деле любой адрес сети 127.0.0.0 служит для обозначения своего модуля маршрутизации, а не только 127.0.0.1, например 127.0.0.3.

В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети — они ограничены либо сетью, к которой принадлежит узел-источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.

Уже упоминавшаяся форма группового IP-адреса — multicast — означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Члены какой-либо группы multicast не обязательно должны принадлежать одной сети. В общем случае они могут распределяться по совершенно различным сетям, находящимся друг от друга на произвольном количестве хопов. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.

Основное назначение multicast-адресов — распространение информации по схеме «один-ко-многим». Хост, который хочет передавать одну и ту же информацию многим абонентам, с помощью специального протокола IGMP (Internet Group Management Protocol) сообщает о создании в сети новой мультивещательной группы с определенным адресом. Машрутизаторы, поддерживающие мультивещательность, распространяют информацию о создании новой группы в сетях, подключенных к портам этого маршрутизатора. Хосты, которые хотят присоединиться к вновь создаваемой мультивещательной группе, сообщают об этом своим локальным маршрутизаторам и те передают эту информацию хосту, инициатору создания новой группы.

Чтобы маршрутизаторы могли автоматически распространять пакеты с адресом multicast по составной сети, необходимо использовать в конечных маршрутизаторах модифицированные протоколы обмена маршрутной информацией, такие как, например, MOSPF (Multicast OSPF, аналог OSPF).

Групповая адресация предназначена для экономичного распространения в Internet или большой корпоративной сети аудио- или видеопрограмм, предназначенных сразу большой аудитории слушателей или зрителей. Если такие средства найдут широкое применение (сейчас они представляют в основном небольшие экспериментальные островки в общем Internet), то Internet сможет создать серьезную конкуренцию радио и телевидению.
5.2.4. Использование масок в IP-адресации
Традиционная схема деления IP-адреса на номер сети и номер узла основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, мы можем сказать, что этот адрес относится к классу В, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами — 185.23.0.0, а номером узла — 0.0.44.206.

А что если использовать какой-либо другой признак, с помощью которого можно было, бы более гибко устанавливать границу между номером сети и номером узла? В качестве такого признака сейчас получили широкое распространение маски. Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность.

Для стандартных классов сетей маски имеют следующие значения:

·         класс А — 11111111. 00000000. 00000000. 00000000 (255.0.0.0);

·         класс В — 11111111. 11111111. 00000000. 00000000 (255.255.0.0);

·         класс С-11111111.11111111.11111111.00000000 (255.255.255.0).
    продолжение
–PAGE_BREAK–
ПРИМЕЧАНИЕДля записи масок используются и другие форматы, например, удобно интерпретировать значение маски, записанной в шестнадцатеричном коде: FF.FF.OO.OO — маска для адресов класса В. Часто встречается и такое обозначение 185.23.44.206/16 — эта запись говорит о том, что маска для этого адреса содержит 16 единиц или что в указанном IP-адресе под номер сети отведено 16 двоичных разрядов.

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адресов и сделать более гибкой систему адресации. Например, если рассмотренный выше адрес 185.23.44.206 ассоциировать с маской 255.255.255.0, то номером сети будет 185.23.44.0, а не 185.23.0.0, как это определено системой классов.

В масках количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты. Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0, то есть в двоичном виде:

IP-адрес 129.64.134.5 — 10000001. 01000000.10000110. 00000101

Маска 255.255.128.0 — 11111111.11111111.10000000. 00000000

Если игнорировать маску, то в соответствии с системой классов адрес 129.64.134.5 относится к классу В, а значит, номером сети являются первые 2 байта — 129.64.0.0, а номером узла — 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 последовательных единиц в маске, «наложенные» на IP-адрес, определяют в качестве номера сети в двоичном выражении число:

10000001. 01000000. 10000000. 00000000 или в десятичной форме записи — номер сети 129.64.128.0, а номер узла 0.0.6.5.

Механизм масок широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей. С их помощью администратор может структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей. На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «префиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов.
5.2.5. Порядок распределения IP-адресов
Номера сетей назначаются либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно. Номера узлов и в том и в другом случае администратор волен назначать по своему усмотрению, не выходя, разумеется, из разрешенного для этого класса сети диапазона.

Координирующую роль в централизованном распределении IP-адресов до некоторого времени играла организация InterNIC, однако с ростом сети задача распределения адресов стала слишком сложной, и InterNIC делегировала часть своих функций другим организациям и крупным поставщикам услуг Internet.

Уже сравнительно давно наблюдается дефицит IP-адресов. Очень трудно получить адрес класса В и практически невозможно стать обладателем адреса класса А. При этом надо отметить, что дефицит обусловлен не только ростом сетей, но и тем, что имеющееся множество IP-адресов используется нерационально. Очень часто владельцы сети класса С расходуют лишь небольшую часть из имеющихся у них 254 адресов. Рассмотрим пример, когда две сети необходимо соединить глобальной связью. В таких случаях в качестве канала связи используют два маршрутизатора, соединенных по схеме «точка-точка» (рис. 5.10). Для вырожденной сети, образованной каналом, связывающим порты двух смежных маршрутизаторов, приходится выделять отдельный номер сети, хотя в этой сети имеются всего 2 узла.

Если же некоторая IP-сеть создана для работы в «автономном режиме», без связи с Internet, тогда администратор этой сети волен назначить ей произвольно выбранный номер. Но и в этой ситуации для того, чтобы избежать каких-либо коллизий, в стандартах Internet определено несколько диапазонов адресов, рекомендуемых для локального использования. Эти адреса не обрабатываются маршрутизаторами Internet ни при каких условиях. Адреса, зарезервированные для локальных целей, выбраны из разных классов; в классе А — это сеть 10.0.0.0, в классе В — это диапазон из 16 номеров сетей 172.16.0.0-172.31.0.0, в классе С — это диапазон из 255 сетей — 192.168.0.0-192.168.255.0.

Для смягчения проблемы дефицита адресов разработчики стека TCP/IP предлагают разные подходы. Принципиальным решением является переход на новую версию IPv6, в которой резко расширяется адресное пространство за счет использования 16-байтных адресов. Однако и текущая версия IPv4 поддерживает некоторые технологии, направленные на более экономное расходование IP-адресов. Одной из таких технологий является технология масок и ее развитие — технология бесклассовой междоменной маршрутизации (Classless Inker-Domain Routing, CIDR). Технология CIDR отказывается от традиционной концепции разделения адресов протокола IP на классы, что позволяет получать в пользование столько адресов, сколько реально необходимо. Благодаря CIDR поставщик услуг получает возможность «нарезать» блоки из выделенного ему адресного пространства в точном соответствии с требованиями каждого клиента, при этом у него остается пространство для маневра на случай его будущего роста.

Другая технология, которая может быть использована для снятия дефицита адресов, это трансляция адресов (Network Address Translator, NAT). Узлам внутренней сети адреса назначаются произвольно (естественно, в соответствии с общими правилами, определенными в стандарте), так, как будто эта сеть работает автономно. Внутренняя сеть соединяется с Internet через некоторое промежуточное устройство (маршрутизатор, межсетевой экран). Это промежуточное устройство получает в свое распоряжение некоторое количество внешних «нормальных» IP-адресов, согласованных с поставщиком услуг или другой организацией, распределяющей IP-адреса. Промежуточное устройство способно преобразовывать внутренние адреса во внешние, используя для этого некие таблицы соответствия. Для внешних пользователей все многочисленные узлы внутренней сети выступают под несколькими внешними IP-адресами. При получении внешнего запроса это устройство анализирует его содержимое и при необходимости пересылает его во внутреннюю сеть, заменяя IP-адрес на внутренний адрес этого узла. Процедура трансляции адресов определена в RFC 1631.
    продолжение
–PAGE_BREAK–5.2.6. Автоматизация процесса назначения IP-адресов
Назначение IP-адресов узлам сети даже при не очень большом размере сети может представлять для администратора утомительную процедуру. Протокол Dynamic Host Configuration Protocol (DHCP) освобождает администратора от этих проблем, автоматизируя процесс назначения IP-адресов.

DHCP может поддерживать способ автоматического динамического распределения адресов, а также более простые способы ручного и автоматического статического назначения адресов. Протокол DHCP работает в соответствии с моделью клиент-сервер. Во время старта системы компьютер, являющийся DHCP-клиентом, посылает в сеть широковещательный запрос на получение IP-адреса. DHCP — cepвер откликается и посылает сообщение-ответ, содержащее IP-адрес. Предполагается, что DHCP-клиент и DHCP-сервер находятся в одной IP-сети.

При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, называемое временем аренды (lease duration), что дает возможность впоследствии повторно использовать этот IP-адрес для назначения другому компьютеру. Основное преимущество DHCP — автоматизация рутинной работы администратора по конфигурированию стека TCP/IP на каждом компьютере. Иногда динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой превышает количество имеющихся в распоряжении администратора IP-адресов.

В ручной процедуре назначения статических адресов активное участие принимает администратор, который предоставляет DHCP — серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. DHCP-сервер, пользуясь этой информацией, всегда выдает определенному клиенту назначенный администратором адрес.

При автоматическом статическом способе DHCP-сервер присваивает IP-адрес из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Адрес дается клиенту из пула в постоянное пользование, то есть с неограниченным сроком аренды. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первого назначения DHCP-сервером IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.

DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие дублирования адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра «продолжительность аренды», которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от DHCP-сервера в аренду.

Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся DHCP-клиентом, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.

DHCP-сервер может назначить клиенту не только IP-адрес клиента, но и другие параметры стека TCP/IP, необходимые для его эффективной работы, например, маску, IP-адрес маршрутизатора по умолчанию, IP-адрес сервера DNS, доменное имя компьютера и т. п.
5.2.7. Отображение IP-адресов на локальные адреса
Одной из главных задач, которая ставилась при создании протокола IP, являлось обеспечение совместной согласованной работы в сети, состоящей из подсетей, в общем случае использующих разные сетевые технологии. Непосредственно с решением этой задачи связан уровень межсетевых интерфейсов стека TCP/IP. На этом уровне определяются уже рассмотренные выше спецификации упаковки (инкапсуляции) IP-пакетов в кадры локальных технологий. Кроме этого, уровень межсетевых интерфейсов должен заниматься также крайне важной задачей отображения IP-адресов в локальные адреса.

Для определения локального адреса по IP-адресу используется протокол разрешения адреса (Address Resolution Protocol, ARP). Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети — протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети или же протокол глобальной сети (Х.25, frame relay), как правило не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу — нахождение IP-адреса по известному локальному адресу. Он называется реверсивным ARP (Reverse Address Resolution Protocol, RARP) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.

Необходимость в обращении к протоколу ARP возникает каждый раз, когда модуль IP передает пакет на уровень сетевых интерфейсов, например драйверу Ethernet. IP-адрес узла назначения известен модулю IP. Требуется на его основе найти МАС — адрес узла назначения.

Работа протокола ARP начинается с просмотра так называемой АКР-таблицы (табл. 5.5). Каждая строка таблицы устанавливает соответствие между IP-адресом и МАС — адресом. Для каждой сети, подключенной к сетевому адаптеру компьютера или к порту маршрутизатора, строится отдельная ARP-таблица.

Поле «Тип записи» может содержать одно из двух значений — «динамический» или «статический». Статические записи создаются вручную с помощью утилиты агр и не имеют срока устаревания, точнее, они существуют до тех пор, пока компьютер или маршрутизатор не будут выключены. Динамические же записи создаются модулем протокола ARP, использующим широковещательные возможности локальных сетевых технологий. Динамические записи должны периодически обновляться. Если запись не обновлялась в течение определенного времени (порядка нескольких минут), то она исключается из таблицы. Таким образом, в ARP — таблице содержатся записи не обо всех узлах сети, а только о тех, которые активно участвуют в сетевых операциях. Поскольку такой способ хранения информации называют кэшированием, ARP-таблицы иногда называют ARP-кэш.

В глобальных сетях администратору сети чаще всего приходится вручную формировать ARP-таблицы, в которых он задает, например, соответствие IP-адреса адресу узла сети Х.25, который имеет для протокола IP смысл локального адреса. В последнее время наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети. При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного маршрутизатора. Затем каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе, а при необходимости установления соответствия между IP-адресом и локальным адресом узел обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора. Работающий таким образом маршрутизатор называют ARP-сервером.

Итак, после того как модуль IP обратился к модулю ARP с запросом на разрешение адреса, происходит поиск в ARP-таблице указанного в запросе IP-адреса. Если таковой адрес в ARP-таблице отсутствует, то исходящий IP-пакет, для которого нужно было определить локальный адрес, ставится в очередь. Далее протокол ARP формирует свой запрос (ARP-запрос), вкладывает его в кадр протокола канального уровня и рассылает запрос широковещательно.

Все узлы локальной сети получают ARP-запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес, а затем отправляет его уже направленно, так как в ARP-запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета. В табл. 5.6 приведены значения полей примера ARP-запроса для передачи по сети Ethernet.

В поле «тип сети» для сетей Ethernet указывается значение 1.

Поле «тип протокола» позволяет использовать протокол ARP не только для протокола IP, но и для других сетевых протоколов. Для IP значение этого поля равно 0800 is.

Длина локального адреса для протокола Ethernet равна 6 байт, а длина IP-адреса — 4 байт. В поле операции для ARP-запросов указывается значение 1, если это запрос, и 2, если это ответ.

Из этого запроса видно, что в сети Ethernet узел с IP-адресом 194.85.135.75 пытается определить, какой МАС — адрес имеет другой узел той же сети, сетевой адрес которого 194.85.135.65. Поле искомого локального адреса заполнено нулями.

Ответ присылает узел, опознавший свой IP-адрес. Если в сети нет машины с искомым IP-адресом, то ARP-ответа не будет. Протокол IP уничтожает IP-пакеты, направляемые по этому адресу. (Заметим, что протоколы верхнего уровня не могут отличить случай повреждения сети Ethernet от случая отсутствия машины с искомым IP-адресом.) В табл. 5.7 помещены значения полей ARP-ответа, который мог бы поступить на приведенный выше пример ARP-запроса.

Этот ответ получает машина, сделавшая ARP-запрос. Модуль ARP анализирует ARP-ответ и добавляет запись в свою ARP-таблицу (табл. 5.8). В результате обмена этими двумя ARP-сообшениями модуль IP-узла 194.85.135.75 определил, что IP-адресу 194.85.135.65 соответствует МАС — адрес 00E0F77F1920. Новая запись в ARP-таблице появляется автоматически, спустя несколько миллисекунд после того, как она потребовалась.
    продолжение
–PAGE_BREAK–
ПРИМЕЧАНИЕНекоторые реализации IP и ARP не ставят IP-пакеты в очередь на время ожидания ARP-ответов. Вместо этого IP-пакет просто уничтожается, о его восстановление возлагается на модуль TCP или прикладной процесс, работающий через UDP. Такое восстановление выполняется с помощью тайм-аутов и повторных передач. Повторная передача сообщения проходит успешно, так как первая попытка уже вызвала заполнение ARP-таблицы.
5.2.8. Отображение доменных имен на IP-адреса Организация доменов и доменных имен
Для идентификации компьютеров аппаратное и программное обеспечение в сетях TCP/IP полагается на IP-адреса, поэтому для доступа к сетевому ресурсу в параметрах программы вполне достаточно указать IP-адрес, чтобы программа правильно поняла, к какому хосту ей нужно обратиться. Например, команда ftp://192.45.66.17 будет устанавливать сеанс связи с нужным ftp-сервером, а команда 203.23.106.33 откроет начальную страницу на корпоративном Web-сервере. Однако пользователи обычно предпочитают работать с символьными именами компьютеров, и операционные системы локальных сетей приучили их к этому удобному способу. Следовательно, в сетях TCP/IP должны существовать символьные имена хостов и механизм для установления соответствия между символьными именами и IP-адресами.

В операционных системах, которые первоначально разрабатывались для работы в локальных сетях, таких как Novell NetWare, Microsoft Windows или IBM OS/2, пользователи всегда работали с символьными именами компьютеров. Так как локальные сети состояли из небольшого числа компьютеров, то использовались так называемые плоские имена, состоящие из последовательности символов, не разделенных на части. Примерами таких имен являются: NW1_1, mail2, MOSCOW_SALES_2. Для установления соответствия между символьными именами и МАС — адресами в этих операционных системах применялся механизм широковещательных запросов, подобный механизму запросов протокола ARP. Так, широковещательный способ разрешения имен реализован в протоколе NetBIOS, на котором были построены многие локальные ОС. Так называемые NetBIOS-имена стали на долгие годы одним из основных типов плоских имен в локальных сетях.

Для стека TCP/IP, рассчитанного в общем случае на работу в больших территориально распределенных сетях, подобный подход оказывается неэффективным по нескольким причинам.

Плоские имена не дают возможности разработать единый алгоритм обеспечения уникальности имен в пределах большой сети. В небольших сетях уникальность имен компьютеров обеспечивает администратор сети, записывая несколько десятков имен в журнале или файле. При росте сети задачу решают уже несколько администраторов, согласовывая имена между собой неформальным способом. Однако если сеть расположена в разных городах или странах, то администраторам каждой части сети нужно придумать способ именования, который позволил бы им давать имена новым компьютерам независимо от других администраторов, обеспечивая в то же время уникальность имен для всей сети. Самый надежный способ решения этой задачи — отказ от плоских имен в принципе.

Широковещательный способ установления соответствия между символьными именами и локальными адресами хорошо работает только в небольшой локальной сети, не разделенной на подсети. В крупных сетях, где общая широковещательность не поддерживается, нужен другой способ разрешения символьных имен. Обычно хорошей альтернативой широковещательности является применение централизованной службы, поддерживающей соответствие между различными типами адресов всех компьютеров сети. Компания Microsoft для своей корпоративной операционной системы Windows NT разработала централизованную службу WINS, которая поддерживает базу данных NetBIOS-имен и соответствующих им IP-адресов.

Для эффективной организации именования компьютеров в больших сетях естественным является применение иерархических составных имен.

В стеке TCP/IP применяется доменная система имен, которая имеет иерархическую древовидную структуру, допускающую использование в имени произвольного количества составных частей (рис. 5.11).

Иерархия доменных имен аналогична иерархии имен файлов, принятой во многих популярных файловых системах. Дерево имен начинается с корня, обозначаемого здесь точкой (.). Затем следует старшая символьная часть имени, вторая по старшинству символьная часть имени и т. д. Младшая часть имени соответствует конечному узлу сети. В отличие от имен файлов, при записи которых сначала указывается самая старшая составляющая, затем составляющая более низкого уровня и т. д., запись доменного имени начинается с самой младшей составляющей, а заканчивается самой старшей. Составные части доменного имени отделяется друг от друга точкой. Например, в имени partnering.microsoft.com составляющая partnering является именем одного из компьютеров в домене Microsoft.com.

Разделение имени на части позволяет разделить административную ответственность за назначение уникальных имен между различными людьми или организациями в пределах своего уровня иерархии. Так, для примера, приведенного на рис. 5.11, один человек может нести ответственность за то, чтобы все имена, которые имеют окончание «та», имели уникальную следующую вниз по иерархии часть. Если этот человек справляется со своими обязанностями, то все имена типа www.ru, mail.mmt.ru или m2.zil.mmt.ru будут отличаться второй по старшинству частью.

Разделение административной ответственности позволяет решить проблему образования уникальных имен без взаимных консультаций между организациями, отвечающими за имена одного уровня иерархии. Очевидно, что должна существовать одна организация, отвечающая за назначение имен верхнего уровня иерархии.

Совокупность имен, у которых несколько старших составных частей совпадают, образуют домен имен (domain). Например, имена wwwl.zil.mmt.ru, ftp.zil.mmt.ru, yandex.ru и sl.mgu.ru входят в домен ru, так как все эти имена имеют одну общую старшую часть — имя ru. Другим примером является домен mgu.ru. Из представленных на рис. 5.11 имен в него входят имена sl.mgu.ru, s2.mgu.ru и rn.mgu.ru. Этот домен образуют имена, у которых две старшие части всегда равны rngu.ru. Имя www.mmt.ru в домен mgu.ru не входит, так как имеет отличающуюся составляющую mmt.
–PAGE_BREAK–
ВНИМАНИЕТермин «домен» очень многозначен, поэтому его нужно трактовать в рамках определенного контекста. Кроме доменов имен стека TCP/IP в компьютерной литературе также часто упоминаются домены Windows NT, домены коллизий н некоторые другие. Общим у всех этих терминов является то, что они описывают некоторое множество компьютеров, обладающее каким-либо определенным свойством.

Если один домен входит в другой домен как его составная часть, то такой домен могут называть поддоменом (subdomain), хотя название домен за ним также остается. Обычно поддомен называют по имени той его старшей составляющей, которая отличает его от других поддоменов. Например, поддомен mmt.ru обычно называют поддоменом (или доменом) mmt. Имя поддомену назначает администратор вышестоящего домена. Хорошей аналогией домена является каталог файловой системы.

Если в каждом домене и поддомене обеспечивается уникальность имен следующего уровня иерархии, то и вся система имен будет состоять из уникальных имен.

По аналогии с файловой системой, в доменной системе имен различают краткие имена, относительные имена и полные доменные имена. Краткое имя — это имя конечного узла сети: хоста или порта маршрутизатора. Краткое имя — это лист дерева имен. Относительное имя — это составное имя, начинающееся с некоторого уровня иерархии, но не самого верхнего. Например, wwwi.zil — это относительное имя. Полное доменное имя (fully qualified domain name, FQJDN) включает составляющие всех уровней иерархии, начиная от краткого имени и кончая корневой точкой: wwwl.zil.mmt.ru.

Необходимо подчеркнуть, что компьютеры входят в домен в соответствии со своими составными именами, при этом они могут иметь совершенно различные IP-адреса, принадлежащие к различным сетям и подсетям. Например, в домен mgu.ru могут входить хосты с адресами 132.13.34.15, 201.22.100.33,14.0.0.6. Доменная система имен реализована в сети Internet, но она может работать и как автономная система имен в крупной корпоративной сети, использующей стек TCP/IP, но не связанной с Internet.

В Internet корневой домен управляется центром InterNIC. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций — следующие обозначения:

·         corn — коммерческие организации (например, microsoft.com);

·         edu — образовательные (например, mitedu);

·         gov — правительственные организации (например, nsf.gov);

·         org — некоммерческие организации (например, fidonet.org);

·         net — организации, поддерживающие сети (например, nsf.net).

Каждый домен администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Чтобы получить доменное имя, необходимо зарегистрироваться в какой-либо организации, которой InterNIC делегировал свои полномочия по распределению имен доменов. В России такой организацией является РосНИИРОС, которая отвечает за делегирование имен поддоменов в домене ru.
Система доменных имен DNS
Соответствие между доменными именами и IP-адресами может устанавливаться как средствами локального хоста, так и средствами централизованной службы. На раннем этапе развития Internet на каждом хосте вручную создавался текстовый файл с известным именем hosts. Этот файл состоял из некоторого количества строк, каждая из которых содержала одну пару «IP-адрес — доменное имя», например 102.54.94.97 — rhino.acme.com.

По мере роста Internet файлы hosts также росли, и создание масштабируемого решения для разрешения имен стало необходимостью.

Таким решением стала специальная служба — система доменных имен (Domain Name System, DNS). DNS — это централизованная служба, основанная на распределенной базе отображений «доменное имя — IP-адрес». Служба DNS использует в своей работе протокол типа «клиент-сервер». В нем определены DNS-серверы и DNS-кли-енты. DNS-серверы поддерживают распределенную базу отображений, а DNS-клиен-ты обращаются к серверам с запросами о разрешении доменного имени в IP-адрес.

Служба DNS использует текстовые файлы почти такого формата, как и файл hosts, и эти файлы администратор также подготавливает вручную. Однако служба DNS опирается на иерархию доменов, и каждый сервер службы DNS хранит только часть имен сети, а не все имена, как это происходит при использовании файлов hosts. При росте количества узлов в сети проблема масштабирования решается созданием новых доменов и поддоменов имен и добавлением в службу DNS новых серверов.

Для каждого домена имен создается свой DNS-сервер. Этот сервер может хранить отображения «доменное имя — IP-адрес» для всего домена, включая все его поддомены. Однако при этом решение оказывается плохо масштабируемым, так как при добавлении новых поддоменов нагрузка на этот сервер может превысить его возможности. Чаще сервер домена хранит только имена, которые заканчиваются на следующем ниже уровне иерархии по сравнению с именем домена. (Аналогично каталогу файловой системы, который содержит записи о файлах и подкаталогах, непосредственно в него «входящих».) Именно при такой организации службы DNS нагрузка по разрешению имен распределяется более-менее равномерно между всеми DNS-серверами сети. Например, в первом случае DNS-сервер домена mmtru будет хранить отображения для всех имен, заканчивающихся на mmt.ru: wwwl.zil.mmt.ru, ftp.zil.mmt.ru, mail.mmt.ru и т. д. Во втором случае этот сервер хранит отображения только имен типа mail.mmt.ru, www.mmt.ru, а все остальные отображения должны храниться на DNS-сервере поддомена zil.

Каждый DNS-сервер кроме таблицы отображений имен содержит ссылки на DNS-серверы своих поддоменов. Эти ссылки связывают отдельные DNS-серверы в единую службу DNS. Ссылки представляют собой IP-адреса соответствующих серверов. Для обслуживания корневого домена выделено несколько дублирующих друг друга DNS-серверов, IP-адреса которых являются широко известными (их можно узнать, например, в InterNIC).

Процедура разрешения DNS-имени во многом аналогична процедуре поиска файловой системой адреса файла по его символьному имени. Действительно, в обоих случаях составное имя отражает иерархическую структуру организации соответствующих справочников — каталогов файлов или таблиц DNS. Здесь домен и доменный DNS-сервер являются аналогом каталога файловой системы. Для доменных имен, так же как и для символьных имен файлов, характерна независимость именования от физического местоположения.

Процедура поиска адреса файла по символьному имени заключается в последовательном просмотре каталогов, начиная с корневого. При этом предварительно проверяется кэш и текущий каталог. Для определения IP-адреса по доменному имени также необходимо просмотреть все DNS-серверы, обслуживающие цепочку поддоменов, входящих в имя хоста, начиная с корневого домена. Существенным же отличием является то, что файловая система расположена на одном компьютере, а служба DNS по своей природе является распределенной.

Существуют две основные схемы разрешения DNS-имен. В первом варианте работу по поиску IP-адреса координирует DNS-клиент:

·         DNS-клиент обращается к корневому DNS-серверу с указанием полного доменного имени;

·         DNS-сервер отвечает, указывая адрес следующего DNS-сервера, обслуживающего домен верхнего уровня, заданный в старшей части запрошенного имени;

·         DNS-клиент делает запрос следующего DNS-сервера, который отсылает его к DNS-серверу нужного поддомена, и т. д., пока не будет найден DNS-сервер, в котором хранится соответствие запрошенного имени IP-адресу. Этот сервер дает окончательный ответ клиенту.

Такая схема взаимодействия называется нерекурсивной или итеративной, когда клиент сам итеративно выполняет последовательность запросов к разным серверам имен. Так как эта схема загружает клиента достаточно сложной работой, то она применяется редко.

Во втором варианте реализуется рекурсивная процедура:

·         DNS-клиент запрашивает локальный DNS-сервер, то есть тот сервер, который обслуживает поддомен, к которому принадлежит имя клиента;

·         если локальный DNS-сервер знает ответ, то он сразу же возвращает его клиенту; это может соответствовать случаю, когда запрошенное имя входит в тот же поддомен, что и имя клиента, а также может соответствовать случаю, когда сервер уже узнавал данное соответствие для другого клиента и сохранил его в своем кэше;

·         если же локальный сервер не знает ответ, то он выполняет итеративные запросы к корневому серверу и т. д. точно так же, как это делал клиент в первом варианте; получив ответ, он передает его клиенту, который все это время просто ждал его от своего локального DNS-сервера.

В этой схеме клиент перепоручает работу своему серверу, поэтому схема называется косвенной или рекурсивной. Практически все DNS-клиенты используют рекурсивную процедуру.

Для ускорения поиска IP-адресов DNS-серверы широко применяют процедуру кэширования проходящих через них ответов. Чтобы служба DNS могла оперативно отрабатывать изменения, происходящие в сети, ответы кэшируются на определенное время — обычно от нескольких часов до нескольких дней.
    продолжение
–PAGE_BREAK–Выводы
·         В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена. Все эти типы адресов присваиваются узлам составной сети независимо друг от друга.

·         IP-адрес имеет длину 4 байта и состоит из номера сети и номера узла. Для определения границы, отделяющей номер сети от номера узла, реализуются два подхода. Первый основан на понятии класса адреса, второй — на использовании масок.

·         Класс адреса определяется значениями нескольких первых бит адреса. В адресах класса А под номер сети отводится один байт, а остальные три байта — под номер узла, поэтому они используются в самых больших сетях. Для небольших сетей больше подходят адреса класса С, в которых номер сети занимает три байта, а для нумерации узлов может быть использован только один байт. Промежуточное положение занимают адреса класса В.

·         Другой способ определения, какая часть адреса является номером сети, а какая номером узла, основан на использовании маски. Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые в IP-адресе должны интерпретироваться как номер сети.

·         Номера сетей назначаются либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно.

·         Процесс распределения IP-адресов по узлам сети может быть автоматизирован с помощью протокола DHCP.

·         Установление соответствия между IP-адресом и аппаратным адресом (чаще всего МАС — адресом) осуществляется протоколом разрешения адресов ARP, который для этой цели просматривает ARP-таблицы. Если нужный адрес отсутствует, то выполняется широковещательный ARP-запрос.

·         В стеке TCP/IP применяется доменная система символьных имен, которая имеет иерархическую древовидную структуру, допускающую использование в имени произвольного количества составных частей. Совокупность имен, у которых несколько старших составных частей совпадают, образуют домен имен. Доменные имена назначаются централизованно, если сеть является частью Internet, в противном случае — локально.

·         Соответствие между доменными именами и IP-адресами может устанавливаться как средствами локального хоста с использованием файла hosts, так и с помощью централизованной службы DNS, основанной на распределенной базе отображений «доменное имя — IP-адрес».
5.3. Протокол IP 5.3.1. Основные функции протокола IP
Основу транспортных средств стека протоколов TCP/IP составляет протокол межсетевого взаимодействия (Internet Protocol, IP). Он обеспечивает передачу дейтаграмм от отправителя к получателям через объединенную систему компьютерных сетей.

Название данного протокола — Intrenet Protocol — отражает его суть: он должен передавать пакеты между сетями. В каждой очередной сети, лежащей на пути перемещения пакета, протокол IP вызывает средства транспортировки, принятые в этой сети, чтобы с их помощью передать этот пакет на маршрутизатор, ведущий к следующей сети, или непосредственно на узел-получатель.

Протокол IP относится к протоколам без установления соединений. Перед IP не ставится задача надежной доставки сообщений от отправителя к получателю. Протокол IP обрабатывает каждый IP-пакет как независимую единицу, не имеющую связи ни с какими другими IP-пакетами. В протоколе IP нет механизмов, обычно применяемых для увеличения достоверности конечных данных: отсутствует квитирование — обмен подтверждениями между отправителем и получателем, нет процедуры упорядочивания, повторных передач или других подобных функций. Если во время продвижения пакета произошла какая-либо ошибка, то протокол IP по своей инициативе ничего не предпринимает для исправления этой ошибки. Например, если на промежуточном маршрутизаторе пакет был отброшен по причине истечения времени жизни или из-за ошибки в контрольной сумме, то модуль IP не пытается заново послать испорченный или потерянный пакет. Все вопросы обеспечения надежности доставки данных по составной сети в стеке TCP/IP решает протокол TCP, работающий непосредственно над протоколом IP. Именно TCP организует повторную передачу пакетов, когда в этом возникает необходимость.

Важной особенностью протокола IP, отличающей его от других сетевых протоколов (например, от сетевого протокола IPX), является его способность выполнять динамическую фрагментацию пакетов при передаче их между сетями с различными, максимально допустимыми значениями поля данных кадров MTU. Свойство фрагментации во многом способствовало тому, что протокол IP смог занять доминирующие позиции в сложных составных сетях.

Имеется прямая связь между функциональной сложностью протокола и сложностью заголовка пакетов, которые этот протокол использует. Это объясняется тем, что основные служебные данные, на основании которых протокол выполняет то или иное действие, переносятся между двумя модулями, реализующими этот протокол на разных машинах, именно в полях заголовков пакетов. Поэтому очень полезно изучить назначение каждого поля заголовка IP-пакета, и это изучение дает не только формальные знания о структуре пакета, но и объясняет все основные режимы работы протокола по обработке и передаче IP-дейтаграмм.
    продолжение
–PAGE_BREAK–5.3.2. Структура IP-пакета
IP-пакет состоит из заголовка и поля данных. Заголовок, как правило, имеющий длину 20 байт, имеет следующую структуру (рис. 5.12).

Поле Номер версии (Version), занимающее 4 бит, указывает версию протокола IP. Сейчас повсеместно используется версия 4 (IPv4), и готовится переход на версию 6 (IPv6).

Поле Длина заголовка (IHL) IP-пакета занимает 4 бит и указывает значение длины заголовка, измеренное в 32-битовых словах. Обычно заголовок имеет длину в 20 байт (пять 32-битовых слов), но при увеличении объема служебной информации эта длина может быть увеличена за счет использования дополнительных байт в поле Опции (IP Options). Наибольший заголовок занимает 60 октетов.

Поле Тип сервиса (Type of Service) занимает один байт и задает приоритетность пакета и вид критерия выбора маршрута. Первые три бита этого поля образуют подполе приоритета пакета (Precedence), Приоритет может иметь значения от самого низкого — 0 (нормальный пакет) до самого высокого — 7 (пакет управляющей информации). Маршрутизаторы и компьютеры могут принимать во внимание приоритет пакета и обрабатывать более важные пакеты в первую очередь. Поле Тип сервиса содержит также три бита, определяющие критерий выбора маршрута. Реально выбор осуществляется между тремя альтернативами: малой задержкой, высокой достоверностью и высокой пропускной способностью. Установленный бит D (delay) говорит о том, что маршрут должен выбираться для минимизации задержки доставки данного пакета, бит Т — для максимизации пропускной способности, а бит R — для максимизации надежности доставки. Во многих сетях улучшение одного из этих параметров связано с ухудшением другого, кроме того, обработка каждого из них требует дополнительных вычислительных затрат. Поэтому редко, когда имеет смысл устанавливать одновременно хотя бы два из этих трех критериев выбора маршрута. Зарезервированные биты имеют нулевое значение.

Поле Общая длина (Total Length) занимает 2 байта и означает общую длину пакета с учетом заголовка и поля данных. Максимальная длина пакета ограничена разрядностью поля, определяющего эту величину, и составляет 65 535 байт, однако в большинстве хост-компьютеров и сетей столь большие пакеты не используются. При передаче по сетям различного типа длина пакета выбирается с учетом максимальной длины пакета протокола нижнего уровня, несущего IP-пакеты. Если это кадры Ethernet, то выбираются пакеты с максимальной длиной в 1500 байт, умещающиеся в поле данных кадра Ethernet. В стандарте предусматривается, что все хосты должны быть готовы принимать пакеты вплоть до 576 байт длиной (приходят ли они целиком или по фрагментам). Хостам рекомендуется отправлять пакеты размером более чем 576 байт, только если они уверены, что принимающий хост или промежуточная сеть готовы обслуживать пакеты такого размера.

Поле Идентификатор пакета (Identification) занимает 2 байта и используется для распознавания пакетов, образовавшихся путем фрагментации исходного пакета. Все фрагменты должны иметь одинаковое значение этого поля.

Поле Флаги (Flags) занимает 3 бита и содержит признаки, связанные с фрагментацией. Установленный бит DF (Do not Fragment) запрещает маршрутизатору фрагментировать данный пакет, а установленный бит MF (More Fragments) говорит о том, что данный пакет является промежуточным (не последним) фрагментом. Оставшийся бит зарезервирован.

Поле Смещение фрагмента (Fragment Offset) занимает 13 бит и задает смещение в байтах поля данных этого пакета от начала общего поля данных исходного пакета, подвергнутого фрагментации. Используется при сборке/разборке фрагментов пакетов при передачах их между сетями с различными величинами MTU. Смещение должно быть кратно 8 байт.

Поле Время жизни (Time to Live) занимает один байт и означает предельный срок, в течение которого пакет может перемещаться по сети. Время жизни данного пакета измеряется в секундах и задается источником передачи. На маршрутизаторах и в других узлах сети по истечении каждой секунды из текущего времени жизни вычитается единица; единица вычитается и в том случае, когда время задержки меньше секунды. Поскольку современные маршрутизаторы редко обрабатывают пакет дольше, чем за одну секунду, то время жизни можно считать равным максимальному числу узлов, которые разрешено пройти данному пакету до того, как он достигнет места назначения. Если параметр времени жизни станет нулевым до того, как пакет достигнет получателя, этот пакет будет уничтожен. Время жизни можно рассматривать как часовой механизм самоуничтожения. Значение этого поля изменяется при обработке заголовка IP-пакета.

Идентификатор Протокол верхнего уровня (Protocol) занимает один байт и указывает, какому протоколу верхнего уровня принадлежит информация, размещенная в поле данных пакета (например, это могут быть сегменты протокола TCP, дейтаграммы UDP, пакеты ICMP или OSPF). Значения идентификаторов для различных протоколов приводятся в документе RFC «Assigned Numbers».

Контрольная сумма (Header Checksum)занимает 2 байта и рассчитывается только по заголовку. Поскольку некоторые поля заголовка меняют свое значение в процессе передачи пакета по сети (например, время жизни), контрольная сумма проверяется и повторно рассчитывается при каждой обработке IP-заголовка. Контрольная сумма — 16 бит — подсчитывается как дополнение к сумме всех 16-битовых слов заголовка. При вычислении контрольной суммы значение самого поля «контрольная сумма» устанавливается в нуль. Если контрольная сумма неверна, то пакет будет отброшен, как только ошибка будет обнаружена.

Поля IP-адрес источника (Source IP Address) и IP-адрес назначения (Destination IP Address) имеют одинаковую длину — 32 бита — и одинаковую структуру.

Поле Опции (IP Options) является необязательным и используется обычно только при отладке сети. Механизм опций предоставляет функции управления, которые необходимы или просто полезны при определенных ситуациях, однако он не нужен при обычных коммуникациях. Это поле состоит из нескольких подполей, каждое из которых может быть одного из восьми предопределенных типов. В этих подполях можно указывать точный маршрут прохождения маршрутизаторов, регистрировать проходимые пакетом маршрутизаторы, помещать данные системы безопасности, а также временные отметки. Так как число подполей может быть произвольным, то в конце поля Опции должно быть добавлено несколько байт для выравнивания заголовка пакета по 32-битной границе.

Поле Выравнивание (Padding) используется для того, чтобы убедиться в том, что IP-заголовок заканчивается на 32-битной границе. Выравнивание осуществляется нулями.

Ниже приведена распечатка значений полей заголовка одного из реальных IP-пакетов, захваченных в сети Ethernet средствами анализатора протоколов Microsoft Network Monitor.

IP Version = 4 (0х4)

IP Header Length = 20 (0х14)

IP Service Type = 0 (0х0)

IP Precedence = Routine

IP …0… = Normal Delay

IP ….0… = Normal Throughput

IP …..0… = Normal Reliability

IP Total Length = 54 (0х36)

IP Identification = 31746 (0x7C02)

IP Flags Summary ° 2 (0х2)

IP… 0 = Last fragment in datagram

IP… 1. = Cannot fragment datagram

IP Fragment Offset = 0 (0х0) bytes

IP Time to Live = 128 (0х80)

IP Protocol = TCP — Transmission Control

IP Checksum =0xEB86

IP Source Address = 194.85.135.75

IP Destination Address = 194.85.135.66

IP Data: Number of data bytes remaining = 34 (0х0022)
    продолжение
–PAGE_BREAK–5.3.3. Таблицы маршрутизации в IP-сетях
Программные модули протокола IP устанавливаются на всех конечных станциях и маршрутизаторах сети. Для продвижения пакетов они используют таблицы маршрутизации.
Примеры таблиц различных типов маршрутизаторов
Структура таблицы маршрутизации стека TCP/IP соответствует общим принципам построения таблиц маршрутизации, рассмотренным выше. Однако важно отметить, что вид таблицы IP-маршрутизации зависит от конкретной реализации стека TCP/IP. Приведем пример трех вариантов таблицы маршрутизации, с которыми мог бы работать маршрутизатор Ml в сети, представленной на рис. 5.13.

Если представить, что в качестве маршрутизатора Ml в данной сети работает штатный программный маршрутизатор MPR операционной системы Microsoft Windows NT, то его таблица маршрутизации могла бы иметь следующий вид (табл. 5.9).
Если на месте маршрутизатора М1 установить аппаратный маршрутизатор NetBuilder II компании 3 Com, то его таблица маршрутизации для этой же сети может выглядеть так, как показано в табл. 5.10.

ПРИМЕЧАНИЕЗаметим, что поскольку между структурой сети и таблицей маршрутизации в принципе нет однозначного соответствия, то и для каждого из приведенных вариантов таблицы можно предложить свои «подварианты», отличающиеся выбранным маршрутом к той или иной сети. В данном случае внимание концентрируется на существенных различиях в форме представления маршрутной информации разными реализациями маршрутизаторов.
Назначение полей таблицы маршрутизации
Несмотря на достаточно заметные внешние различия, во всех трех таблицах есть все те ключевые параметры, необходимые для работы маршрутизатора, которые были рассмотрены ранее при обсуждении концепции маршрутизации.

К таким параметрам, безусловно, относятся адрес сети назначения (столбцы «Destination» в маршрутизаторах NetBuilder и Unix или «Network Address» в маршрутизаторе MPR) и адрес следующего маршрутизатора (столбцы «Gateway» в маршрутизаторах NetBuilder и Unix или «Gateway Address» в маршрутизаторе MPR).

Третий ключевой параметр — адрес порта, на который нужно направить пакет, в некоторых таблицах указывается прямо (поле «Interface» в таблице Windows NT), а в некоторых — косвенно. Так, в таблице Unix-маршрутизатора вместо адреса порта задается его условное наименование — 1е0 для порта с адресом 198.21.17.5, lei для порта с адресом 213.34.12.3 и 1о0 для внутреннего порта с адресом 127.0.0.1.

В маршрутизаторе NetBuilder II поле, обозначающее выходной порт в какой-либо форме, вообще отсутствует. Это объясняется тем, что адрес выходного порта всегда можно косвенно определить по адресу следующего маршрутизатора. Например, попробуем определить по табл. 5.10 адрес выходного порта для сети 56.0.0.0. Из таблицы следует, что следующим маршрутизатором для этой сети будет маршрутизатор с адресом 213.34.12.4. Адрес следующего маршрутизатора должен принадлежать одной из непосредственно присоединенных к маршрутизатору сетей, и в данном случае это сеть 213.34.12.0. Маршрутизатор имеет порт, присоединенный к этой сети, и адрес этого порта 213.34.12.3 мы находим в поле «Gateway» второй строки таблицы маршрутизации, которая описывает непосредственно присоединенную сеть 213.34.12.0. Для непосредственно присоединенных сетей адресом следующего маршрутизатора всегда является адрес собственного порта маршрутизатора. Таким образом, адрес выходного порта для сети 56.0.0 — это адрес 213.34.12.3.

Остальные параметры, которые можно найти в представленных версиях таблицы маршрутизации, являются необязательными для принятия решения о пути следования пакета.

Наличие или отсутствие поля маски в таблице говорит о том, насколько современен данный маршрутизатор. Стандартным решением сегодня является использование поля маски в каждой записи таблицы, как это сделано в таблицах маршрутизаторов MPR Windows NT (поле «Netmask») и NetBuilder (поле «Mask»). Обработка масок при принятии решения маршрутизаторами будет рассмотрена ниже. Отсутствие поля маски говорит о том, что либо маршрутизатор рассчитан на работу только с тремя стандартными классами адресов, либо он использует для всех записей одну и ту же маску, что снижает гибкость маршрутизации.

Метрика, как видно из примера таблицы Unix-маршрутизатора, является необязательным параметром. В остальных двух таблицах это поле имеется, однако оно используется только в качестве признака непосредственно подключенной сети. Действительно, если в таблице маршрутизации каждая сеть назначения упомянута только один раз, то поле метрики не будет приниматься во внимание при выборе маршрута, так как выбор отсутствует. А вот признак непосредственно подключенной сети маршрутизатору нужен, поскольку пакет для этой сети обрабатывается особым способом — он не передается следующему маршрутизатору, а отправляется узлу назначения. Поэтому метрика 0 для маршрутизатора NetBuilder или 1 для маршрутизатора MPR просто говорит маршрутизатору, что эта сеть непосредственно подключена к его порту, а другое значение метрики соответствует удаленной сети. Выбор значения метрики для непосредственно подключенной сети является достаточно произвольным, главное, чтобы метрика удаленной сети отсчитывалась с учетом этого выбранного начального значения. В Unix-маршрутизаторе используется поле признаков, где флаг G отмечает удаленную сеть, а его отсутствие — непосредственно подключенную.

Однако существуют ситуации, когда маршрутизатор должен обязательно хранить значение метрики для записи о каждой удаленной сети. Эти ситуации возникают, когда записи в таблице маршрутизации являются результатом работы некоторых протоколов маршрутизации, например протокола RIP. В таких протоколах новая информация о какой-либо удаленной сети сравнивается с имеющейся в таблице, и если метрика новой информации лучше имеющейся, то новая запись вытесняет имеющуюся. В таблице Unix-маршрутизатора поле метрики отсутствует, и это значит, что он не использует протокол RIP.

Флаги записей присутствуют только в таблице Unix-маршрутизатора. Они описывают характеристики записи.

·         U — показывает, что маршрут активен и работоспособен. Аналогичный смысл имеет поле «Status» в маршрутизаторе NetBuilder.

·         Н — признак специфического маршрута к определенному хосту. Маршрут ко всей сети, к которой принадлежит данный хост, может отличаться от данного маршрута.

·         G — означает, что маршрут пакета проходит через промежуточный маршрутизатор (gateway). Отсутствие этого флага отмечает непосредственно подключенную сеть.

·         D — означает, что маршрут получен из сообщения Redirect (перенаправление) протокола ICMP. Этот признак может присутствовать только в таблице маршрутизации конечного узла. Признак означает, что конечный узел в какой-то предыдущей передаче пакета выбрал не самый рациональный следующий маршрутизатор на пути к данной сети, и этот маршрутизатор с помощью протокола ICMP сообщил, что все последующие пакеты к данной сети нужно отправлять через другой следующий маршрутизатор. Протокол ICMP может посылать сообщения только узлу-отправителю, поэтому у промежуточного маршрутизатора этот признак встретиться не может. Признак никак не влияет на процесс маршрутизации, он только указывает администратору источник появления записи. В таблице Unix-маршрутизатора используются еще два поля, имеющих справочное значение. Поле «Refcnt» показывает, сколько раз на данный маршрут ссылались при продвижении пакетов. Поле «Use» отражает количество пакетов, переданных по данному маршруту.

В таблице маршрутизатора NetBuilder также имеются два справочных поля. Поле времени жизни «TTL» (Time To Live) имеет смысл для динамических записей, которые имеют ограниченный срок жизни. Текущее значение поля показывает оставшийся срок жизни записи в секундах. Поле «Source» отражает источник появления записи в таблице маршрутизации. Хотя это поле имеется не во всех маршрутизаторах, но практически для всех маршрутизаторов существуют три основных источника появления записи в таблице.
    продолжение
–PAGE_BREAK–Источники и типы записей в таблице маршрутизации
Первым источником является программное обеспечение стека TCP/IP. При инициализации маршрутизатора это программное обеспечение автоматически заносит в таблицу несколько записей, в результате чего создается так называемая минимальная таблица маршрутизации.

Это, во-первых, записи о непосредственно подключенных сетях и маршрутизаторах по умолчанию, информация о которых появляется в стеке при ручном конфигурировании интерфейсов компьютера или маршрутизатора. К таким записям в приведенных примерах относятся записи о сетях 213.34.12.0 и 198.21.17.0, а также запись о маршрутизаторе по умолчанию — default в Unix-маршрутизаторе и 0.0.0.0 в маршрутизаторе MPR Windows NT, В приведенном примере таблицы для маршрутизатора NetBuilder маршрутизатор по умолчанию не используется, следовательно, при поступлении пакета с адресом назначения, отсутствующим в таблице маршрутизации, этот пакет будет отброшен.

Во-вторых, программное обеспечение автоматически заносит в таблицу маршрутизации записи об адресах особого назначения. В приведенных примерах таблица маршрутизатора MPR Windows NT содержит наиболее полный набор записей такого рода. Несколько записей в этой таблице связаны с особым адресом 127.0.0.0 (loopback), который используется для локального тестирования стека TCP/IP. Пакеты, направленные в сеть с номером 127.0.0.0, не передаются протоколом IP на канальный уровень для последующей передачи в сеть, а возвращаются в источник — локальный модуль IP. Записи с адресом 224.0.0.0 требуются для обработки групповых адресов (multicast address). Кроме того, в таблицу могут быть занесены адреса, предназначенные для обработки широковещательных рассылок (например, записи 8 и 11 содержат адрес отправки широковещательного сообщения в соответствующих подсетях, а последняя запись в таблице — адрес ограниченной широковещательной рассылки сообщения). Заметим, что в некоторых таблицах записи об особых адресах вообще отсутствуют.

Вторым источником появления записи в таблице является администратор, непосредственно формирующий запись с помощью некоторой системной утилиты, например программы route, имеющейся в операционных системах Unix и Windows NT. В аппаратных маршрутизаторах также всегда имеется команда для ручного задания записей таблицы маршрутизации. Заданные вручную записи всегда являются статическими, то есть не имеют срока истечения жизни. Эти записи могут быть как постоянными, то есть сохраняющимися при перезагрузке маршрутизатора, так и временными, хранящимися в таблице только до выключения устройства. Часто администратор вручную заносит запись default о маршрутизаторе по умолчанию. Таким же образом в таблицу маршрутизации может быть внесена запись о специфичном для узла маршруте. Специфичный для узла маршрут содержит вместо номера сети полный IP-адрес, то есть адрес, имеющий ненулевую информацию не только в поле номера сети, но и в поле номера узла. Предполагается, что для такого конечного узла маршрут должен выбираться не так, как для всех остальных узлов сети, к которой он относится. В случае когда в таблице есть разные записи о продвижении пакетов для всей сети и ее отдельного узла, при поступлении пакета, адресованного узлу, маршрутизатор отдаст предпочтение записи с полным адресом узла.

И наконец, третьим источником записей могут быть протоколы маршрутизации, такие как RIP или OSPF. Такие записи всегда являются динамическими, то есть имеют ограниченный срок жизни. Программные маршрутизаторы Windows NT и Unix не показывают источник появления той или иной записи в таблице, а маршрутизатор NetBuilder использует для этой цели поле «Source». В приведенном в табл. 5.10 примере первые две записи созданы программным обеспечением стека на основании данных о конфигурации портов маршрутизатора — это показывает признак «Connected». Следующие две записи обозначены как «Static», что указывает на то, что их ввел вручную администратор. Последняя запись является следствием работы протокола RIP, поэтому в ее поле «TTL» имеется значение 160.
5.3.4. Маршрутизация без использования масок
Рассмотрим на примере IP-сети (рис. 5.14) алгоритм работы средств сетевого уровня по продвижению пакета в составной сети. При этом будем считать, что все узлы сети, рассматриваемой в примере, имеют адреса, основанные на классах, без использования масок. Особое внимание будет уделено взаимодействию протокола IP с протоколами разрешения адресов ARP и DNS.

1.       Итак, пусть пользователь компьютера cit.dol.ru, находящегося в сети Ethernet и имеющего IP-адрес 194.87.23.17 (адрес класса С), обращается по протоколу FTP к компьютеру sl.msk.su, принадлежащему другой сети Ethernet и имеющему IP-адрес 142.06,13.14 (адрес класса В): > ftp sl.msk.su

Модуль FTP упаковывает свое сообщение в сегмент транспортного протокола TCP, который в свою очередь помещает свой сегмент в пакет протокола IP. В заголовке IP-пакета должен быть указан IP-адрес узла назначения. Так как пользователь компьютера cit.dol.ru использует символьное имя компьютера sl.msk.su, то стек TCP/IP должен определить IP-адрес узла назначения самостоятельно.

При конфигурировании стека TCP/IP в компьютере cit.dol.ru был задан его собственный IP-адрес, IP-адрес маршрутизатора по умолчанию и IP-адрес DNS-сервера. Модуль IP может сделать запрос к серверу DNS, но обычно сначала просматривается локальная таблица соответствия символьных имен и IP-адресов. Такая таблица хранится чаще всего в виде текстового файла простой структуры — каждая его строка содержит запись об одном символьном имени и его IP-адресе. В ОС Unix такой файл традиционно носит имя hosts и находится в каталоге /etc.

2.       Будем считать, что компьютер dt.dol.ru имеет файл hosts, а в нем есть строка 142.06.13.14 sl.msk.su.

Таким образом, разрешение имени выполняется локально, и протокол IP может теперь формировать IP-пакеты с адресом назначения 142.06.13.14 для взаимодействия с компьютером sl.msk.su.

3.       Модуль IP компьютера cit.dol.ru проверяет, нужно ли маршрутизировать пакеты с адресом 142.06.13.14. Так как адрес сети назначения (142.06.0.0) не совпадает с адресом (194.87.23.0) сети, которой принадлежит компьютер-отправитель, то маршрутизация необходима.

4.       Компьютер cit.dol.ru начинает формировать кадр Ethernet для отправки IP-пакета маршрутизатору по умолчанию, IP-адрес которого известен — 194.87.23.1, но неизвестен МАС — адрес, необходимый для перемещения кадра в локальной сети. Для определения МАС — адреса маршрутизатора протокол IP обращается к протоколу ARP, который просматривает ARP-таблицу. Если в последнее время компьютер cit.dol.ru выполнял какие-либо межсетевые обмены, то скорее всего искомая запись, содержащая соответствие между IP- и МАС — адресами маршрутизатора по умолчанию уже находится в кэш-таблице протокола ARP. Пусть в данном случае нужная запись была найдена именно в кэш-таблице: 194.87.23.1 008048ЕВ7Е60

Обозначим найденный МАС — адрес 008048ЕВ7Е60 в соответствии с номером маршрутизатора и его порта через МАС11.

5.       В результате компьютер cit.dol.ru отправляет по локальной сети пакет, упакованный в кадр Ethernet, имеющий следующие поля:

6.       Кадр принимается портом 1 маршрутизатора 1 в соответствии с протоколом Ethernet, так как МАС — узел этого порта распознает свой адрес МАС11. Протокол Ethernet извлекает из этого кадра IP-пакет и передает его программному обеспечению маршрутизатора, реализующему протокол IP. Протокол IP извлекает из пакета адрес назначения 142.06.13.14 и просматривает записи своей таблицы маршрутизации. Пусть маршрутизатор 1 имеет в своей таблице маршрутизации запись 142.06.0.0 135.12.0.11 2, которая говорит о том, что пакеты для сети 142.06. 0.0 нужно передавать маршрутизатору 135.12.0.11, находящемуся в сети, подключенной к порту 2 маршрутизатора 1.

7.       Маршрутизатор 1 просматривает параметры порта 2 и находит, что к нему подключена сеть FDDI. Так как сеть FDDI имеет значение MTU большее, чем сеть Ethernet, то фрагментация IP-пакета не требуется. Поэтому маршрутизатор 1 формирует кадр формата FDDI. На этом этапе модуль IP должен определить МАС — адрес следующего маршрутизатора по известному IP-адресу 135.12.0.11. Для этого он обращается к протоколу ARP. Допустим, что нужной записи в кэш-таблице не оказалось, тогда в сеть FDDI отправляется широковещательный ARP-запрос, содержащий наряду с прочей следующую информацию.

8.       Порт 1 маршрутизатора 2 распознает свой IP-адрес и посылает ARP-ответ по адресу запросившего узла:

9.       Теперь, зная МАС — адрес следующего маршрутизатора 00E0F77F51A0, маршрутизатор 1 отсылает кадр FDDI по направлению к маршрутизатору 2. Заметим, что в поле IP-адреса назначения никаких изменений не произошло.

10.   Аналогично действует модуль IP на маршрутизаторе 2. Получив кадр FDDI, он отбрасывает его заголовок, а из заголовка IP извлекает IP-адрес сети назначения и просматривает свою таблицу маршрутизации. Там он может найти запись о конкретной сети назначения:

142.06.0.0 203.21.4.12 2

или при отсутствии такой записи будет использована запись о маршрутизаторе по умолчанию:

default 203.21.4.12 2.

Определив IP-адрес следующего маршрутизатора 203.21.4.12, модуль IP формирует кадр Ethernet для передачи пакета маршрутизатору 3 по сети Ethernet. С помощью протокола ARP он находит МАС — адрес этого маршрутизатора и помещает его в заголовок кадра. IP-адрес узла назначения, естественно, остается неизменным.

11.   Наконец, после того как пакет поступил в маршрутизатор сети назначения — маршрутизатор 3, — появляется возможность передачи этого пакета компьютеру назначения. Маршрутизатор 3 определяет, что пакет нужно передать в сеть 142.06.0,0, которая непосредственно подключена к его первому порту. Поэтому он посылает ARP-запрос по сети Ethernet с IP-адресом компьютера sl.msk.su. ARP-ответ содержит МАС — адрес конечного узла, который модуль IP передает канальному протоколу для формирования кадра Ethernet:

12.   Сетевой адаптер компьютера sl.msk.su захватывает кадр Ethernet, обнаруживает совпадение МАС — адреса, содержащегося в заголовке, со своим собственным адресом и направляет его модулю IP. После анализа полей IP-заголовка из пакета извлекаются данные, которые в свою очередь содержат сообщение выше лежащего протокола. Поскольку в данном примере рассматривается обмен данными по протоколу FTP, который использует в качестве транспортного протокола TCP, то в поле данных IP-пакета находится ТСР — сегмент. Определив из TCP-заголовка номер порта, модуль IP переправляет сегмент в соответствующую очередь, из которой данный сегмент попадет программному модулю FTP-сервера.
    продолжение
–PAGE_BREAK–5.3.5. Маршрутизация с использованием масок Использование масок для структуризации сети
Алгоритм маршрутизации усложняется, когда в систему адресации узлов вносятся дополнительные элементы — маски. В чем же причина отказа от хорошо себя зарекомендовавшего в течение многих лет метода адресации, основанного на классах? Таких причин несколько, и одна из них — потребность в структуризации сетей.

Часто администраторы сетей испытывают неудобства из-за того, что количество централизованно выделенных им номеров сетей недостаточно для того, чтобы структурировать сеть надлежащим образом, например разместить все слабо взаимодействующие компьютеры по разным сетям. В такой ситуации возможны два пути. Первый из них связан с получением от InterNIC или поставщика услуг Internet дополнительных номеров сетей. Второй способ, употребляющийся чаще, связан с использованием технологии масок, которая позволяет разделять одну сеть на несколько сетей.

Допустим, администратор получил в свое распоряжение адрес класса В: 129.44.0.0. Он может организовать сеть с большим числом узлов, номера которых он может брать из диапазона 0.0.0.1-0.0.255.254 (с учетом того, что адреса из одних нулей и одних единиц имеют специальное назначение и не годятся для адресации узлов). Однако ему не нужна одна большая неструктурированная сеть, производственная необходимость диктует администратору другое решение, в соответствии с которым сеть должна быть разделена на три отдельных подсети, при этом трафик в каждой подсети должен быть надежно локализован. Это позволит легче диагностировать сеть и проводить в каждой из подсетей особую политику безопасности.

Посмотрим, как решается эта проблема путем использования механизма масок.

Итак, номер сети, который администратор получил от поставщика услуг, — 129.44.0.0 (10000001 00101100 00000000 00000000). В качестве маски было выбрано значение 255.255.192.0 (111111111111111111000000 00000000). После наложения маски на этот адрес число разрядов, интерпретируемых как номер сети, увеличилось с 16 (стандартная длина поля номера сети для класса В) до 18 (число единиц в маске), то есть администратор получил возможность использовать для нумерации подсетей два дополнительных бита. Это позволяет ему сделать из одного, централизованно заданного ему номера сети, четыре:

129.44.0.0 (10000001 00101100 00000000 00000000)

129.44.64.0 (10000001 00101100 01000000 00000000)

129.44.128.0 (10000001 00101100 10000000 00000000)

129.44.192.0 (10000001 00101100 11000000 00000000)

Два дополнительных последних бита в номере сети часто интерпретируются как номера подсетей (subnet), и тогда четыре перечисленных выше подсети имеют номера 0 (00), 1 (01), 2 (10) и 3 (11) соответственно.

ПРИМЕЧАНИЕНекоторые программные и аппаратные маршрутизаторы не поддерживают номера подсетей, которые состоят либо только из одних нулей, либо только из одних единиц. Например, для некоторых типов оборудования номер сети 129.44.0.0 с маской 255.255.192.0, использованный в нашем примере, окажется недопустимым, поскольку в этом случае разряды в поле номера подсети имеют значение 00. По аналогичным соображениям недопустимым может оказаться и номер сети 129.44.192.0 с тем же значением маски. Здесь номер подсети состоит только из единиц. Однако более современные маршрутизаторы свободны от этих ограничений. Поэтому, принимая решение об использовании механизма масок, необходимо выяснить характеристики того оборудования, которым вы располагаете, чтобы соответствующим образом сконфигурировать маршрутизаторы и компьютеры сети.

В результате использования масок была предложена следующая схема распределения адресного пространства (рис. 5.15).

Сеть, получившаяся в результате проведенной структуризации, показана на рис. 5.16. Весь трафик во внутреннюю сеть 129.44.0.0, направляемый из внешней сети, поступает через маршрутизатор Ml. В целях структуризации информационных потоков во внутренней сети установлен дополнительный маршрутизатор М2.

Все узлы были распределены по трем разным сетям, которым были присвоены номера 129.44.0.0, 129.44.64.0 и 129.44.128.0 и маски одинаковой длины — 255.255.192.0. Каждая из вновь образованных сетей была подключена к соответственно сконфигурированным портам внутреннего маршрутизатора М2. Кроме того, еще одна сеть (номер 129.44.192.0, маска 255.255.192.0) была выделена для создания соединения между внешним и внутренним маршрутизаторами. Особо отметим, что в этой сети для адресации узлов были заняты всего два адреса 129.44.192.1 (порт маршрутизатора М2) и 129.44.192.2 (порт маршрутизатора Ml), еще два адреса 129.44.192.0 и 129.44.192.255 являются особыми адресами. Следовательно, огромное число узлов (214 — 4) в этой подсети никак не используются.

Извне сеть по-прежнему выглядит, как единая сеть класса В, а на местном уровне это полноценная составная сеть, в которую входят три отдельные сети. Приходящий общий трафик разделяется местным маршрутизатором М2 между этими сетями в соответствии с таблицей маршрутизации. (Заметим, что разделение большой сети, имеющей один адрес старшего класса, например А или В, с помощью масок несет в себе еще одно преимущество по сравнению с использованием нескольких адресов стандартных классов для сетей меньшего размера, например С. Оно позволяет скрыть внутреннюю структуру сети предприятия от внешнего наблюдения и тем повысить ее безопасность.)

Рассмотрим, как изменяется работа модуля IP, когда становится необходимым учитывать наличие масок. Во-первых, в каждой записи таблицы маршрутизации появляется новое поле — поле маски.

Во-вторых, меняется алгоритм определения маршрута по таблице маршрутизации. После того как IP-адрес извлекается из очередного полученного IP-пакета, необходимо определить адрес следующего маршрутизатора, на который надо передать пакет с этим адресом. Модуль IP последовательно просматривает все записи таблицы маршрутизации. С каждой записью производятся следующие действия.

·         Маска М, содержащаяся в данной записи, накладывается на IP-адрес узла назначения, извлеченный из пакета.

·         Полученное в результате число является номером сети назначения обрабатываемого пакета. Оно сравнивается с номером сети, который помещен в данной записи таблицы маршрутизации.

·         Если номера сетей совпадают, то пакет передается маршрутизатору, адрес которого помещен в соответствующем поле данной записи.

Теперь рассмотрим этот алгоритм на примере маршрутизации пакетов в сети, изображенной на рис. 5.16. Все маршрутизаторы внешней сети, встретив пакеты с адресами, начинающимися с 129.44, интерпретируют их как адреса класса В и направляют по маршрутам, ведущим к маршрутизатору Ml. Маршрутизатор Ml в свою очередь направляет весь входной трафик сети 129.44.0.0 на маршрутизатор М2, а именно на его порт 129.44.192.1.

Маршрутизатор М2 обрабатывает все поступившие на него пакеты в соответствии с таблицей маршрутизации (табл. 5.12).

Первые четыре записи в таблице соответствуют внутренним подсетям, непосредственно подключенным к портам маршрутизатора М2.

Запись 0.0.0.0 с маской 0.0.0.0 соответствует маршруту по умолчанию. Действительно, любой адрес в пришедшем пакете после наложения на него маски 0.0.0.0 даст адрес сети 0.0.0.0, что совпадает с адресом, указанным в записи. Маршрутизатор выполняет сравнение с адресом 0.0.0.0 в последнюю очередь, в том случае когда пришедший адрес не дал совпадения ни с одной записью в таблице, отличающейся от 0.0.0.0. Записей с адресом 0.0.0.0 в таблице маршрутизации может быть несколько. В этом случае маршрутизатор передает пакет по всем таким маршрутам.

Пусть, например, с маршрутизатора Ml на порт 129.44.192.1 маршрутизатора М2 поступает пакет с адресом назначения 129.44.78.200. Модуль IP начинает последовательно просматривать все строки таблицы, до тех пор пока не найдет совпадения номера сети в адресе назначения и в строке таблицы. Маска из первой строки 255.255.192.0 накладывается на адрес 129.44,78.200, в результате чего получается номер сети 129.44.64.0.

В двоичном виде эта операция выглядит следующим образом:

10000001.00101100.01001110.11001000

11111111.11111111.11000000.00000000

— — — — — — — — — — — — — — — — — — — — — — — — — — –

10000001.00101100.01000000.00000000

Полученный номер 129.44.64.0 сравнивается с номером сети в первой строке таблицы 129.44.0.0. Поскольку они не совпадают, то происходит переход к следующей строке. Теперь извлекается маска из второй строки (в данном случае она имеет такое же значение, но в общем случае это совсем не обязательно) и накладывается на адрес назначения пакета 129.44.78.200. Понятно, что из-за совпадения длины масок будет получен тот же номер сети 129.44.64.0. Этот номер совпадает с номером сети во второй строке таблицы, а значит, найден маршрут для данного пакета — он должен быть отправлен на порт маршрутизатора 129.44.64.7 в сеть, непосредственно подключенную к данному маршрутизатору.

Вот еще пример. IP-адрес 129.44.141.15(10000001 00101100 10001101 00001111), который при использовании классов делится на номер сети 129.44.0.0 и номер узла 0.0.141.15, теперь, при использовании маски 255.255.192.0, будет интерпретироваться как пара: 129.44.128.0 — номер сети, 0.0.13.15 — номер узла.
    продолжение
–PAGE_BREAK–Использование масок переменной длины
В предыдущем примере использования масок (см. рис. 5.15 и 5.16) все подсети имеют одинаковую длину поля номера сети — 18 двоичных разрядов, и, следовательно, для нумерации узлов в каждой из них отводится по 14 разрядов. То есть все сети являются очень большими и имеют одинаковый размер. Однако в этом случае, как и во многих других, более эффективным явилось бы разбиение сети на подсети разного размера. В частности, большое число узлов, вполне желательное для пользовательской подсети, явно является избыточным для подсети, которая связывает два маршрутизатора по схеме «точка-точка». В этом случае требуются всего два адреса для адресации двух портов соседних маршрутизаторов. В предыдущем же примере для этой вспомогательной сети Ml — М2 был использован номер, позволяющий адресовать 214 узлов, что делает такое решение неприемлемо избыточным. Администратор может более рационально распределить имеющееся в его распоряжении адресное пространство с помощью масок переменной длины.

На рис. 5.17 приведен пример распределения адресного пространства, при котором избыточность имеющегося множества IP-адресов может быть сведена к минимуму. Половина из имеющихся адресов (215) была отведена для создания сети с адресом 129.44.0.0 и маской 255.255.128.0. Следующая порция адресов, составляющая четверть всего адресного пространства (214), была назначена для сети 129.44.128.0 с маской 255.255.192.0. Далее в пространстве адресов был «вырезан» небольшой фрагмент для создания сети, предназначенной для связывания внутреннего маршрутизатора М2 с внешним маршрутизатором Ml.

В IP-адресе такой вырожденной сети для поля номера узла как минимум должны быть отведены два двоичных разряда. Из четырех возможных комбинаций номеров узлов: 00, 01,10 и 11 два номера имеют специальное назначение и не могут быть присвоены узлам, но оставшиеся два 10 и 01 позволяет адресовать порты маршрутизаторов. В нашем примере сеть была выбрана с некоторым запасом — на 8 узлов. Поле номера узла в таком случае имеет 3 двоичных разряда, маска в десятичной нотации имеет вид 255.255.255.248, а номер сети, как видно из рис. 5.17, равен в данном конкретном случае 129.44.192.0. Если эта сеть является локальной, то на ней могут быть расположены четыре узла помимо двух портов маршуртизаторов.

ПРИМЕЧАНИЕЗаметим, что глобальным связям между маршрутизаторами типа «точка-точка» не обязательно давать IP-адреса, так как к такой сети не могут подключаться никакие другие узлы, кроме двух портов маршрутизаторов. Однако чаще всего такой вырожденной сети все же дают IP-адрес. Это делается, например, для того, чтобы скрыть внутреннюю структуру сети и обращаться к ней по одному адресу входного порта маршрутизатора, в данном примере по адресу 129.44.192.1. Кроме того, этот адрес может понадобиться при туннелировании немаршрутизируемых протоколов в IP-пакеты, что будет рассмотрено ниже.

Оставшееся адресное пространство администратор может «нарезать» на разное количество сетей разного объема в зависимости от своих потребностей. Из оставшегося пула (214 — 4) адресов администратор может образовать еще одну достаточно большую сеть с числом узлов 213. При этом свободными останутся почти столько же адресов (213 — 4), которые также могут быть использованы для создания новых сетей. К примеру, из этого «остатка» можно образовать 31 сеть, каждая из которых равна размеру стандартной сети класса С, и к тому же еще несколько сетей меньшего размера. Ясно, что разбиение может быть другим, но в любом случае с помощью масок переменного размера администратор всегда имеет возможность гораздо рациональнее использовать все имеющиеся у него адреса.

Таблица маршрутизации М2, соответствующая структуре сети, показанной на рис. 5.18, содержит записи о четырех непосредственно подключенных сетях и запись о маршрутизаторе по умолчанию (табл. 5.13). Процедура поиска маршрута при использовании масок переменной длины ничем не отличается от подобной процедуры, описанной ранее для масок одинаковой длины.

Некоторые особенности масок переменной длины проявляются при наличии так называемых «перекрытий». Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети или одному и тому же узлу. В этом случае адрес сети в пришедшем пакете может совпасть с адресами сетей, содержащихся сразу в нескольких записях таблицы маршрутизации.

Рассмотрим пример. Пусть пакет, поступивший из внешней сети на маршрутизатор Ml, имеет адрес назначения 129.44.192.5. Ниже приведен фрагмент таблицы маршрутизации маршрутизатора Ml. Первая из приведенных двух записей говорит о том, что все пакеты, адреса которых начинаются на 129.44, должны быть переданы на маршрутизатор М2. Эта запись выполняет агрегирование адресов всех подсетей, созданных на базе одной сети 129.44.0.0. Вторая строка говорит о том, что среди всех возможных подсетей сети 129.44.0.0 есть одна, 129.44.192.0, для которой пакеты можно направлять непосредственно, а не через маршрутизатор М2.

Если следовать стандартному алгоритму поиска маршрута по таблице, то сначала на адрес назначения 129.44.192.5 накладывается маска из первой строки 255.255.0.0 и получается результат 129.44.0.0, который совпадает с номером сети в этой строке. Но и при наложении на адрес 129.44.192.5 маски из второй строки 255.255.255.248 полученный результат 129.44.192.0 также совпадает с номером сети во второй строке. В таких случаях должно быть применено следующее правило: «Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть выбирается адрес подсети, дающий большее совпадение разрядов».

В данном примере будет выбран второй маршрут, то есть пакет будет передан в непосредственно подключенную сеть, а не пойдет кружным путем через маршрутизатор М2.

Механизм выбора самого специфического маршрута является обобщением понятия «маршрут по умолчанию». Поскольку в традиционной записи для маршрута по умолчанию 0.0.0.0 маска 0.0.0.0 имеет нулевую длину, то этот маршрут считается самым неспецифическим и используется только при отсутствии совпадений со всеми остальными записями из таблицы маршрутизации.
    продолжение
–PAGE_BREAK–
ПРИМЕЧАНИЕВ IP-пакетах при использовании механизма масок по-прежнему передается только IP-адрес назначения, а маска сети назначения не передается. Поэтому из IP-адреса пришедшего пакета невозможно выяснить, какая часть адреса относится к номеру сети, а какая — к номеру узла. Если маски во всех подсетях имеют один размер, то это не создает проблем. Если же для образования подсетей применяют маски переменной длины, то маршрутизатор должен каким-то образом узнавать, каким адресам сетей какие маски соответствуют. Для этого используются протоколы маршрутизации, переносящие между маршрутизаторами не только служебную информацию об адресах сетей, но и о масках, соответствующих этим номерам. К таким протоколам относятся протоколы RIPv2 и OSPF, а вот, например, протокол RIP маски не распространяет и для использования масок переменной длины не подходит.
Технология бесклассовой междоменной маршрутизации CIDR
За последние несколько лет в сети Internet многое изменилось: резко возросло число узлов и сетей, повысилась интенсивность трафика, изменился характер передаваемых данных. Из-за несовершенства протоколов маршрутизации обмен сообщениями об обновлении таблиц стал иногда приводить к сбоям магистральных маршрутизаторов из-за перегрузки при обработке большого объема служебной информации. Так, в 1994 году таблицы магистральных маршрутизаторов в Internet содержали до 70 000 маршрутов.

На решение этой проблемы была направлена, в частности, и технология бес-классовой междоменной маршрутизации (Classless Inter-Domain Routing, CIDR), впервые о которой было официально объявлено в 1993 году, когда были опубликованы RFC 1517, RFC 1518, RFC 1519 и RFC 1520.

Суть технологии CIDR заключается в следующем. Каждому поставщику услуг Internet должен назначаться непрерывный диапазон в пространстве IP-адресов. При таком подходе адреса всех сетей каждого поставщика услуг имеют общую старшую часть — префикс, поэтому маршрутизация на магистралях Internet может осуществляться на основе префиксов, а не полных адресов сетей. Агрегирование адресов позволит уменьшить объем таблиц в маршрутизаторах всех уровней, а следовательно, ускорить работу маршрутизаторов и повысить пропускную способность Internet.

Деление IP-адреса на номер сети и номер узла в технологии CIDR происходит не на основе нескольких старших бит, определяющих класс сети (А, В или С), а на основе маски переменной длины, назначаемой поставщиком услуг. На рис. 5.19 показан пример некоторого пространства IP-адресов, которое имеется в распоряжении гипотетического поставщика услуг. Все адреса имеют общую часть в k старших разрядах — префикс. Оставшиеся п разрядов используются для дополнения неизменяемого префикса переменной частью адреса. Диапазон имеющихся адресов в таком случае составляет 2n. Когда потребитель услуг обращается к поставщику услуг с просьбой о выделении ему некоторого количества адресов, то в имеющемся пуле адресов «вырезается» непрерывная область S1, S2, S3 или S4 соответствующего размера. Причем границы этой области выбираются такими, чтобы для нумерации требуемого числа узлов хватило некоторого числа младших разрядов, а значения всех оставшихся (старших) разрядов было одинаковым у всех адресов данного диапазона. Таким условиям могут удовлетворять только области, размер которых кратен степени двойки, А границы выделяемого участка должны быть кратны требуемому размеру.

Рассмотрим пример. Пусть поставщик услуг Internet располагает пулом адресов в диапазоне 193.20.0.0-193.23.255.255 (1100 0001.0001 0100.0000 0000.0000 0000-11000001.0001 0111.11111111.11111111) с общим префиксом 193.20(11000001.0001 01) и маской, соответствующей этому префиксу 255.252.0.0.

Если абоненту этого поставщика услуг требуется совсем немного адресов, например 13, то поставщик мог бы предложить ему различные варианты: сеть 193.20.30.0, сеть 193.20.30.16 или сеть 193.21.204.48, все с одним и тем же значением маски 255.255.255.240. Во всех случаях в распоряжении абонента для нумерации узлов имеются 4 младших бита.

Рассмотрим другой вариант, когда к поставщику услуг обратился крупный заказчик, сам, возможно собирающийся оказывать услуги по доступу в Internet. Ему требуется блок адресов в 4000 узлов. В этом случае поставщик услуг мог бы предложить ему, например, диапазон адресов 193,22.160.0-193.22.175.255 с маской 255.255.240.0. Агрегированный номер сети (префикс) в этом случае будет равен 193.22.160.0.

Администратор маршрутизатора М2 (рис. 5.20) поместит в таблицу маршрутизации только по одной записи на каждого клиента, которому был выделен пул адресов, независимо от количества подсетей, организованных клиентом. Если клиент, получивший сеть 193.22.160.0, через некоторое время разделит ее адресное пространство в 4096 адресов на 8 подсетей, то в маршрутизаторе М2 первоначальная информация о выделенной ему сети не изменится.

Для поставщика услуг верхнего уровня, поддерживающего клиентов через маршрутизатор Ml, усилия поставщика услуг нижнего уровня по разделению его адресного пространства также не будут заметны. Запись 193.20.0,0 с маской 255.252.0,0 полностью описывает сети поставщика услуг нижнего уровня в маршрутизаторе Ml.

Итак, внедрение технологии CIDR позволяет решить две основные задачи.

·         Более экономное расходование адресного пространства. Действительно, получая в свое распоряжение адрес сети, например, класса С, некоторые организации не используют весь возможный диапазон адресов просто потому, что в их сети имеется гораздо меньше 255 узлов. Технология CIDR отказывается от традиционной концепции разделения адресов протокола IP на классы, что позволяет получать в пользование столько адресов, сколько реально необходимо. Благодаря технологии CIDR поставщики услуг получают возможность «нарезать» блоки из выделенного им адресного пространства в точном соответствии с требованиями каждого клиента, при этом у клиента остается пространство для маневра на случай его будущего роста.

·         Уменьшение числа записей в таблицах маршрутизаторов за счет объединения маршрутов — одна запись в таблице маршрутизации может представлять большое количество сетей. Действительно, для всех сетей, номера которых начинаются с одинаковой последовательности цифр, в таблице маршрутизации может быть предусмотрена одна запись (см. рис. 5.20). Так, маршрутизатор М2 установленный в организации, которая использует технику CIDR для выделения адресов своим клиентам, должен поддерживать в своей таблице маршрутизации все 8 записей о сетях клиентов. А маршрутизатору Ml достаточно иметь одну запись о всех этих сетях, на основании которой он передает пакеты с префиксом 193.20 маршрутизатору М2, который их и распределяет по нужным портам.

Если все поставщики услуг Internet будут придерживаться стратегии CIDR, то особенно заметный выигрыш будет достигаться в магистральных маршрутизаторах.

Технология CIDR уже успешно используется в текущей версии IPv4 и поддерживается такими протоколами маршрутизации, как OSPF, RIP-2, BGP4. Предполагается, что эти же протоколы будут работать и с новой версией протокола IPv6. Следует отметить, что в настоящее время технология CIDR поддерживается магистральными маршрутизаторами Internet, а не обычными хостами в локальных сетях.

Использование CIDR в сетях IPv4 в общем случае требует перенумерации сетей. Поскольку эта процедура сопряжена с определенными временными и материальными затратами, для ее проведения пользователей нужно каким-либо образом стимулировать. В качестве таких стимулов рассматривается, например, введение оплаты за строку в таблице маршрутизации или же за количество узлов в сети. При использовании классов сетей абонент часто не полностью занимает весь допустимый диапазон адресов узлов — 254 адреса для сети класса С или 65 534 адреса для сети класса В. Часть адресов узлов обычно пропадает. Требование оплаты каждого адреса узла поможет пользователю решиться на перенумерацию, с тем чтобы получить ровно столько адресов, сколько ему нужно.
    продолжение
–PAGE_BREAK–5.3.6. Фрагментация IP-пакетов
Протокол IP позволяет выполнять фрагментацию пакетов, поступающих на входные порты маршрутизаторов.

Следует различать фрагментацию сообщений в узле-отправителе и динамическую фрагментацию сообщений в транзитных узлах сети — маршрутизаторах. Практически во всех стеках протоколов есть протоколы, которые отвечают за фрагментацию сообщений прикладного уровня на такие части, которые укладываются в кадры канального уровня. В стеке TCP/IP эту задачу решает протокол TCP, который разбивает поток байтов, передаваемый ему с прикладного уровня на сообщения нужного размера (например, на 1460 байт для протокола Ethernet). Поэтому протокол IP в узле-отправителе не использует свои возможности по фрагментации пакетов.

А вот при необходимости передать пакет в следующую сеть, для которой размер пакета является слишком большим, IP-фрагментация становится необходимой. В функции уровня IP входит разбиение слишком длинного для конкретного типа составляющей сети сообщения на более короткие пакеты с созданием соответствующих служебных полей, нужных для последующей сборки фрагментов в исходное сообщение.

В большинстве типов локальных и глобальных сетей значения MTU, то есть максимальный размер поля данных, в которое должен инкапсулировать свой пакет протокол IP, значительно отличается. Сети Ethernet имеют значение MTU, равное 1500 байт, сети FDDI — 4096 байт, а сети Х.25 чаще всего работают с MTU в 128 байт.

IP-пакет может быть помечен как не фрагментируемый. Любой пакет, помеченный таким образом, не может быть фрагментирован модулем IP ни при каких условиях. Если же пакет, помеченный как не фрагментируемый, не может достигнуть получателя без фрагментации, то этот пакет просто уничтожается, а узлу-отправителю посылается соответствующее ICMP-сообщение.

Протокол IP допускает возможность использования в пределах отдельной подсети ее собственных средств фрагментирования, невидимых для протокола IP. Например, технология АТМ делит поступающие IP-пакеты на ячейки с полем данных в 48 байт с помощью своего уровня сегментирования, а затем собирает ячейки в исходные пакеты на выходе из сети. Но такие технологии, как АТМ, являются скорее исключением, чем правилом.

Процедуры фрагментации и сборки протокола IP рассчитаны на то, чтобы пакет мог быть разбит на практически любое количество частей, которые впоследствии могли бы быть вновь собраны. Получатель фрагмента использует поле идентификации для того, чтобы не перепутать фрагменты различных пакетов. Модуль IP, отправляющий пакет, устанавливает в поле идентификации значение, которое должно быть уникальным для данной пары отправитель — получатель, а также время, в течение которого пакет может быть активным в сети.

Поле смещения фрагмента сообщает получателю положение фрагмента в исходном пакете. Смещение фрагмента и длина определяют часть исходного пакета, принесенную этим фрагментом. Флаг «more fragments» показывает появление последнего фрагмента. Модуль протокола IP, отправляющий неразбитый на фрагменты пакет, устанавливает в нуль флаг «more fragments» и смещение во фрагменте.

Эти поля дают достаточное количество информации для сборки пакета.

Чтобы разделить на фрагменты большой пакет, модуль протокола IP, установленный, например, на маршрутизаторе, создает несколько новых пакетов и копирует содержимое полей IP-заголовка из большого пакета в IP-заголовки всех новых пакетов. Данные из старого пакета делятся на соответствующее число частей, размер каждой из которых, кроме самой последней, обязательно должен быть кратным 8 байт. Размер последней части данных равен полученному остатку.

Каждая из полученных частей данных помещается в новый пакет. Когда происходит фрагментация, то некоторые параметры IP-заголовка копируются в заголовки всех фрагментов, а другие остаются лишь в заголовке первого фрагмента. Процесс фрагментации может изменить значения данных, расположенных в поле параметров, и значение контрольной суммы заголовка, изменить значение флага «more fragments» и смещение фрагмента, изменить длину IP-заголовка и общую длину пакета, В заголовок каждого пакета заносятся соответствующие значения в поле смещения «fragment offset», а в поле общей длины пакета помещается длина каждого пакета. Первый фрагмент будет иметь в поле «fragment offset» нулевое значение. Во всех пакетах, кроме последнего, флаг «more fragments» устанавливается в единицу, а в последнем фрагменте — в нуль.

Чтобы собрать фрагменты пакета, модуль протокола IP (например, модуль на хост — компьютере) объединяет IP-пакеты, имеющие одинаковые значения в полях идентификатора, отправителя, получателя и протокола. Таким образом, отправитель должен выбрать идентификатор таким образом, чтобы он был уникален для данной пары отправитель-получатель, для данного протокола и в течение того времени, пока данный пакет (или любой его фрагмент) может существовать в составной IP-сети.

Очевидно, что модуль протокола IP, отправляющий пакеты, должен иметь таблицу идентификаторов, где каждая запись соотносится с каждым отдельным получателем, с которым осуществлялась связь, и указывает последнее значение максимального времени жизни пакета в IP-сети. Однако, поскольку поле идентификатора допускает 65 536 различных значений, некоторые хосты могут использовать просто уникальные идентификаторы, не зависящие от адреса получателя.

В некоторых случаях целесообразно, чтобы идентификаторы IP-пакетов выбирались протоколами более высокого, чем IP, уровня. Например, в протоколе TCP предусмотрена повторная передача ТСР — сегментов, по каким-либо причинам не дошедшим до адресата. Вероятность правильного приема увеличивалась бы, если бы при повторной передаче идентификатор для IP-пакета был бы тем же, что и в исходном IP-пакете, поскольку его фрагменты могли бы использоваться для сборки правильного ТСР — сегмента.

Процедура объединения заключается в помещении данных из каждого фрагмента в позицию, указанную в заголовке пакета в поле «fragment offset».

Каждый модуль IP должен быть способен передать пакет из 68 байт без дальнейшей фрагментации. Это связано с тем, что IP-заголовок может включать до 60 байт, а минимальный фрагмент данных — 8 байт. Каждый получатель должен быть в состоянии принять пакет из 576 байт в качестве единого куска либо в виде фрагментов, подлежащих сборке.

Если бит флага запрета фрагментации (Don’t Fragment, DF) установлен, то фрагментация данного пакета запрещена, даже если в этом случае он будет потерян. Данное средство может использоваться для предотвращения фрагментации в тех случаях, когда хост — получатель не имеет достаточных ресурсов для сборки фрагментов.

Работа протокола IP по фрагментации пакетов в хостах и маршрутизаторах иллюстрируется на рис. 5.21.

Пусть компьютер 1 связан с сетью, имеющей значение MTU в 4096 байт, например с сетью FDDI, При поступлении на IP-уровень компьютера 1 сообщения от транспортного уровня размером в 5600 байт протокол IP делит его на два IP-пакета, устанавливая в первом пакете признак фрагментации и присваивая пакету уникальный идентификатор, например 486, В первом пакете величина поля смещения равна 0, а во втором — 2800. Признак фрагментации во втором пакете равен нулю, что показывает, что это последний фрагмент пакета. Общая величина IP-пакета составляет 2800 плюс 20 (размер IP-заголовка), то есть 2820 байт, что умещается в поле данных кадра FDDI. Далее модуль IP компьютера 1 передает эти пакеты своему сетевому интерфейсу (образуемому протоколами канального уровня К 1 и физического уровня Ф1), Сетевой интерфейс отправляет кадры следующему маршрутизатору.

После того, как кадры пройдут уровень сетевого интерфейса маршрутизатора (К1 и Ф1) и освободятся от заголовков FDDI, модуль IP по сетевому адресу определяет, что прибывшие два пакета нужно передать в сеть 2, которая является сетью Ethernet и имеет значение MTU, равное 1500. Следовательно, прибывшие IP-пакеты необходимо фрагментировать. Маршрутизатор извлекает поле данных из каждого пакета и делит его еще пополам, чтобы каждая часть уместилась в поле данных кадра Ethernet. Затем он формирует новые IP-пакеты, каждый из которых имеет длину 1400 + 20 — 1420 байт, что меньше 1500 байт, поэтому они нормально помещаются в поле данных кадров Ethernet.

В результате в компьютер 2 по сети Ethernet приходят четыре IP-пакета с общим идентификатором 486, что позволяет протоколу IP, работающему в компьютере 2, правильно собрать исходное сообщение. Если пакеты пришли не в том порядке, в котором были посланы, то смещение укажет правильный порядок их объединения.

Отметим, что IP-маршрутизаторы не собирают фрагменты пакетов в более крупные пакеты, даже если на пути встречается сеть, допускающая такое укрупнение. Это связано с тем, что отдельные фрагменты сообщения могут перемещаться по интерсети по различным маршрутам, поэтому нет гарантии, что все фрагменты проходят через какой-либо промежуточный маршрутизатор на их пути.

При приходе первого фрагмента пакета узел назначения запускает таймер, который определяет максимально допустимое время ожидания прихода остальных фрагментов этого пакета. Таймер устанавливается на максимальное из двух значений: первоначальное установочное время ожидания и время жизни, указанное в принятом фрагменте. Таким образом, первоначальная установка таймера является нижней границей для времени ожидания при c6opi. Если таймер истекает раньше прибытия последнего фрагмента, то все ресурсы сборки, связанные с данным пакетом, освобождаются, все полученные к этому моменту фрагменты пакета отбрасываются, а в узел, пославший исходный пакет, направляется сообщение об ошибке с помощью протокола ICMP.
    продолжение
–PAGE_BREAK–5.3.7. Протокол надежной доставки TCP-сообщений
Протокол IP является дейтаграммным протоколом и поэтому по своей природе не может гарантировать надежность передачи данных. Эту задачу — обеспечение надежного канала обмена данными между прикладными процессами в составной сети -решает протокол TCP (Transmission Control Protocol), относящийся к транспортному уровню.

Протокол TCP работает непосредственно над протоколом IP и использует для транспортировки своих блоков данных потенциально ненадежный протокол IP. Надежность передачи данных протоколом TCP достигается за счет того, что он основан на установлении логических соединений между взаимодействующими процессами. До тех пор пока программы протокола TCP продолжают функционировать корректно, а составная сеть не распалась на несвязные части, ошибки в передаче данных на уровне протокола IP не будут влиять на правильное получение данных.

Протокол IP используется протоколом TCP в качестве транспортного средства. Перед отправкой своих блоков данных протокол TCP помещает их в оболочку IP-пакета. При необходимости протокол IP осуществляет любую фрагментацию и сборку блоков данных TCP, требующуюся для осуществления передачи и доставки через множество сетей и промежуточных шлюзов.

На рис. 5.22 показано, как процессы, выполняющиеся на двух конечных узлах, устанавливают с помощью протокола TCP надежную связь через составную сеть, все узлы которой используют для передачи сообщений дейтаграммный протокол IP.
Порты
Протокол TCP взаимодействует через межуровневые интерфейсы с ниже лежащим протоколом IP и с выше лежащими протоколами прикладного уровня или приложениями.

В то время как задачей сетевого уровня, к которому относится протокол IP, является передача данных между произвольными узлами сети, задача транспортного уровня, которую решает протокол TCP, заключается в передаче данных между любыми прикладными процессами, выполняющимися на любых узлах сети. Действительно, после того как пакет средствами протокола IP доставлен в компьютер-получатель, данные необходимо направить конкретному процессу-получателю. Каждый компьютер может выполнять несколько процессов, более того, прикладной процесс тоже может иметь несколько точек входа, выступающих в качестве адреса назначения для пакетов данных.

Пакеты, поступающие на транспортный уровень, организуются операционной системой в виде множества очередей к точкам входа различных прикладных процессов. В терминологии TCP/IP такие системные очереди называются портами. Таким образом, адресом назначения, который используется протоколом TCP, является идентификатор (номер) порта прикладной службы. Номер порта в совокупности с номером сети и номером конечного узла однозначно определяют прикладной процесс в сети. Этот набор идентифицирующих параметров имеет название сокет (socket).

Назначение номеров портов прикладным процессам осуществляется либо централизованно, если эти процессы представляют собой популярные общедоступные службы (например, номер 21 закреплен за службой удаленного доступа к файлам FTP, a 23 — за службой удаленного управления telnet), либо локально для тех служб, которые еще не стали столь распространенными, чтобы закреплять за ними стандартные (зарезервированные) номера. Централизованное присвоение службам номеров портов выполняется организацией Internet Assigned Numbers Authority (IANA). Эти номера затем закрепляются и опубликовываются в стандартах Internet (RFC 1700).

Локальноеприсвоение номера порта заключается в том, что разработчик некоторого приложения просто связывает с ним любой доступный, произвольно выбранный числовой идентификатор, обращая внимание на то, чтобы он не входил в число зарезервированных номеров портов. В дальнейшем все удаленные запросы к данному приложению от других приложений должны адресоваться с указанием назначенного ему номера порта.

Протокол TCP ведет для каждого порта две очереди: очередь пакетов, поступающих в данный порт из сети, и очередь пакетов, отправляемых данным портом в сеть. Процедура обслуживания протоколом TCP запросов, поступающих от нескольких различных прикладных служб, называется мультиплексированием. Обратная процедура распределения протоколом TCP поступающих от сетевого уровня пакетов между набором высокоуровневых служб, идентифицированных номерами портов, называется демультиплексированием (рис. 5.23).
Сегменты и потоки
Единицей данных протокола TCP является сегмент. Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байтов. Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера «вырезается» некоторая непрерывная часть данных, которая и называется сегментом (см. рис. 5.23). В отличие от многих других протоколов, протокол TCP подтверждает получение не пакетов, а байтов потока.

Не все сегменты, посланные через соединение, будут одного и того же размера, однако оба участника соединения должны договориться о максимальном размере сегмента, который они будут использовать. Этот размер выбирается таким образом, чтобы при упаковке сегмента в IP-пакет он помещался туда целиком, то есть максимальный размер сегмента не должен превосходить максимального размера поля данных IP-пакета, В противном случае пришлось бы выполнять фрагментацию, то есть делить сегмент на несколько частей, чтобы разместить его в IP-пакете,
Соединения
Для организации надежной передачи данных предусматривается установление логического соединения между двумя прикладными процессами. Поскольку соединения устанавливаются через ненадежную коммуникационную систему, основанную на протоколе IP, то во избежание ошибочной инициализации соединений используется специальная многошаговая процедура подтверждения связи.

Соединение в протоколе TCP идентифицируется парой полных адресов обоих взаимодействующих процессов — сокетов. Каждый из взаимодействующих процессов может участвовать в нескольких соединениях.

Формально соединение можно определить как набор параметров, характеризующий процедуру обмена данными между двумя процессами. Помимо полных адресов процессов этот набор включает и параметры, значения которых определяются в результате переговорного процесса модулей TCP двух сторон соединения. К таким параметрам относятся, в частности, согласованные размеры сегментов, которые может посылать каждая из сторон, объемы данных, которые разрешено передавать без получения на них подтверждения, начальные и текущие номера передаваемых байтов. Некоторые из этих параметров остаются постоянными в течение всего сеанса связи, а некоторые адаптивно изменяются.

В рамках соединения осуществляется обязательное подтверждение правильности приема для всех переданных сообщений и при необходимости выполняется повторная передача. Соединение в TCP позволяет вести передачу данных одновременно в обе Стороны, то есть полнодуплексную передачу.
    продолжение
–PAGE_BREAK–Реализация скользящего окна в протоколе TCP
В рамках установленного соединения правильность передачи каждого сегмента должна подтверждаться квитанцией получателя. Квитирование — это один из традиционных методов обеспечения надежной связи. В протоколе TCP используется частный случай квитирования — алгоритм скользящего окна. Идея этого алгоритма была изложена в главе 2, «Основы передачи дискретных данных».

Особенность использования алгоритма скользящего окна в протоколе TCP состоит в том, что, хотя единицей передаваемых данных является сегмент, окно определено на множестве нумерованных байтов неструктурированного потока данных, поступающих с верхнего уровня и буферизуемых протоколом TCP. Получающий модуль TCP отправляет «окно» посылающему модулю TCP. Данное окно задает количество байтов (начиная с номера байта, о котором уже была выслана квитанция), которое принимающий модуль TCP готов в настоящий момент принять.

Квитанция (подтверждение) посылается только в случае правильного приема данных, отрицательные квитанции не посылаются. Таким образом, отсутствие квитанции означает либо прием искаженного сегмента, либо потерю сегмента, либо потерю квитанции. В качестве квитанции получатель сегмента отсылает ответное сообщение (сегмент), в которое помещает число, на единицу превышающее максимальный номер байта в полученном сегменте. Это число часто называют номером очереди.

На рис. 5.24 показан поток байтов, поступающий на вход протокола TCP. Из потока байтов модуль TCP нарезает последовательность сегментов. Для определенности на рисунке принято направление перемещения данных справа налево. В этом потоке можно указать несколько логических границ. Первая граница отделяет сегменты, которые уже были отправлены и на которые уже пришли квитанции. Следующую часть потока составляют сегменты, которые также уже отправлены, так как входят в границы, определенные окном, но квитанции на них пока не получены. Третья часть потока — это сегменты, которые пока не отправлены, но могут быть отправлены, так как входят в пределы окна. И наконец, последняя граница указывает на начало последовательности сегментов, ни один из которых не может быть отправлен до тех пор, пока не придет очередная квитанция и окно не будет сдвинуто вправо.

Если размер окна равен W, а последняя по времени квитанция содержала значение N, то отправитель может посылать новые сегменты до тех пор, пока в очередной сегмент не попадет байт с номером N+W. Этот сегмент выходит за рамки окна, и передачу в таком случае необходимо приостановить до прихода следующей квитанции.

Надежность передачи достигается благодаря подтверждениям и номерам очереди. Концептуально каждому байту данных присваивается номер очереди. Номер очереди для первого байта данных в сегменте передается вместе с этим сегментом и называется номером очереди для сегмента. Сегменты также несут номер подтверждения, который является номером для следующего ожидаемого байта данных, передаваемого в обратном направлении. Когда протокол TCP передает сегмент с данными, он помещает его копию в очередь повторной передачи и запускает таймер. Когда приходит подтверждение для этих данных, соответствующий сегмент удаляется из очереди. Если подтверждение не приходит до истечения срока, то сегмент посылается повторно.

Выбор времени ожидания (тайм-аута) очередной квитанции является важной задачей, результат решения которой влияет на производительность протокола TCP. Тайм-аут не должен быть слишком коротким, чтобы по возможности исключить избыточные повторные передачи, которые снижают полезную пропускную способность системы. Но он не должен быть и слишком большим, чтобы избежать длительных простоев, связанных с ожиданием несуществующей или «заблудившейся» квитанции.

При выборе величины тайм-аута должны учитываться скорость и надежность физических линий связи, их протяженность и многие другие подобные факторы. В протоколе TCP тайм-аут определяется с помощью достаточно сложного адаптивного алгоритма, идея которого состоит в следующем. При каждой передаче засекается время от момента отправки сегмента до прихода квитанции о его приеме (время оборота). Получаемые значения времени оборота усредняются с весовыми коэффициентами, возрастающими от предыдущего замера к последующему. Это делается с тем, чтобы усилить влияние последних замеров. В качестве тайм-аута выбирается среднее время оборота, умноженное на некоторый коэффициент. Практика показывает, что значение этого коэффициента должно превышать 2. В сетях с большим разбросом времени оборота при выборе тайм-аута учитывается и дисперсия этой величины.

Поскольку каждый байт пронумерован, то каждый из них может быть опознан. Приемлемый механизм опознавания является накопительным, поэтому опознавание номера Х означает, что все байты с предыдущими номерами уже получены. Этот механизм позволяет регистрировать появление дубликатов в условиях повторной передачи. Нумерация байтов в пределах сегмента осуществляется так, чтобы первый байт данных сразу вслед за заголовком имел наименьший номер, а следующие за ним байты имели номера по возрастающей.

Окно, посылаемое с каждым сегментом, определяет диапазон номеров очереди, которые отправитель окна (он же получатель данных) готов принять в настоящее время. Предполагается, что такой механизм связан с наличием в данный момент места в буфере данных.

Варьируя величину окна, можно влиять на загрузку сети. Чем больше окно, тем большую порцию неподтвержденных данных можно послать в сеть. Но если пришло большее количество данных, чем может быть принято программой TCP, данные будут отброшены. Это приведет к излишним пересылкам информации и ненужному увеличению нагрузки на сеть и программу TCP.

С другой стороны, указание окна малого размера может ограничить передачу данных скоростью, которая определяется временем путешествия по сети каждого посылаемого сегмента. Чтобы избежать применения малых окон, получателю данных предлагается откладывать изменение окна до тех пор, пока свободное место не составит 20-40 % от максимально возможного объема памяти для этого соединения. Но и отправителю не стоит спешить с посылкой данных, пока окно не станет достаточно большим. Учитывая эти соображения, разработчики протокола TCP предложили схему, согласно которой при установлении соединения заявляется большое окно, но впоследствии его размер существенно уменьшается.

Если сеть не справляется с нагрузкой, то возникают очереди в промежуточных узлах — маршрутизаторах и в конечных узлах-компьютерах.

При переполнении приемного буфера конечного узла «перегруженный» протокол TCP, отправляя квитанцию, помещает в нее новый, уменьшенный размер окна. Если он совсем отказывается от приема, то в квитанции указывается окно нулевого размера. Однако даже после этого приложение может послать сообщение на отказавшийся от приема порт. Для этого сообщение должно сопровождаться пометкой «срочно». В такой ситуации порт обязан принять сегмент, даже если для этого придется вытеснить из буфера уже находящиеся там данные. После приема квитанции с нулевым значением окна протокол-отправитель время от времени делает контрольные попытки продолжить обмен данными. Если протокол-приемник уже готов принимать информацию, то в ответ на контрольный ‘запрос он посылает квитанцию с указанием ненулевого размера окна.

Другим проявлением перегрузки сети является переполнение буферов в маршрутизаторах. В таких случаях они могут централизованно изменить размер окна, посылая управляющие сообщения некоторым конечным узлам, что позволяет им дифференцированно управлять интенсивностью потока данных в разных частях сети.
    продолжение
–PAGE_BREAK–Выводы
·         Протокол IP решает задачу доставки сообщений между узлами составной сети. Протокол IP относится к протоколам без установления соединений, поэтому он не дает никаких гарантий надежной доставки сообщений. Все вопросы обеспечения надежности доставки данных в составной сети в стеке TCP/IP решает протокол TCP, основанный на установлении логических соединений между взаимодействующими процессами.

·         IP-пакет состоит из заголовка и поля данных. Максимальная длина пакета 65 535 байт, Заголовок обычно имеет длину 20 байт и содержит информацию о сетевых адресах отправителя и получателя, о параметрах фрагментации, о времени жизни пакета, о контрольной сумме и некоторых других. В поле данных IP-пакета находятся сообщения более высокого уровня, например TCP или UDP.

·         Вид таблицы IP-маршрутизации зависит от конкретной реализации маршрутизатора, но, несмотря на достаточно сильные внешние различия, в таблицах всех типов маршрутизаторов есть все ключевые поля, необходимые для выполнения маршрутизации.

·         Существует несколько источников, поставляющих записи в таблицу маршрутизации. Во-первых, при инициализации программное обеспечение стека TCP/ IP заносит в таблицу записи о непосредственно подключенных сетях и маршрутизаторах по умолчанию, а также записи об особых адресах типа 127.0.0.0. Во-вторых, администратор вручную заносит статические записи о специфичных маршрутах или о маршрутизаторе по умолчанию. В-третьих, протоколы маршрутизации автоматически заносят в таблицу динамические записи о имеющихся маршрутах.

·         Эффективным средством структуризации IP-сетей являются маски. Маски позволяют разделить одну сеть на несколько подсетей. Маски одинаковой длины используются для деления сети на подсети равного размера, а маски переменной длины — для деления сети на подсети разного размера. Использование масок модифицирует алгоритм маршрутизации, поэтому в этом случае предъявляются особые требования к протоколам маршрутизации в сети, к техническим характеристикам маршрутизаторов и процедурам их конфигурирования.

·         Значительная роль в будущем IP-сетей отводится технологии бесклассовой междоменной маршрутизации (CIDR), которая решает две основные задачи. Первая состоит в более экономном расходование адресного пространства — благодаря CIDR поставщики услуг получают возможность «нарезать» блоки разных размеров из выделенного им адресного пространства в точном соответствии с требованиями каждого клиента. Вторая задача заключается в уменьшении числа записей в таблицах маршрутизации за счет объединения маршрутов — одна запись в таблице маршрутизации может представлять большое количество сетей с общим префиксом.

·         Важной особенностью протокола IP, отличающей его от других сетевых протоколов, является его способность выполнять динамическую фрагментацию пакетов при передаче их между сетями с различными MTU. Это свойство во многом способствовало тому, что протокол IP смог занять доминирующие позиции в сложных составных сетях.
5.4. Протоколы маршрутизации в IP-сетях 5.4.1. Внутренние и внешние протоколы маршрутизации Internet
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы — сети ARPANET. Для того чтобы понять их назначение и особенности, полезно сначала познакомиться со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.

Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems, AS). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Необходимо подчеркнуть, что автономная система и домен имен Internet — это разные понятия, которые служат разным целям. Автономная система объединяет сети, в которых под общим административным руководством одной организации осуществляется маршрутизация, а домен объединяет компьютеры (возможно, принадлежащие разным сетям), в которых под общим административным руководством одной организации осуществляется назначение уникальных символьных имен. Естественно, области действия автономной системы и домена имен могут в частном случае совпадать, если одна организация выполняет обе указанные функции.

Общая схема архитектуры сети Internet показана на рис. 5.25. Далее маршрутизаторы мы будем называть шлюзами, чтобы оставаться в русле традиционной терминологии Internet.

Шлюзы, которые используются для образования сетей и подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Магистраль сети также является автономной системой. Все автономные системы имеют уникальный 16-разрядный номер, который выделяется организацией, учредившей новую автономную систему, InterNIC.

Соответственно протоколы маршрутизации внутри автономных систем называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети — протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также допустим любой собственный внутренний протокол IGP.

Смысл разделения всей сети Internet на автономные системы — в ее многоуровневом модульном представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Изменение протоколов маршрутизации внутри какой-либо автономной системы никак не должно влиять на работу остальных автономных систем. Кроме того, деление Internet на автономные системы должно способствовать агрегированию информации в магистральных и внешних шлюзах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации станет неприемлемо большим.

Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения — количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.

Техника бесклассовой маршрутизации CIDR может значительно сократить объемы маршрутной информации, передаваемой между автономными системами. Так, если все сети внутри некоторой автономной системы начинаются с общего префикса, например 194.27.0.0/16, то внешний шлюз этой автономной системы должен делать объявления только об этом адресе, не сообщая отдельно о существовании внутри данной автономной системы, например, сети 194.27.32.0/19 или 194.27.40.0/21, так как эти адреса агрегируются в адрес 194.27.0.0/16.

Приведенная на рис. 5.25 структура Internet с единственной магистралью достаточно долго соответствовала действительности, поэтому специально для нее был разработан протокол обмена маршрутной информации между автономными системами, названный EGP. Однако по мере развития сетей поставщиков услуг структура Internet стала гораздо более сложной, с произвольным характером связей между автономными системами. Поэтому протокол EGP уступил место протоколу BGP, который позволяет распознать наличие петель между автономными системами и исключить их из межсистемных маршрутов. Протоколы EGP и BGP используются только во внешних шлюзах автономных систем, которые чаще всего организуются поставщиками услуг Internet. В маршрутизаторах корпоративных сетей работают внутренние протоколы маршрутизации, такие как RIP и OSPF.
    продолжение
–PAGE_BREAK–5.4.2. Дистанционно-векторный протокол RIP Построение таблицы маршрутизации
Протокол RIP (Routing Information Protocol) является внутренним протоколом маршрутизации дистанционно-векторного типа, он представляет собой один из наиболее ранних протоколов обмена маршрутной информацией и до сих пор чрезвычайно распространен в вычислительных сетях ввиду простоты реализации. Кроме версии RIP для сетей TCP/IP существует также версия RIP для сетей IPX/SPX компании Novell.

Для IP имеются две версии протокола RIP: первая и вторая. Протокол RIPvl не поддерживает масок, то есть он распространяет между маршрутизаторами только информацию о номерах сетей и расстояниях до них, а информацию о масках этих сетей не распространяет, считая, что все адреса принадлежат к стандартными классам А, В или С. Протокол RIPv2 передает информацию о масках сетей, поэтому он в большей степени соответствует требованиям сегодняшнего дня. Так как при построении таблиц маршрутизации работа версии 2 принципиально не отличается от версии 1, то в дальнейшем для упрощения записей будет описываться работа первой версии.

В качестве расстояния до сети стандарты протокола RIP допускают различные виды метрик: хопы, метрики, учитывающие пропускную способность, вносимые задержки и надежность сетей (то есть соответствующие признакам D, Т и R в поле «Качество сервиса» IP-пакета), а также любые комбинации этих метрик. Метрика должна обладать свойством аддитивности — метрика составного пути должна быть равна сумме метрик составляющих этого пути. В большинстве реализации RIP используется простейшая метрика — количество хопов, то есть количество промежуточных маршрутизаторов, которые нужно преодолеть пакету до сети назначения.

Рассмотрим процесс построения таблицы маршрутизации с помощью протокола RIP на примере составной сети, изображенной на рис. 5.26.
Этап 1 — создание минимальных таблиц
В этой сети имеется восемь IP-сетей, связанных четырьмя маршрутизаторами с идентификаторами: Ml, М2, МЗ и М4. Маршрутизаторы, работающие по протоколу RIP, могут иметь идентификаторы, однако для работы протокола они не являются необходимыми. В RIP-сообщениях эти идентификаторы не передаются.

В исходном состоянии в каждом маршрутизаторе программным обеспечением стека TCP/IP автоматически создается минимальная таблица маршрутизации, в которой учитываются только непосредственно подсоединенные сети. На рисунке адреса портов маршрутизаторов в отличие от адресов сетей помещены в овалы.

Таблица 5.14 позволяет оценить примерный вид минимальной таблицы маршрутизации маршрутизатора Ml.

Минимальные таблицы маршрутизации в других маршрутизаторах будут выглядеть соответственно, например, таблица маршрутизатора М2 будет состоять из трех записей (табл. 5.15).
Этап 2 — рассылка минимальных таблиц соседям
После инициализации каждого маршрутизатора он начинает посылать своим соседям сообщения протокола RIP, в которых содержится его минимальная таблица.

RIP-сообщения передаются в пакетах протокола UDP и включают два параметра для каждой сети: ее IP-адрес и расстояние до нее от передающего сообщение маршрутизатора.

Соседями являются те маршрутизаторы, которым данный маршрутизатор непосредственно может передать IP-пакет по какой-либо своей сети, не пользуясь услугами промежуточных маршрутизаторов. Например, для маршрутизатора Ml соседями являются маршрутизаторы М2 и МЗ, а для маршрутизатора М4 — маршрутизаторы М2 и МЗ.

Таким образом, маршрутизатор Ml передает маршрутизатору М2 и МЗ следующее сообщение:

сеть 201.36.14.0, расстояние 1;

сеть 132.11.0.0, расстояние 1;

сеть 194.27.18.0, расстояние 1.
Этап 3 — получение RIP-сообщений от соседей и обработка полученной информации
После получения аналогичных сообщений от маршрутизаторов М2 и МЗ маршрутизатор Ml наращивает каждое полученное поле метрики на единицу и запоминает, через какой порт и от какого маршрутизатора получена новая информация (адрес этого маршрутизатора будет адресом следующего маршрутизатора, если эта запись будет внесена в таблицу маршрутизации). Затем маршрутизатор начинает сравнивать новую информацию с той, которая хранится в его таблице маршрутизации (табл. 5.16).

Записи с четвертой по девятую получены от соседних маршрутизаторов, и они претендуют на помещение в таблицу. Однако только записи с четвертой по седьмую попадают в таблицу, а записи восьмая и девятая — нет. Это происходит потому, что они содержат данные об уже имеющихся в таблице Ml сетях, а расстояние до них хуже, чем в существующих записях.

Протокол RIP замещает запись о какой-либо сети только в том случае, если новая информация имеет лучшую метрику (расстояние в хопах меньше), чем имеющаяся. В результате в таблице маршрутизации о каждой сети остаётся только одна запись; если же имеется несколько равнозначных в отношении расстояния путей к одной и той же сети, то все равно в таблице остается одна запись, которая пришла в маршрутизатор первая по времени. Для этого правила существует исключение — если худшая информация о какой-либо сети пришла от того же маршрутизатора, на основании сообщения которого была создана данная запись, то худшая информация замещает лучшую.

Аналогичные операции с новой информацией выполняют и остальные маршрутизаторы сети.
Этап 4 — рассылка новой, уже не минимальной, таблицы соседям
Каждый маршрутизатор отсылает новое RIP-сообщение всем своим соседям. В этом сообщении он помещает данные о всех известных ему сетях — как непосредственно подключенных, так и удаленных, о которых маршрутизатор узнал из RIP-сообщений.
Этап 5 — получение RIP-сообщений от соседей и обработка полученной информации
Этап 5 повторяет этап 3 — маршрутизаторы принимают RIP-сообщения, обрабатывают содержащуюся в них информацию и на ее основании корректируют свои таблицы маршрутизации.

Посмотрим, как это делает маршрутизатор Ml (табл. 5.17).

На этом этапе маршрутизатор Ml получил от маршрутизатора М3 информацию о сети 132.15.0.0, которую тот в свою очередь на предыдущем цикле работы получил от маршрутизатора М4. Маршрутизатор уже знает о сети 132.15.0.0, причем старая информация имеет лучшую метрику, чем новая, поэтому новая информация об этой сети отбрасывается.

О сети 202.101.16.0 маршрутизатор Ml узнает на этом этапе впервые, причем данные о ней приходят от двух соседей — от МЗ и М4. Поскольку метрики в этих сообщениях указаны одинаковые, то в таблицу попадают данные, которые пришли первыми. В нашем примере считается, что маршрутизатор М2 опередил маршрутизатор МЗ и первым переслал свое RIP-сообщение маршрутизатору Ml.

Если маршрутизаторы периодически повторяют этапы рассылки и обработки RIP-сообщений, то за конечное время в сети установится корректный режим маршругизации. Под корректным режимом маршрутизации здесь понимается такое состояние таблиц маршрутизации, когда все сети будут достижимы из любой сети с помощью некоторого рационального маршрута. Пакеты будут доходить до адресатов и не зацикливаться в петлях, подобных той, которая образуется на рис. 5.26, маршрутизаторами М1-М2-МЗ-М4.

Очевидно, если в сети все маршрутизаторы, их интерфейсы и соединяющие их каналы связи постоянно работоспособны, то объявления по протоколу RIP можно делать достаточно редко, например, один раз в день. Однако в сетях постоянно происходят изменения — изменяется как работоспособность маршрутизаторов и каналов, так и сами маршрутизаторы и каналы могут добавляться в существующую сеть или же выводиться из ее состава.

Для адаптации к изменениям в сети протокол RIP использует ряд механизмов.
    продолжение
–PAGE_BREAK–Адаптация RIP-маршрутизаторов к изменениям состояния сети
К новым маршрутам RIP-маршрутизаторы приспосабливаются просто — они передают новую информацию в очередном сообщении своим соседям и постепенно эта информация становится известна всем маршрутизаторам сети. А вот к отрицательным изменениям, связанным с потерей какого-либо маршрута, RIP-маршрутиза-торы приспосабливаются сложнее. Это связано с тем, что в формате сообщений протокола RIP нет поля, которое бы указывало на то, что путь к данной сети больше не существует.

Вместо этого используются два механизма уведомления о том, что некоторый маршрут более недействителен:

·         истечение времени жизни маршрута;

·         указание специального расстояния (бесконечности) до сети, ставшей недоступной.

Для отработки первого механизма каждая запись таблицы маршрутизации (как и записи таблицы продвижения моста/коммутатора), полученная по протоколу RIP, имеет время жизни (TTL). При поступлении очередного RIP-сообщения, которое подтверждает справедливость данной записи, таймер TTL устанавливается в исходное состояние, а затем из него каждую секунду вычитается единица. Если за время тайм-аута не придет новое маршрутное сообщение об этом маршруте, то он помечается как недействительный.

Время тайм-аута связано с периодом рассылки векторов по сети. В RIP IP период рассылки выбран равным 30 секундам, а в качестве тайм-аута выбрано шестикратное значение периода рассылки, то есть 180 секунд. Выбор достаточно малого времени периода рассылки объясняется несколькими причинами, которые станут понятны из дальнейшего изложения. Шестикратный запас времени нужен для уверенности в том, что сеть действительно стала недоступна, а не просто произошли потери RIP-сообщений (а это возможно, так как RIP использует транспортный протокол UDP, который не обеспечивает надежной доставки сообщений).

Если какой-либо маршрутизатор отказывает и перестает слать своим соседям сообщения о сетях, которые можно достичь через него, то через 180 секунд все записи, которые породил этот маршрутизатор, станут недействительными у его ближайших соседей. После этого процесс повторится уже для соседей ближайших соседей — они вычеркнут подобные записи уже через 360 секунд, так как первые 180 секунд ближайшие соседи еще передавали сообщения об этих записях.

Как видно из объяснения, сведения о недоступных через отказавший маршрутизатор сетях распространяются по сети не очень быстро, время распространения кратно времени жизни записи, а коэффициент кратности равен количеству хопов между самыми дальними маршрутизаторами сети. В этом заключается одна из причин выбора в качестве периода рассылки небольшой величины в 30 секунд.

Если отказывает не маршрутизатор, а интерфейс или сеть, связывающие его с каким-либо соседом, то ситуация сводится к только что описанной — снова начинает работать механизм тайм-аута и ставшие недействительными маршруты постепенно будут вычеркнуты из таблиц всех маршрутизаторов сети.

Тайм-аут работает в тех случаях, когда маршрутизатор не может послать соседям сообщение об отказавшем маршруте, так как либо он сам неработоспособен, либо неработоспособна линия связи, по которой можно было бы передать сообщение.

Когда же сообщение послать можно, RIP-маршрутизаторы не используют специальный признак в сообщении, а указывают бесконечное расстояние до сети, причем в протоколе RIP оно выбрано равным 16 хопам (при другой метрике необходимо указать маршрутизатору ее значение, считающееся бесконечностью). Получив сообщение, в котором некоторая сеть сопровождается расстоянием 16 (или 15, что приводит к тому же результату, так как маршрутизатор наращивает полученное значение на 1), маршрутизатор должен проверить, исходит ли эта «плохая» информация о сети от того же маршрутизатора, сообщение которого послужило в свое время основанием для записи о данной сети в таблице маршрутизации. Если это тот же маршрутизатор, то информация считается достоверной и маршрут помечается как недоступный.

Такое небольшое значение «бесконечного» расстояния вызвано тем, что в некоторых случаях отказы связей в сети вызывают длительные периоды некорректной работы RIP-маршрутизаторов, выражающейся в зацикливании пакетов в петлях сети. И чем меньше расстояние, используемое в качестве «бесконечного», тем такие периоды становятся короче.

Рассмотрим случай зацикливания пакетов на примере сети, изображенной на рис. 5.26.

Пусть маршрутизатор Ml обнаружил, что его связь с непосредственно подключенной сетью 201.36.14.0 потеряна (например, по причине отказа интерфейса 201.36.14.3). Ml отметил в своей таблице маршрутизации, что сеть 201.36.14.0 недоступна. В худшем случае он обнаружил это сразу же после отправки очередных RIP-сообщений, так что до начала нового цикла его объявлений, в котором он должен сообщить соседям, что расстояние до сети 201.36.14.0 стало равным 16, остается почти 30 секунд.

Каждый маршрутизатор работает на основании своего внутреннего таймера, не синхронизируя работу по рассылке объявлений с другими маршрутизаторами. Поэтому весьма вероятно, маршрутизатор М2 опередил маршрутизатор Ml и передал ему свое сообщение раньше, чем Ml успел передать новость о недостижимости сети 201.36.14.0. А в этом сообщении имеются данные, порожденные следующей записью в таблице маршрутизации М2 (табл. 5.18).

Эта запись была получена от маршрутизатора Ml и корректна до отказа интерфейса 201.36.14.3, а теперь она устарела, но маршрутизатор М2 об этом не узнал.

Теперь маршрутизатор Ml получил новую информацию о сети 201.36.14.0 — эта сеть достижима через маршрутизатор М2 с метрикой 2. Раньше Ml также получал эту информацию от М2. Но игнорировал ее, так как его собственная метрика для 201.36.14.0 была лучше. Теперь Ml должен принять данные о сети 201.36.14.0, полученные от М2, и заменить запись в таблице маршрутизации о недостижимости этой сети (табл. 5.19).

В результате в сети образовалась маршрутная петля: пакеты, направляемые узлам сети 201.36.14.0, будут передаваться маршрутизатором М2 маршрутизатору Ml, а маршрутизатор Ml будет возвращать их маршрутизатору М2. IP-пакеты будут циркулировать по этой петле до тех пор, пока не истечет время жизни каждого пакета.

Маршрутная петля будет существовать в сети достаточно долго. Рассмотрим периоды времени, кратные времени жизни записей в таблицах маршрутизаторов.

·         Время 0-180 с. После отказа интерфейса в маршрутизаторах Ml и М2 будут сохраняться некорректные записи, приведенные выше. Маршрутизатор М2 по-прежнему снабжает маршрутизатор Ml своей записью о сети 201.36.14.0 с метрикой 2, так как ее время жизни не истекло. Пакеты зацикливаются.

·         Время 180-360 с. В начале этого периода у маршрутизатора М2 истекает время жизни записи о сети 201.36.14.0 с метрикой 2, так как маршрутизатор Ml в предыдущий период посылал ему сообщения о сети 201.36.14.0 с худшей метрикой, чем у М2, и они не могли подтверждать эту запись. Теперь маршрутизатор М2 принимает от маршрутизатора Ml запись о сети 201.36.14.0 с метрикой 3 и трансформирует ее в запись с метрикой 4. Маршрутизатор Ml не получает новых сообщений от маршрутизатора М2 о сети 201.36.14.0 с метрикой 2, поэтому время жизни его записи начинает уменьшаться. Пакеты продолжают зацикливаться.

·         Время 360-540 с. Теперь у маршрутизатора Ml истекает время жизни записи о сети 201.36.14.0 с метрикой 3. Маршрутизаторы Ml и М2 опять меняются ролями — М2 снабжает Ml устаревшей информацией о пути к сети 201.36.14.0, уже с метрикой 4, которую Ml преобразует в метрику 5. Пакеты продолжают зацикливаться.

Если бы в протоколе RIP не было выбрано расстояние 16 в качестве недостижимого, то описанный процесс длился бы до бесконечности (вернее, пока не была бы исчерпана разрядная сетка поля расстояния и не было бы зафиксировано переполнения при очередном наращивании расстояния).

В результате маршрутизатор М2 на очередном этапе описанного процесса получает от маршрутизатора Ml метрику 15, которая после наращивания, превращаясь в метрику 16, фиксирует недостижимость сети. Период нестабильной работы сети длился 36 минут!

Ограничение в 15 хопов сужает область применения протокола RIP до сетей, в которых число промежуточных маршрутизаторов не может быть больше 15. Для более масштабных сетей нужно применять другие протоколы маршрутизации, например OSPF, или разбивать сеть на автономные области.

Приведенный пример хорошо иллюстрирует главную причину нестабильной работы маршрутизаторов, работающих по протоколу RIP. Эта причина коренится в самом принципе работы дистанционно-векторных протоколов — пользовании информацией, полученной из вторых рук. Действительно, маршрутизатор М2 передал маршрутизатору Ml информацию о достижимости сети 201.36.14.0, за достоверность которой он сам не отвечает. Искоренить эту причину полностью нельзя, ведь сам способ построения таблиц маршрутизации связан с передачей чужой информации без указания источника ее происхождения.

Не следует думать, что при любых отказах интерфейсов и маршрутизаторов в сетях возникают маршрутные петли. Если бы маршрутизатор Ml успел передать сообщение о недостижимости сети 201.36.14.0 раньше ложной информации маршрутизатора М2, то маршрутная петля не образовалась бы. Так что маршрутные петли даже без дополнительных методов борьбы с ними, описанными в следующем разделе, возникают в среднем не более чем в половине потенциально возможных случаев.
    продолжение
–PAGE_BREAK–

Локальные сети понятие и виды

Гипероглавление:
1.3.2. Модель OSI
1.3.3. Уровни модели OSI
Физический уровень
Канальный уровень
Сетевой уровень
Транспортный уровень
Сеансовый уровень
Представительный уровень
Прикладной уровень
Сетезависимые и сетенезависимые уровни
1.3.4. Понятие «открытая система»
1.3.5. Модульность и стандартизация
1.3.6. Источники стандартов
1.3.7. Стандартные стеки коммуникационных протоколов
Стек OSI
Стек TCP/IP
Стек IPX/SPX
Стек NetBIOS/SMB
Выводы
5.2. Адресация в IP-сетях
5.2.1. Типы адресов стека TCP/IP
5.2.2. Классы IP-адресов
5.2.3. Особые IP-адреса
5.2.4. Использование масок в IP-адресации
5.2.5. Порядок распределения IP-адресов
5.2.6. Автоматизация процесса назначения IP-адресов
5.2.7. Отображение IP-адресов на локальные адреса
5.2.8. Отображение доменных имен на IP-адреса
Организация доменов и доменных имен
Система доменных имен DNS
Выводы
5.3. Протокол IP
5.3.1. Основные функции протокола IP
5.3.2. Структура IP-пакета
5.3.3. Таблицы маршрутизации в IP-сетях
Примеры таблиц различных типов маршрутизаторов
Назначение полей таблицы маршрутизации
Источники и типы записей в таблице маршрутизации
5.3.4. Маршрутизация без использования масок
5.3.5. Маршрутизация с использованием масок
Использование масок для структуризации сети
Использование масок переменной длины
Технология бесклассовой междоменной маршрутизации CIDR
5.3.6. Фрагментация IP-пакетов
5.3.7. Протокол надежной доставки TCP-сообщений
Сегменты и потоки
Соединения
Реализация скользящего окна в протоколе TCP
Выводы
5.4. Протоколы маршрутизации в IP-сетях
5.4.1. Внутренние и внешние протоколы маршрутизации Internet
5.4.2. Дистанционно-векторный протокол RIP
Построение таблицы маршрутизации
Этап 1 — создание минимальных таблиц
Этап 2 — рассылка минимальных таблиц соседям
Этап 3 — получение RIP-сообщений от соседей и обработка полученной информации
Этап 4 — рассылка новой, уже не минимальной, таблицы соседям
Этап 5 — получение RIP-сообщений от соседей и обработка полученной информации
Адаптация RIP-маршрутизаторов к изменениям состояния сети
Методы борьбы с ложными маршрутами в протоколе RIP
5.4.3. Протокол «состояния связей» OSPF
Выводы
–PAGE_BREAK–    продолжение
–PAGE_BREAK–Канальный уровень
На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок не является обязательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует, например, в Ethernet и frame relay.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда, а также структуры, полученные из них с помощью мостов и коммутаторов. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, l00VG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B. В таких случаях для доставки сообщений между конечными узлами через всю сеть используются средства сетевого уровня. Именно так организованы сети Х.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня. Примерами такого подхода могут служить протоколы технологий АТМ и frame relay.

В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами и могут допускать работу поверх них непосредственно протоколов прикладного уровня или приложений, без привлечения средств сетевого и транспортного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP. Естественно, что применение такой реализации будет ограниченным — она не подходит для составных сетей разных технологий, например Ethernet и Х.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевид-ные связи. А вот в двухсегментной сети Ethernet, объединенной мостом, реализация SNMP над канальным уровнем будет вполне работоспособна.

Тем не менее для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня оказывается недостаточно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня — сетевой и транспортный.
Сетевой уровень
Сетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Функции сетевого уровня достаточно разнообразны. Начнем их рассмотрение на примере объединения локальных сетей.

Протоколы канального уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией, например топологией иерархической звезды. Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Можно было бы усложнять протоколы канального уровня для поддержания петлевидных избыточных связей, но принцип разделения обязанностей между уровнями приводит к другому решению. Чтобы с одной стороны сохранить простоту процедур передачи данных для типовых топологий, а с другой допустить использование произвольных топологий, вводится дополнительный сетевой уровень.

На сетевом уровне сам термин сеть наделяют специфическим значением. В данном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Внутри сети доставка данных обеспечивается соответствующим канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня. Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор — это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями, илихопов (от hop — прыжок), каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

На рис. 1.27 показаны четыре сети, связанные тремя маршрутизаторами. Между узлами А и В данной сети пролегают два маршрута: первый через маршрутизаторы 1 и 3, а второй через маршрутизаторы 1, 2 и 3.

Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например надежности передачи.

В общем случае функции сетевого уровня шире, чем функции передачи сообщений по связям с нестандартной структурой, которые мы сейчас рассмотрели на примере объединения нескольких локальных сетей. Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Сообщения сетевого уровня принято называть пакетами (packets). При организации доставки пакетов на сетевом уровне используется понятие «номер сети». В этом случае адрес получателя состоит из старшей части — номера сети и младшей — номера узла в этой сети. Все узлы одной сети должны иметь одну и ту же старшую часть адреса, поэтому термину «сеть» на сетевом уровне можно дать и другое, более формальное определение: сеть — это совокупность узлов, сетевой адрес которых содержит один и тот же номер сети.

На сетевом уровне определяются два вида протоколов. Первый вид — сетевые протоколы (routed protocols) — реализуют продвижение пакетов через сеть. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией или просто протоколами маршрутизации (routing protocols). С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов — Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.
    продолжение
–PAGE_BREAK–Транспортный уровень
На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Транспортный уровень (Transport layer) обеспечивает приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного — сетевым, канальным и физическим. Так, например, если качество каналов передачи связи очень высокое и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уровня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства нижних уровней изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя максимум средств для обнаружения и устранения ошибок, — с помощью предварительного установления логического соединения, контроля доставки сообщений по контрольным суммам и циклической нумерации пакетов, установления тайм-аутов доставки и т. п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети — компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Протоколы нижних четырех уровней обобщенно называют сетевым транспортом или транспортной подсистемой, так как они полностью решают задачу транспортировки сообщений с заданным уровнем качества в составных сетях с произвольной топологией и различными технологиями. Остальные три верхних уровня решают задачи предоставления прикладных сервисов на основании имеющейся транспортной подсистемы.
Сеансовый уровень
Сеансовый уровень (Session layer) обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.
Представительный уровень
Представительный уровень (Presentation layer) имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например кодов ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.
Прикладной уровень
Прикладной уровень (Application layer) — это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Существует очень большое разнообразие служб прикладного уровня. Приведем в качестве примера хотя бы несколько наиболее распространенных реализации файловых служб: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.
Сетезависимые и сетенезависимые уровни
Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня — физический, канальный и сетевой — являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием. Например, переход на оборудование FDDI означает полную смену протоколов физического и канального уровней во всех узлах сети.

Три верхних уровня — прикладной, представительный и сеансовый — ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию. Так, переход от Ethernet на высокоскоростную технологию l00VG-AnyLAN не потребует никаких изменений в программных средствах, реализующих функции прикладного, представительного и сеансового уровней.

Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних. Это позволяет разрабатывать приложения, не зависящие от технических средств непосредственной транспортировки сообщений. На рис. 1.28 показаны уровни модели OSI, на которых работают различные элементы сети. Компьютер с установленной на нем сетевой ОС взаимодействует с другим компьютером с помощью протоколов всех семи уровней. Это взаимодействие компьютеры осуществляют опосредовано через различные коммуникационные устройства: концентраторы, модемы, мосты, коммутаторы, маршрутизаторы, мультиплексоры. В зависимости от типа коммуникационное устройство может работать либо только на физическом уровне (повторитель), либо на физическом и канальном (мост), либо на физическом, канальном и сетевом, иногда захватывая и транспортный уровень (маршрутизатор). На рис. 1.29 показано соответствие функций различных коммуникационных устройств уровням модели OSI.
Модель OSI представляет хотя и очень важную, но только одну из многих моделей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, службами, поддерживаемыми на верхних уровнях, и прочими параметрами.
    продолжение
–PAGE_BREAK–1.3.4. Понятие «открытая система»
Модель OSI, как это следует из ее названия (Open System Interconnection), описывает взаимосвязи открытых систем. Что же такое открытая система?

В широком смысле открытой системой может быть названа любая система (компьютер, вычислительная сеть, ОС, программный пакет, другие аппаратные и программные продукты), которая построена в соответствии с открытыми спецификациями.

Напомним, что под термином «спецификация» (в вычислительной технике) понимают формализованное описание аппаратных или программных компонентов, способов их функционирования, взаимодействия с другими компонентами, условий эксплуатации, ограничений и особых характеристик. Понятно, что не всякая спецификация является стандартом. В свою очередь, под открытыми спецификациями понимаются опубликованные, общедоступные спецификации, соответствующие стандартам и принятые в результате достижения согласия после всестороннего обсуждения всеми заинтересованными сторонами.

Использование при разработке систем открытых спецификаций позволяет третьим сторонам разрабатывать для этих систем различные аппаратные или программные средства расширения и модификации, а также создавать программно-аппаратные комплексы из продуктов разных производителей.

Для реальных систем полная открытость является недостижимым идеалом. Как правило, даже в системах, называемых открытыми, этому определению соответствуют лишь некоторые части, поддерживающие внешние интерфейсы. Например, открытость семейства операционных систем Unix заключается, кроме всего прочего, в наличии стандартизованного программного интерфейса между ядром и приложениями, что позволяет легко переносить приложения из среды одной версии Unix в среду другой версии. Еще одним примером частичной открытости является применение в достаточно закрытой операционной системе Novell NetWare открытого интерфейса Open Driver Interface (ODI) для включения в систему драйверов сетевых адаптеров независимых производителей. Чем больше открытых спецификаций использовано при разработке системы, тем более открытой она является.

Модель OSI касается только одного аспекта открытости, а именно открытости средств взаимодействия устройств, связанных в вычислительную сеть. Здесь под открытой системой понимается сетевое устройство, готовое взаимодействовать с другими сетевыми устройствами с использованием стандартных правил, определяющих формат, содержание и значение принимаемых и отправляемых сообщений.

Если две сети построены с соблюдением принципов открытости, то это дает следующие преимущества:

·         возможность построения сети из аппаратных и программных средств различных производителей, придерживающихся одного и того же стандарта;

·         возможность безболезненной замены отдельных компонентов сети другими, более совершенными, что позволяет сети развиваться с минимальными затратами;

·         возможность легкого сопряжения одной сети с другой;

·         простота освоения и обслуживания сети.

Ярким примером открытой системы является международная сеть Internet. Эта сеть развивалась в полном соответствии с требованиями, предъявляемыми к открытым системам. В разработке ее стандартов принимали участие тысячи специалистов-пользователей этой сети из различных университетов, научных организаций и фирм-производителей вычислительной аппаратуры и программного обеспечения, работающих в разных странах. Само название стандартов, определяющих работу сети Internet — Request For Comments (RFC), что можно перевести как «запрос на комментарии», — показывает гласный и открытый характер принимаемых стандартов. В результате сеть Internet сумела объединить в себе самое разнообразное оборудование и программное обеспечение огромного числа сетей, разбросанных по всему миру.
1.3.5. Модульность и стандартизация
Модульность— это одно из неотъемлемых и естественных свойств вычислительных сетей. Модульность проявляется не только в многоуровневом представлении коммуникационных протоколов в конечных узлах сети, хотя это, безусловно, важная и принципиальная особенность сетевой архитектуры. Сеть состоит из огромного числа различных модулей — компьютеров, сетевых адаптеров, мостов, маршрутизаторов, модемов, операционных систем и модулей приложений. Разнообразные требования, предъявляемые предприятиями к компьютерным сетям, привели к такому же разнообразию выпускаемых для построения сети устройств и программ. Эти продукты отличаются не только основными функциями (имеются в виду функции, выполняемые, например, повторителями, мостами или программными редиректорами), но и многочисленными вспомогательными функциями, предоставляющими пользователям или администраторам дополнительные удобства, такие как автоматизированное конфигурирование параметров устройства, автоматическое обнаружение и устранение некоторых неисправностей, возможность программного изменения связей в сети и т. п. Разнообразие увеличивается также потому, что многие устройства и программы отличаются сочетаниями тех или иных основных и дополнительных функций — существуют, например, устройства, сочетающие основные возможности коммутаторов и маршрутизаторов, к которым добавляется еще и набор некоторых дополнительных функций, характерный только для данного продукта.

В результате не существует компании, которая смогла бы обеспечить производство полного набора всех типов и подтипов оборудования и программного обеспечения, требуемого для построения сети. Но, так как все компоненты сети должны работать согласованно, совершенно необходимым оказалось принятие многочисленных стандартов, которые, если не во всех, то хотя бы в большинстве случаев, гарантировали бы совместимость оборудования и программ различных фирм-изготовителей. Таким образом, понятия модульности и стандартизации в сетях неразрывно связаны, и модульный подход только тогда дает преимущества, когда он сопровождается следованием стандартам.

В результате открытый характер стандартов и спецификаций важен не только для коммуникационных протоколов, но и для всех многочисленных функций разнообразных устройств и программ, выпускаемых для построения сети. Нужно отметить, что большинство стандартов, принимаемых сегодня, носят открытый характер. Время закрытых систем, точные спецификации на которые были известны только фирме-производителю, ушло. Все осознали, что возможность легкого взаимодействия с продуктами конкурентов не снижает, а наоборот, повышает ценность изделия, так как его можно применить в большем количестве работающих сетей, построенных на продуктах разных производителей. Поэтому даже фирмы, ранее выпускавшие весьма закрытые системы — такие как IBM, Novell или Microsoft, — сегодня активно участвуют в разработке открытых стандартов и применяют их в своих продуктах.

Сегодня в секторе сетевого оборудования и программ с совместимостью продуктов разных производителей сложилась следующая ситуация. Практически все продукты, как программные, так и аппаратные, совместимы по функциям и свойствам, которые были внедрены в практику уже достаточно давно и стандарты на которые уже разработаны и приняты по крайней мере 3-4 года назад. В то же время очень часто принципиально новые устройства, протоколы и свойства оказываются несовместимыми даже у ведущих производителей. Такая ситуация наблюдается не только для тех устройств или функций, стандарты на которые еще не успели принять (это естественно), но и для устройств, стандарты на которые существуют уже несколько лет. Совместимость достигается только после того, как все производители реализуют этот стандарт в своих изделиях, причем одинаковым образом.
    продолжение
–PAGE_BREAK–1.3.6. Источники стандартов
Работы по стандартизации вычислительных сетей ведутся большим количеством организаций. В зависимости от статуса организаций различают следующие виды стандартов:

·         стандарты отдельных фирм (например, стек протоколов DECnet фирмы Digital Equipment или графический интерфейс OPEN LOOK для Unix-систем фирмы Sun);

·         стандарты специальных комитетов и объединений, создаваемых несколькими фирмами, например стандарты технологии АТМ, разрабатываемые специально созданным объединением АТМ Forum, насчитывающем около 100 коллективных участников, или стандарты союза Fast Ethernet Alliance по разработке стандартов 100 Мбит Ethernet;

·         национальные стандарты, например, стандарт FDDI, представляющий один из многочисленных стандартов, разработанных Американским национальным институтом стандартов (ANSI), или стандарты безопасности для операционных систем, разработанные Национальным центром компьютерной безопасности (NCSC) Министерства обороны США;

·         международные стандарты, например, модель и стек коммуникационных протоколов Международной организации по стандартам (ISO), многочисленные стандарты Международного союза электросвязи (ITU), в том числе стандарты на сети с коммутацией пакетов Х.25, сети frame relay, ISDN, модемы и многие другие.

Некоторые стандарты, непрерывно развиваясь, могут переходить из одной категории в другую. В частности, фирменные стандарты на продукцию, получившую широкое распространение, обычно становятся международными стандартами де-факто, так как вынуждают производителей из разных стран следовать фирменным стандартам, чтобы обеспечить совместимость своих изделий с этими популярными продуктами. Например, из-за феноменального успеха персонального компьютера компании IBM фирменный стандарт на архитектуру IBM PC стал международным стандартом де-факто.

Более того, ввиду широкого распространения некоторые фирменные стандарты становятся основой для национальных и международных стандартов де-юре. Например, стандарт Ethernet, первоначально разработанный компаниями Digital Equipment, Intel и Xerox, через некоторое время и в несколько измененном виде был принят как национальный стандарт IEEE 802.3, а затем организация ISO утвердила его в качестве международного стандарта ISO 8802.3.

Далее приводятся краткие сведения об организациях, наиболее активно и успешно занимающихся разработкой стандартов в области вычислительных сетей.

·         Международная организация по стандартизации (International Organization/or Standardization, ISO, часто называемая также International Standards Organization) представляет собой ассоциацию ведущих национальных организаций по стандартизации разных стран. Главным достижением ISO явилась модель взаимодействия открытых систем OSI, которая в настоящее время является концептуальной основой стандартизации в области вычислительных сетей. В соответствии с моделью OSI этой организацией был разработан стандартный стек коммуникационных протоколов OSI.

·         Международный союз электросвязи (International Telecommunications Union, JTU)— организация, являющаяся в настоящее время специализированным органом Организации Объединенных Наций. Наиболее значительную роль в стандартизации вычислительных сетей играет постоянно действующий в рамках этой организации Международный консультативный комитет по телефонии и телеграфии (МККТТ) (Consultative Committee on International Telegraphy and Telephony, CCITT). В результате проведенной в 1993 году реорганизации ITU CCITT несколько изменил направление своей деятельности и сменил название — теперь он называется сектором телекоммуникационной стандартизации ITU (ITU Telecommunication Standardization Sector, ITU-T), Основу деятельности ITU-T составляет разработка международных стандартов в области телефонии, телематических служб (электронной почты, факсимильной связи, телетекста, телекса и т. д.), передачи данных, аудио- и видеосигналов. За годы своей деятельности ITU-T выпустил огромное число рекомендаций-стандартов. Свою работу ITU-T строит на изучении опыта сторонних организаций, а также на результатах собственных исследований. Раз в четыре года издаются труды ITU-T в виде так называемой «Книги», которая на самом деле представляет собой целый набор обычных книг, сгруппированных в выпуски, которые, в свою очередь, объединяются в тома. Каждый том и выпуск содержат логически взаимосвязанные рекомендации. Например, том III Синей Книги содержит рекомендации для цифровых сетей с интеграцией услуг (ISDN), а весь том VIII (за исключением выпуска VIII. 1, который содержит рекомендации серии V для передачи данных по телефонной сети) посвящен рекомендациям серии X: Х.25 для сетей с коммутацией пакетов, Х.400 для систем электронной почты, Х.500 для глобальной справочной службы и многим другим.

·         Институт инженеров по электротехнике и радиоэлектронике — Institute of Electrical and Electronics Engineers, IEEE)— национальная организация США, определяющая сетевые стандарты. В 1981 году рабочая группа 802 этого института сформулировала основные требования, которым должны удовлетворять локальные вычислительные сети. Группа 802 определила множество стандартов, из них самыми известными являются стандарты 802.1,802.2,802.3 и 802.5, которые описывают общие понятия, используемые в области локальных сетей, а также стандарты на два нижних уровня сетей Ethernet и Token Ring.

·         Европейская ассоциация производителей компьютеров (European Computer Manufacturers Association, ЕСМА)— некоммерческая организация, активно сотрудничающая с ITU-T и ISO, занимается разработкой стандартов и технических обзоров, относящихся к компьютерной и коммуникационной технологиям. Известна своим стандартом ЕСМА-101, используемым при передаче отформатированного текста и графических изображений с сохранением оригинального формата.

·         Ассоциация производителей компьютеров и оргтехники (Computer and Business Equipment Manufacturers Association, CBEMA)— организация американских фирм-производителей аппаратного обеспечения; аналогична европейской ассоциации ЕКМА; участвует в разработке стандартов на обработку информации и соответствующее оборудование.

·         Ассоциация электронной промышленности (Electronic Industries Association, EIA)— промышленно-торговая группа производителей электронного и сетевого оборудования; является национальной коммерческой ассоциацией США; проявляет значительную активность в разработке стандартов для проводов, коннекторов и других сетевых компонентов. Ее наиболее известный стандарт — RS-232C.

·         Министерство обороны США (Department of Defense, DoD)имеет многочисленные подразделения, занимающиеся созданием стандартов для компьютерных систем. Одной из самых известных разработок DoD является стек транспортных протоколов TCP/IP.

·         Американский национальный институт стандартов (American National Standards Institute, ANSI)— эта организация представляет США в Международной организации по стандартизации ISO. Комитеты ANSI ведут работу по разработке стандартов в различных областях вычислительной техники. Так, комитет ANSI ХЗТ9.5 совместно с фирмой IBM занимается стандартизацией локальных сетей крупных ЭВМ (архитектура сетей SNA). Известный стандарт FDDI также является результатом деятельности этого комитета ANSI. В области микрокомпьютеров ANSI разрабатывает стандарты на языки программирования, интерфейс SCSI. ANSI разработал рекомендации по переносимости для языков С, FORTRAN, COBOL.

Особую роль в выработке международных открытых стандартов играют стандарты Internet. Ввиду большой и постоянной растущей популярности Internet, эти стандарты становятся международными стандартами «де-факто», многие из которых затем приобретают статус официальных международных стандартов за счет их утверждения одной из вышеперечисленных организаций, в том числе ISO и ITU-T. Существует несколько организационных подразделений, отвечающих за развитие Internet и, в частности, за стандартизацию средств Internet.

Основным из них является Internet Society (ISOC) — профессиональное сообщество, которое занимается общими вопросами эволюции и роста Internet как глобальной коммуникационной инфраструктуры. Под управлением ISOC работает Internet Architecture Board (IAB) — организация, в ведении которой находится технический контроль и координация работ для Internet. IAB координирует направление исследований и новых разработок для стека TCP/IP и является конечной инстанцией при определении новых стандартов Internet.

ВIAB входятдвеосновныегруппы: Internet Engineering Task Force (IETF) иInternet Research Task Force (IRTF). IETF — это инженерная группа, которая занимается решением ближайших технических проблем Internet. Именно IETF определяет спецификации, которые затем становятся стандартами Internet. В свою очередь, IRTF координирует долгосрочные исследовательские проекты по протоколам TCP/IP.

В любой организации, занимающейся стандартизацией, процесс выработки и принятия стандарта состоит из ряда обязательных этапов, которые, собственно, и составляют процедуру стандартизации. Рассмотрим эту процедуру на примере разработки стандартов Internet.

·         Сначала в IETF представляется так называемый рабочий проект (draft) в виде, доступном для комментариев. Он публикуется в Internet, после чего широкий круг заинтересованных лиц включается в обсуждение этого документа, в него вносятся исправления, и наконец наступает момент, когда можно зафиксировать содержание документа. На этом этапе проекту присваивается номер RFC (возможен и другой вариант развития событий — после обсуждения рабочий проект отвергается и удаляется из Internet).

·         После присвоения номера проект приобретает статус предлагаемого стандарта. В течение 6 месяцев этот предлагаемый стандарт проходит проверку практикой, в результате в него вносятся изменения.

·         Если результаты практических исследований показывают эффективность предлагаемого стандарта, то ему, со всеми внесенными изменениями, присваивается статус проекта стандарта. Затем в течение не менее 4-х месяцев проходят его дальнейшие испытания «на прочность», в число которых входит создание по крайней мере двух программных реализации.

·         Если во время пребывания в ранге проекта стандарта в документ не было внесено никаких исправлений, то ему может быть присвоен статус официального стандарта Internet. Список утвержденных официальных стандартов Internet публикуется в виде документа RFC и доступен в Internet.

Следует заметить, что все стандарты Internet носят название RFC с соответствующим порядковым номером, но далеко не все RFC являются стандартами Internet — часто эти документы представляют собой комментарии к какому-либо стандарту или просто описания некоторой проблемы Internet.
    продолжение
–PAGE_BREAK–1.3.7. Стандартные стеки коммуникационных протоколов
Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI. Все эти стеки, кроме SNA на нижних уровнях — физическом и канальном, — используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.
Стек OSI
Следует четко различать модель OSI и стек OSI. В то время как модель OSI является концептуальной схемой взаимодействия открытых систем, стек OSI представляет собой набор вполне конкретных спецификаций протоколов. В отличие от других стеков протоколов стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, Х.25 и ISDN, — то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FTAM, протокол эмуляции терминала VTP, протоколы справочной службы Х.500, электронной почты Х.400 и ряд других.

Протоколы стека OSI отличает большая сложность и неоднозначность спецификаций. Эти свойства явились результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи жизни и все существующие и появляющиеся технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

Из-за своей сложности протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек OSI — международный, независимый от производителей стандарт. Его поддерживает правительство США в своей программе GOSIP, в соответствии с которой все компьютерные сети, устанавливаемые в правительственных учреждениях США после 1990 года, должны или непосредственно поддерживать стек OSI, или обеспечивать средства для перехода на этот стек в будущем. Тем не менее стек OSI более популярен в Европе, чем в США, так как в Европе осталось меньше старых сетей, работающих по своим собственным протоколам. Большинство организаций пока только планируют переход к стеку OSI, и очень немногие приступили к созданию пилотных проектов. Из тех, кто работает в этом направлении, можно назвать Военно-морское ведомство США и сеть NFSNET. Одним из крупнейших производителей, поддерживающих OSI, является компания AT&T, ее сеть Stargroup полностью базируется на этом стеке.
Стек TCP/IP
Стек TCP/IP был разработан по инициативе Министерства обороны США более 20 лет назад для связи экспериментальной сети ARPAnet с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоколам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном числе корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей — это Ethernet, Token Ring, FDDI, для глобальных — протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, РРР, протоколы территориальных сетей Х.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням соответственно. IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей. Действительно, только в сети Internet объединено около 10 миллионов компьютеров по всему миру, которые взаимодействуют друг с другом с помощью стека протоколов TCP/IP.

Стремительный рост популярности Internet привел и к изменениям в расстановке сил в мире коммуникационных протоколов — протоколы TCP/IP, на которых построен Internet, стали быстро теснить бесспорного лидера прошлых лет — стек IPX/SPX компании Novell. Сегодня в мире общее количество компьютеров, на которых установлен стек TCP/IP, сравнялось с общим количеством компьютеров, на которых работает стек IPX/SPX, и это говорит о резком переломе в отношении администраторов локальных сетей к протоколам, используемым на настольных компьютерах, так как именно они составляют подавляющее число мирового компьютерного парка и именно на них раньше почти везде работали протоколы компании Novell, необходимые для доступа к файловым серверам NetWare. Процесс становления стека TCP/IP в качестве стека номер один в любых типах сетей продолжается, и сейчас любая промышленная операционная система обязательно включает программную реализацию этого стека в своем комплекте поставки.

Хотя протоколы TCP/IP неразрывно связаны с Internet и каждый из многомиллионной армады компьютеров Internet работает на основе этого стека, существует большое количество локальных, корпоративных и территориальных сетей, непосредственно не являющихся частями Internet, в которых также используют протоколы ТСРДР. Чтобы отличать их от Internet, эти сети называют сетями TCP/IP или просто IP-сетями.

Поскольку стек TCP/IP изначально создавался для глобальной сети Internet, он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей.

В стеке TCP/IP очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации высоких вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, в том числе и на облегчение конфигурирования оборудования, но в то же время сама требует пристального внимания со стороны администраторов.

Можно приводить и другие доводы за и против стека протоколов Internet, однако факт остается фактом — сегодня это самый популярный стек протоколов, широко используемый как в глобальных, так и локальных сетях.
    продолжение
–PAGE_BREAK–Стек IPX/SPX
Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы сетевого и сеансового уровней Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали название стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX. Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая еще сохраняет мировое лидерство по числу установленных систем, хотя в последнее время ее популярность несколько снизилась и по темпам роста она отстает от Microsoft Windows NT.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень — в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали распространенность его только сетями NetWare. Однако с момента выпуска версии NetWare 4.0 Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на их адаптацию для работы в корпоративных сетях. Сейчас стек IPX/ SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС, например SCO UNIX, Sun Solaris, Microsoft Windows NT.
Стек NetBIOS/SMB
Этот стек широко используется в продуктах компаний IBM и Microsoft. На физическом и канальном уровнях этого стека используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBEUI и SMB.

Протокол NetBIOS (Network Basic Input/Output System) появился в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM. В дальнейшем этот протокол был заменен так называемым протоколом расширенного пользовательского интерфейса NetBEUI — NetBIOS Extended User Interface. Для обеспечения совместимости приложений в качестве интерфейса к протоколу NetBEUI был сохранен интерфейс NetBIOS. Протокол NetBEUI разрабатывался как эффективный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций. Этот протокол содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако с его помощью невозможна маршрутизация пакетов. Это ограничивает применение протокола NetBEUI локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях. Некоторые ограничения NetBEUI снимаются реализацией этого протокола NBF (NetBEUI Frame), которая включена в операционную систему Microsoft Windows NT.

Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.

Стеки протоколов SNA фирмы IBM, DECnet корпорации Digital Equipment и AppleTalk/AFP фирмы Apple применяются в основном в операционных системах и сетевом оборудовании этих фирм.

На рис. 1.30 показано соответствие некоторых, наиболее популярных протоколов уровням модели OSI. Часто это соответствие весьма условно, так как модель OSI — это только руководство к действию, причем достаточно общее, а конкретные протоколы разрабатывались для решения специфических задач, причем многие из них появились до разработки модели OSI. В большинстве случаев разработчики стеков отдавали предпочтение скорости работы сети в ущерб модульности — ни один стек, кроме стека OSI, не разбит на семь уровней. Чаще всего в стеке явно выделяются 3-4 уровня: уровень сетевых адаптеров, в котором реализуются протоколы физического и канального уровней, сетевой уровень, транспортный уровень и уровень служб, вбирающий в себя функции сеансового, представительного и прикладного уровней.
Выводы
·         В компьютерных сетях идеологической основой стандартизации является многоуровневый подход к разработке средств сетевого взаимодействия.

·         Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

·         Формализованные правила, определяющие взаимодействие сетевых компонентов соседних уровней одного узла, называются интерфейсом. Интерфейс определяет набор сервисов, предоставляемый данным уровнем соседнему уровню.

·         Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

·         Открытой системой может быть названа любая система, которая построена в соответствии с общедоступными спецификациями, соответствующими стандартам и принятыми в результате публичного обсуждения всеми заинтересованными сторонами.

·         Модель OSI стандартизует взаимодействие открытых систем. Она определяет 7 уровней взаимодействия: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический.

·         Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI.
    продолжение
–PAGE_BREAK–5.2. Адресация в IP-сетях 5.2.1. Типы адресов стека TCP/IP
В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена.

В терминологии TCP/IP под локальным адресом понимается такой тип адреса, который используется средствами базовой технологии для доставки данных в пределах подсети, являющейся элементом составной интерсети. В разных подсетях допустимы разные сетевые технологии, разные стеки протоколов, поэтому при создании стека TCP/IP предполагалось наличие разных типов локальных адресов. Если подсетью интерсети является локальная сеть, то локальный адрес — это МАС — адрес. МАС — адрес назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. МАС — адреса назначаются производителями оборудования и являются уникальными, так как управляются централизованно. Для всех существующих технологий локальных сетей МАС — адрес имеет формат 6 байт, например 11-AO-17-3D-BC-01. Однако протокол IP может работать и над протоколами более высокого уровня, например над протоколом IPX или Х.25. В этом случае локальными адресами для протокола IP соответственно будут адреса IPX и Х.25. Следует учесть, что компьютер в локальной сети может иметь несколько локальных адресов даже при одном сетевом адаптере. Некоторые сетевые устройства не имеют локальных адресов. Например, к таким устройствам относятся глобальные порты маршрутизаторов, предназначенные для соединений типа «точка-точка».

IP-адресапредставляют собой основной тип адресов, на основании которых сетевой уровень передает пакеты между сетями. Эти адреса состоят из 4 байт, например 109.26.17.100. IP-адрес назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Internet Network Information Center, InterNIC), если сеть должна работать как составная часть Internet. Обычно поставщики услуг Internet получают диапазоны адресов у подразделений InterNIC, а затем распределяют их между своими абонентами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Символьные доменные имена.Символьные имена в IP-сетях называются доменными и строятся по иерархическому признаку. Составляющие полного символьного имени в IP-сетях разделяются точкой и перечисляются в следующем порядке: сначала простое имя конечного узла, затем имя группы узлов (например, имя организации), затем имя более крупной группы (поддомена) и так до имени домена самого высокого уровня (например, домена объединяющего организации по географическому принципу: RU — Россия, UK — Великобритания, SU — США), Примеров доменного имени может служить имя base2.sales.zil.ru. Между доменным именем и IP-адресом узла нет никакого алгоритмического соответствия, поэтому необходимо использовать какие-то дополнительные таблицы или службы, чтобы узел сети однозначно определялся как по доменному имени, так и по IP-адресу. В сетях TCP/IP используется специальная распределенная служба Domain Name System (DNS), которая устанавливает это соответствие на основании создаваемых администраторами сети таблиц соответствия. Поэтому доменные имена называют также DNS-именами,
5.2.2. Классы IP-адресов
IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме и разделенных точками, например, 128.10.2.30 — традиционная десятичная форма представления адреса, а 10000000 00001010 00000010 00011110 — двоичная форма представления этого же адреса.

Адрес состоит из двух логических частей — номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая — к номеру узла, определяется значениями первых бит адреса. Значения этих бит являются также признаками того, к какому классу относится тот или иной IP-адрес.

Если адрес начинается с 0, то сеть относят к классу А и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) Сетей класса А немного, зато количество узлов в них может достигать 224, то есть 16 777 216 узлов.

Если первые два бита адреса равны 10, то сеть относится к классу В. В сетях класса В под номер сети и под номер узла отводится по 16 бит, то есть по 2 байта. Таким образом, сеть класса В является сетью средних размеров с максимальным числом узлов 216, что составляет 65 536 узлов.

Если адрес начинается с последовательности 110, то это сеть класса С. В этом случае под номер сети отводится 24 бита, а под номер узла — 8 бит. Сети этого класса наиболее распространены, число узлов в них ограничено 28, то есть 256 узлами.

Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес — multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е, Адреса этого класса зарезервированы для будущих применений.

В табл. 5.4 приведены диапазоны номеров сетей и максимальное число узлов, соответствующих каждому классу сетей.

Большие сети получают адреса класса А, средние — класса В, а маленькие класса С.
    продолжение
–PAGE_BREAK–5.2.3. Особые IP-адреса
В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов.

·         Если весь IP-адрес состоит только из двоичных нулей, то он обозначает адрес того узла, который сгенерировал этот пакет; этот режим используется только в некоторых сообщениях ICMP.

·         Если в поле номера сети стоят только нули, то по умолчанию считается, что узел назначения принадлежит той же самой сети, что и узел, который отправил пакет.

·         Если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным. сообщением (limited broadcast).

·         Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, пакет с адресом 192.190.21.255 доставляется всем узлам сети 192.190.21.0. Такая рассылка называется широковещательным сообщением (broadcast).

При адресации необходимо учитывать те ограничения, которые вносятся особым назначением некоторых IP-адресов. Так, ни номер сети, ни номер узла не может состоять только из одних двоичных единиц или только из одних двоичных нулей. Отсюда следует, что максимальное количество узлов, приведенное в таблице для сетей каждого класса, на практике должно быть уменьшено на 2. Например, в сетях класса С под номер узла отводится 8 бит, которые позволяют задавать 256 номеров: от 0 до 255. Однако на практике максимальное число узлов в сети класса С не может превышать 254, так как адреса 0 и 255 имеют специальное назначение. Из этих же соображений следует, что конечный узел не может иметь адрес типа 98.255.255.255, поскольку номер узла в этом адресе класса А состоит из одних двоичных единиц.

Особый смысл имеет IP-адрес, первый октет которого равен 127. Он используется для тестирования программ и взаимодействия процессов в пределах одной машины. Когда программа посылает данные по IP-адресу 127.0.0.1, то образуется как бы «петля». Данные не передаются по сети, а возвращаются модулям верхнего уровня как только что принятые. Поэтому в IP-сети запрещается присваивать машинам IP-адреса, начинающиеся со 127. Этот адрес имеет название loopback. Можно отнести адрес 127.0.0.0 ко внутренней сети модуля маршрутизации узла, а адрес 127.0.0.1 — к адресу этого модуля на внутренней сети. На самом деле любой адрес сети 127.0.0.0 служит для обозначения своего модуля маршрутизации, а не только 127.0.0.1, например 127.0.0.3.

В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети — они ограничены либо сетью, к которой принадлежит узел-источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.

Уже упоминавшаяся форма группового IP-адреса — multicast — означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Члены какой-либо группы multicast не обязательно должны принадлежать одной сети. В общем случае они могут распределяться по совершенно различным сетям, находящимся друг от друга на произвольном количестве хопов. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.

Основное назначение multicast-адресов — распространение информации по схеме «один-ко-многим». Хост, который хочет передавать одну и ту же информацию многим абонентам, с помощью специального протокола IGMP (Internet Group Management Protocol) сообщает о создании в сети новой мультивещательной группы с определенным адресом. Машрутизаторы, поддерживающие мультивещательность, распространяют информацию о создании новой группы в сетях, подключенных к портам этого маршрутизатора. Хосты, которые хотят присоединиться к вновь создаваемой мультивещательной группе, сообщают об этом своим локальным маршрутизаторам и те передают эту информацию хосту, инициатору создания новой группы.

Чтобы маршрутизаторы могли автоматически распространять пакеты с адресом multicast по составной сети, необходимо использовать в конечных маршрутизаторах модифицированные протоколы обмена маршрутной информацией, такие как, например, MOSPF (Multicast OSPF, аналог OSPF).

Групповая адресация предназначена для экономичного распространения в Internet или большой корпоративной сети аудио- или видеопрограмм, предназначенных сразу большой аудитории слушателей или зрителей. Если такие средства найдут широкое применение (сейчас они представляют в основном небольшие экспериментальные островки в общем Internet), то Internet сможет создать серьезную конкуренцию радио и телевидению.
5.2.4. Использование масок в IP-адресации
Традиционная схема деления IP-адреса на номер сети и номер узла основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, мы можем сказать, что этот адрес относится к классу В, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами — 185.23.0.0, а номером узла — 0.0.44.206.

А что если использовать какой-либо другой признак, с помощью которого можно было, бы более гибко устанавливать границу между номером сети и номером узла? В качестве такого признака сейчас получили широкое распространение маски. Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность.

Для стандартных классов сетей маски имеют следующие значения:

·         класс А — 11111111. 00000000. 00000000. 00000000 (255.0.0.0);

·         класс В — 11111111. 11111111. 00000000. 00000000 (255.255.0.0);

·         класс С-11111111.11111111.11111111.00000000 (255.255.255.0).
    продолжение
–PAGE_BREAK–
ПРИМЕЧАНИЕДля записи масок используются и другие форматы, например, удобно интерпретировать значение маски, записанной в шестнадцатеричном коде: FF.FF.OO.OO — маска для адресов класса В. Часто встречается и такое обозначение 185.23.44.206/16 — эта запись говорит о том, что маска для этого адреса содержит 16 единиц или что в указанном IP-адресе под номер сети отведено 16 двоичных разрядов.

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адресов и сделать более гибкой систему адресации. Например, если рассмотренный выше адрес 185.23.44.206 ассоциировать с маской 255.255.255.0, то номером сети будет 185.23.44.0, а не 185.23.0.0, как это определено системой классов.

В масках количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты. Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0, то есть в двоичном виде:

IP-адрес 129.64.134.5 — 10000001. 01000000.10000110. 00000101

Маска 255.255.128.0 — 11111111.11111111.10000000. 00000000

Если игнорировать маску, то в соответствии с системой классов адрес 129.64.134.5 относится к классу В, а значит, номером сети являются первые 2 байта — 129.64.0.0, а номером узла — 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 последовательных единиц в маске, «наложенные» на IP-адрес, определяют в качестве номера сети в двоичном выражении число:

10000001. 01000000. 10000000. 00000000 или в десятичной форме записи — номер сети 129.64.128.0, а номер узла 0.0.6.5.

Механизм масок широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей. С их помощью администратор может структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей. На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «префиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов.
5.2.5. Порядок распределения IP-адресов
Номера сетей назначаются либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно. Номера узлов и в том и в другом случае администратор волен назначать по своему усмотрению, не выходя, разумеется, из разрешенного для этого класса сети диапазона.

Координирующую роль в централизованном распределении IP-адресов до некоторого времени играла организация InterNIC, однако с ростом сети задача распределения адресов стала слишком сложной, и InterNIC делегировала часть своих функций другим организациям и крупным поставщикам услуг Internet.

Уже сравнительно давно наблюдается дефицит IP-адресов. Очень трудно получить адрес класса В и практически невозможно стать обладателем адреса класса А. При этом надо отметить, что дефицит обусловлен не только ростом сетей, но и тем, что имеющееся множество IP-адресов используется нерационально. Очень часто владельцы сети класса С расходуют лишь небольшую часть из имеющихся у них 254 адресов. Рассмотрим пример, когда две сети необходимо соединить глобальной связью. В таких случаях в качестве канала связи используют два маршрутизатора, соединенных по схеме «точка-точка» (рис. 5.10). Для вырожденной сети, образованной каналом, связывающим порты двух смежных маршрутизаторов, приходится выделять отдельный номер сети, хотя в этой сети имеются всего 2 узла.

Если же некоторая IP-сеть создана для работы в «автономном режиме», без связи с Internet, тогда администратор этой сети волен назначить ей произвольно выбранный номер. Но и в этой ситуации для того, чтобы избежать каких-либо коллизий, в стандартах Internet определено несколько диапазонов адресов, рекомендуемых для локального использования. Эти адреса не обрабатываются маршрутизаторами Internet ни при каких условиях. Адреса, зарезервированные для локальных целей, выбраны из разных классов; в классе А — это сеть 10.0.0.0, в классе В — это диапазон из 16 номеров сетей 172.16.0.0-172.31.0.0, в классе С — это диапазон из 255 сетей — 192.168.0.0-192.168.255.0.

Для смягчения проблемы дефицита адресов разработчики стека TCP/IP предлагают разные подходы. Принципиальным решением является переход на новую версию IPv6, в которой резко расширяется адресное пространство за счет использования 16-байтных адресов. Однако и текущая версия IPv4 поддерживает некоторые технологии, направленные на более экономное расходование IP-адресов. Одной из таких технологий является технология масок и ее развитие — технология бесклассовой междоменной маршрутизации (Classless Inker-Domain Routing, CIDR). Технология CIDR отказывается от традиционной концепции разделения адресов протокола IP на классы, что позволяет получать в пользование столько адресов, сколько реально необходимо. Благодаря CIDR поставщик услуг получает возможность «нарезать» блоки из выделенного ему адресного пространства в точном соответствии с требованиями каждого клиента, при этом у него остается пространство для маневра на случай его будущего роста.

Другая технология, которая может быть использована для снятия дефицита адресов, это трансляция адресов (Network Address Translator, NAT). Узлам внутренней сети адреса назначаются произвольно (естественно, в соответствии с общими правилами, определенными в стандарте), так, как будто эта сеть работает автономно. Внутренняя сеть соединяется с Internet через некоторое промежуточное устройство (маршрутизатор, межсетевой экран). Это промежуточное устройство получает в свое распоряжение некоторое количество внешних «нормальных» IP-адресов, согласованных с поставщиком услуг или другой организацией, распределяющей IP-адреса. Промежуточное устройство способно преобразовывать внутренние адреса во внешние, используя для этого некие таблицы соответствия. Для внешних пользователей все многочисленные узлы внутренней сети выступают под несколькими внешними IP-адресами. При получении внешнего запроса это устройство анализирует его содержимое и при необходимости пересылает его во внутреннюю сеть, заменяя IP-адрес на внутренний адрес этого узла. Процедура трансляции адресов определена в RFC 1631.
    продолжение
–PAGE_BREAK–5.2.6. Автоматизация процесса назначения IP-адресов
Назначение IP-адресов узлам сети даже при не очень большом размере сети может представлять для администратора утомительную процедуру. Протокол Dynamic Host Configuration Protocol (DHCP) освобождает администратора от этих проблем, автоматизируя процесс назначения IP-адресов.

DHCP может поддерживать способ автоматического динамического распределения адресов, а также более простые способы ручного и автоматического статического назначения адресов. Протокол DHCP работает в соответствии с моделью клиент-сервер. Во время старта системы компьютер, являющийся DHCP-клиентом, посылает в сеть широковещательный запрос на получение IP-адреса. DHCP — cepвер откликается и посылает сообщение-ответ, содержащее IP-адрес. Предполагается, что DHCP-клиент и DHCP-сервер находятся в одной IP-сети.

При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, называемое временем аренды (lease duration), что дает возможность впоследствии повторно использовать этот IP-адрес для назначения другому компьютеру. Основное преимущество DHCP — автоматизация рутинной работы администратора по конфигурированию стека TCP/IP на каждом компьютере. Иногда динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой превышает количество имеющихся в распоряжении администратора IP-адресов.

В ручной процедуре назначения статических адресов активное участие принимает администратор, который предоставляет DHCP — серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. DHCP-сервер, пользуясь этой информацией, всегда выдает определенному клиенту назначенный администратором адрес.

При автоматическом статическом способе DHCP-сервер присваивает IP-адрес из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Адрес дается клиенту из пула в постоянное пользование, то есть с неограниченным сроком аренды. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первого назначения DHCP-сервером IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.

DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие дублирования адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра «продолжительность аренды», которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от DHCP-сервера в аренду.

Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся DHCP-клиентом, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.

DHCP-сервер может назначить клиенту не только IP-адрес клиента, но и другие параметры стека TCP/IP, необходимые для его эффективной работы, например, маску, IP-адрес маршрутизатора по умолчанию, IP-адрес сервера DNS, доменное имя компьютера и т. п.
5.2.7. Отображение IP-адресов на локальные адреса
Одной из главных задач, которая ставилась при создании протокола IP, являлось обеспечение совместной согласованной работы в сети, состоящей из подсетей, в общем случае использующих разные сетевые технологии. Непосредственно с решением этой задачи связан уровень межсетевых интерфейсов стека TCP/IP. На этом уровне определяются уже рассмотренные выше спецификации упаковки (инкапсуляции) IP-пакетов в кадры локальных технологий. Кроме этого, уровень межсетевых интерфейсов должен заниматься также крайне важной задачей отображения IP-адресов в локальные адреса.

Для определения локального адреса по IP-адресу используется протокол разрешения адреса (Address Resolution Protocol, ARP). Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети — протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети или же протокол глобальной сети (Х.25, frame relay), как правило не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу — нахождение IP-адреса по известному локальному адресу. Он называется реверсивным ARP (Reverse Address Resolution Protocol, RARP) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.

Необходимость в обращении к протоколу ARP возникает каждый раз, когда модуль IP передает пакет на уровень сетевых интерфейсов, например драйверу Ethernet. IP-адрес узла назначения известен модулю IP. Требуется на его основе найти МАС — адрес узла назначения.

Работа протокола ARP начинается с просмотра так называемой АКР-таблицы (табл. 5.5). Каждая строка таблицы устанавливает соответствие между IP-адресом и МАС — адресом. Для каждой сети, подключенной к сетевому адаптеру компьютера или к порту маршрутизатора, строится отдельная ARP-таблица.

Поле «Тип записи» может содержать одно из двух значений — «динамический» или «статический». Статические записи создаются вручную с помощью утилиты агр и не имеют срока устаревания, точнее, они существуют до тех пор, пока компьютер или маршрутизатор не будут выключены. Динамические же записи создаются модулем протокола ARP, использующим широковещательные возможности локальных сетевых технологий. Динамические записи должны периодически обновляться. Если запись не обновлялась в течение определенного времени (порядка нескольких минут), то она исключается из таблицы. Таким образом, в ARP — таблице содержатся записи не обо всех узлах сети, а только о тех, которые активно участвуют в сетевых операциях. Поскольку такой способ хранения информации называют кэшированием, ARP-таблицы иногда называют ARP-кэш.

В глобальных сетях администратору сети чаще всего приходится вручную формировать ARP-таблицы, в которых он задает, например, соответствие IP-адреса адресу узла сети Х.25, который имеет для протокола IP смысл локального адреса. В последнее время наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети. При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного маршрутизатора. Затем каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе, а при необходимости установления соответствия между IP-адресом и локальным адресом узел обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора. Работающий таким образом маршрутизатор называют ARP-сервером.

Итак, после того как модуль IP обратился к модулю ARP с запросом на разрешение адреса, происходит поиск в ARP-таблице указанного в запросе IP-адреса. Если таковой адрес в ARP-таблице отсутствует, то исходящий IP-пакет, для которого нужно было определить локальный адрес, ставится в очередь. Далее протокол ARP формирует свой запрос (ARP-запрос), вкладывает его в кадр протокола канального уровня и рассылает запрос широковещательно.

Все узлы локальной сети получают ARP-запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес, а затем отправляет его уже направленно, так как в ARP-запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета. В табл. 5.6 приведены значения полей примера ARP-запроса для передачи по сети Ethernet.

В поле «тип сети» для сетей Ethernet указывается значение 1.

Поле «тип протокола» позволяет использовать протокол ARP не только для протокола IP, но и для других сетевых протоколов. Для IP значение этого поля равно 0800 is.

Длина локального адреса для протокола Ethernet равна 6 байт, а длина IP-адреса — 4 байт. В поле операции для ARP-запросов указывается значение 1, если это запрос, и 2, если это ответ.

Из этого запроса видно, что в сети Ethernet узел с IP-адресом 194.85.135.75 пытается определить, какой МАС — адрес имеет другой узел той же сети, сетевой адрес которого 194.85.135.65. Поле искомого локального адреса заполнено нулями.

Ответ присылает узел, опознавший свой IP-адрес. Если в сети нет машины с искомым IP-адресом, то ARP-ответа не будет. Протокол IP уничтожает IP-пакеты, направляемые по этому адресу. (Заметим, что протоколы верхнего уровня не могут отличить случай повреждения сети Ethernet от случая отсутствия машины с искомым IP-адресом.) В табл. 5.7 помещены значения полей ARP-ответа, который мог бы поступить на приведенный выше пример ARP-запроса.

Этот ответ получает машина, сделавшая ARP-запрос. Модуль ARP анализирует ARP-ответ и добавляет запись в свою ARP-таблицу (табл. 5.8). В результате обмена этими двумя ARP-сообшениями модуль IP-узла 194.85.135.75 определил, что IP-адресу 194.85.135.65 соответствует МАС — адрес 00E0F77F1920. Новая запись в ARP-таблице появляется автоматически, спустя несколько миллисекунд после того, как она потребовалась.
    продолжение
–PAGE_BREAK–
ПРИМЕЧАНИЕНекоторые реализации IP и ARP не ставят IP-пакеты в очередь на время ожидания ARP-ответов. Вместо этого IP-пакет просто уничтожается, о его восстановление возлагается на модуль TCP или прикладной процесс, работающий через UDP. Такое восстановление выполняется с помощью тайм-аутов и повторных передач. Повторная передача сообщения проходит успешно, так как первая попытка уже вызвала заполнение ARP-таблицы.
5.2.8. Отображение доменных имен на IP-адреса Организация доменов и доменных имен
Для идентификации компьютеров аппаратное и программное обеспечение в сетях TCP/IP полагается на IP-адреса, поэтому для доступа к сетевому ресурсу в параметрах программы вполне достаточно указать IP-адрес, чтобы программа правильно поняла, к какому хосту ей нужно обратиться. Например, команда ftp://192.45.66.17 будет устанавливать сеанс связи с нужным ftp-сервером, а команда 203.23.106.33 откроет начальную страницу на корпоративном Web-сервере. Однако пользователи обычно предпочитают работать с символьными именами компьютеров, и операционные системы локальных сетей приучили их к этому удобному способу. Следовательно, в сетях TCP/IP должны существовать символьные имена хостов и механизм для установления соответствия между символьными именами и IP-адресами.

В операционных системах, которые первоначально разрабатывались для работы в локальных сетях, таких как Novell NetWare, Microsoft Windows или IBM OS/2, пользователи всегда работали с символьными именами компьютеров. Так как локальные сети состояли из небольшого числа компьютеров, то использовались так называемые плоские имена, состоящие из последовательности символов, не разделенных на части. Примерами таких имен являются: NW1_1, mail2, MOSCOW_SALES_2. Для установления соответствия между символьными именами и МАС — адресами в этих операционных системах применялся механизм широковещательных запросов, подобный механизму запросов протокола ARP. Так, широковещательный способ разрешения имен реализован в протоколе NetBIOS, на котором были построены многие локальные ОС. Так называемые NetBIOS-имена стали на долгие годы одним из основных типов плоских имен в локальных сетях.

Для стека TCP/IP, рассчитанного в общем случае на работу в больших территориально распределенных сетях, подобный подход оказывается неэффективным по нескольким причинам.

Плоские имена не дают возможности разработать единый алгоритм обеспечения уникальности имен в пределах большой сети. В небольших сетях уникальность имен компьютеров обеспечивает администратор сети, записывая несколько десятков имен в журнале или файле. При росте сети задачу решают уже несколько администраторов, согласовывая имена между собой неформальным способом. Однако если сеть расположена в разных городах или странах, то администраторам каждой части сети нужно придумать способ именования, который позволил бы им давать имена новым компьютерам независимо от других администраторов, обеспечивая в то же время уникальность имен для всей сети. Самый надежный способ решения этой задачи — отказ от плоских имен в принципе.

Широковещательный способ установления соответствия между символьными именами и локальными адресами хорошо работает только в небольшой локальной сети, не разделенной на подсети. В крупных сетях, где общая широковещательность не поддерживается, нужен другой способ разрешения символьных имен. Обычно хорошей альтернативой широковещательности является применение централизованной службы, поддерживающей соответствие между различными типами адресов всех компьютеров сети. Компания Microsoft для своей корпоративной операционной системы Windows NT разработала централизованную службу WINS, которая поддерживает базу данных NetBIOS-имен и соответствующих им IP-адресов.

Для эффективной организации именования компьютеров в больших сетях естественным является применение иерархических составных имен.

В стеке TCP/IP применяется доменная система имен, которая имеет иерархическую древовидную структуру, допускающую использование в имени произвольного количества составных частей (рис. 5.11).

Иерархия доменных имен аналогична иерархии имен файлов, принятой во многих популярных файловых системах. Дерево имен начинается с корня, обозначаемого здесь точкой (.). Затем следует старшая символьная часть имени, вторая по старшинству символьная часть имени и т. д. Младшая часть имени соответствует конечному узлу сети. В отличие от имен файлов, при записи которых сначала указывается самая старшая составляющая, затем составляющая более низкого уровня и т. д., запись доменного имени начинается с самой младшей составляющей, а заканчивается самой старшей. Составные части доменного имени отделяется друг от друга точкой. Например, в имени partnering.microsoft.com составляющая partnering является именем одного из компьютеров в домене Microsoft.com.

Разделение имени на части позволяет разделить административную ответственность за назначение уникальных имен между различными людьми или организациями в пределах своего уровня иерархии. Так, для примера, приведенного на рис. 5.11, один человек может нести ответственность за то, чтобы все имена, которые имеют окончание «та», имели уникальную следующую вниз по иерархии часть. Если этот человек справляется со своими обязанностями, то все имена типа www.ru, mail.mmt.ru или m2.zil.mmt.ru будут отличаться второй по старшинству частью.

Разделение административной ответственности позволяет решить проблему образования уникальных имен без взаимных консультаций между организациями, отвечающими за имена одного уровня иерархии. Очевидно, что должна существовать одна организация, отвечающая за назначение имен верхнего уровня иерархии.

Совокупность имен, у которых несколько старших составных частей совпадают, образуют домен имен (domain). Например, имена wwwl.zil.mmt.ru, ftp.zil.mmt.ru, yandex.ru и sl.mgu.ru входят в домен ru, так как все эти имена имеют одну общую старшую часть — имя ru. Другим примером является домен mgu.ru. Из представленных на рис. 5.11 имен в него входят имена sl.mgu.ru, s2.mgu.ru и rn.mgu.ru. Этот домен образуют имена, у которых две старшие части всегда равны rngu.ru. Имя www.mmt.ru в домен mgu.ru не входит, так как имеет отличающуюся составляющую mmt.
–PAGE_BREAK–
ВНИМАНИЕТермин «домен» очень многозначен, поэтому его нужно трактовать в рамках определенного контекста. Кроме доменов имен стека TCP/IP в компьютерной литературе также часто упоминаются домены Windows NT, домены коллизий н некоторые другие. Общим у всех этих терминов является то, что они описывают некоторое множество компьютеров, обладающее каким-либо определенным свойством.

Если один домен входит в другой домен как его составная часть, то такой домен могут называть поддоменом (subdomain), хотя название домен за ним также остается. Обычно поддомен называют по имени той его старшей составляющей, которая отличает его от других поддоменов. Например, поддомен mmt.ru обычно называют поддоменом (или доменом) mmt. Имя поддомену назначает администратор вышестоящего домена. Хорошей аналогией домена является каталог файловой системы.

Если в каждом домене и поддомене обеспечивается уникальность имен следующего уровня иерархии, то и вся система имен будет состоять из уникальных имен.

По аналогии с файловой системой, в доменной системе имен различают краткие имена, относительные имена и полные доменные имена. Краткое имя — это имя конечного узла сети: хоста или порта маршрутизатора. Краткое имя — это лист дерева имен. Относительное имя — это составное имя, начинающееся с некоторого уровня иерархии, но не самого верхнего. Например, wwwi.zil — это относительное имя. Полное доменное имя (fully qualified domain name, FQJDN) включает составляющие всех уровней иерархии, начиная от краткого имени и кончая корневой точкой: wwwl.zil.mmt.ru.

Необходимо подчеркнуть, что компьютеры входят в домен в соответствии со своими составными именами, при этом они могут иметь совершенно различные IP-адреса, принадлежащие к различным сетям и подсетям. Например, в домен mgu.ru могут входить хосты с адресами 132.13.34.15, 201.22.100.33,14.0.0.6. Доменная система имен реализована в сети Internet, но она может работать и как автономная система имен в крупной корпоративной сети, использующей стек TCP/IP, но не связанной с Internet.

В Internet корневой домен управляется центром InterNIC. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций — следующие обозначения:

·         corn — коммерческие организации (например, microsoft.com);

·         edu — образовательные (например, mitedu);

·         gov — правительственные организации (например, nsf.gov);

·         org — некоммерческие организации (например, fidonet.org);

·         net — организации, поддерживающие сети (например, nsf.net).

Каждый домен администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Чтобы получить доменное имя, необходимо зарегистрироваться в какой-либо организации, которой InterNIC делегировал свои полномочия по распределению имен доменов. В России такой организацией является РосНИИРОС, которая отвечает за делегирование имен поддоменов в домене ru.
Система доменных имен DNS
Соответствие между доменными именами и IP-адресами может устанавливаться как средствами локального хоста, так и средствами централизованной службы. На раннем этапе развития Internet на каждом хосте вручную создавался текстовый файл с известным именем hosts. Этот файл состоял из некоторого количества строк, каждая из которых содержала одну пару «IP-адрес — доменное имя», например 102.54.94.97 — rhino.acme.com.

По мере роста Internet файлы hosts также росли, и создание масштабируемого решения для разрешения имен стало необходимостью.

Таким решением стала специальная служба — система доменных имен (Domain Name System, DNS). DNS — это централизованная служба, основанная на распределенной базе отображений «доменное имя — IP-адрес». Служба DNS использует в своей работе протокол типа «клиент-сервер». В нем определены DNS-серверы и DNS-кли-енты. DNS-серверы поддерживают распределенную базу отображений, а DNS-клиен-ты обращаются к серверам с запросами о разрешении доменного имени в IP-адрес.

Служба DNS использует текстовые файлы почти такого формата, как и файл hosts, и эти файлы администратор также подготавливает вручную. Однако служба DNS опирается на иерархию доменов, и каждый сервер службы DNS хранит только часть имен сети, а не все имена, как это происходит при использовании файлов hosts. При росте количества узлов в сети проблема масштабирования решается созданием новых доменов и поддоменов имен и добавлением в службу DNS новых серверов.

Для каждого домена имен создается свой DNS-сервер. Этот сервер может хранить отображения «доменное имя — IP-адрес» для всего домена, включая все его поддомены. Однако при этом решение оказывается плохо масштабируемым, так как при добавлении новых поддоменов нагрузка на этот сервер может превысить его возможности. Чаще сервер домена хранит только имена, которые заканчиваются на следующем ниже уровне иерархии по сравнению с именем домена. (Аналогично каталогу файловой системы, который содержит записи о файлах и подкаталогах, непосредственно в него «входящих».) Именно при такой организации службы DNS нагрузка по разрешению имен распределяется более-менее равномерно между всеми DNS-серверами сети. Например, в первом случае DNS-сервер домена mmtru будет хранить отображения для всех имен, заканчивающихся на mmt.ru: wwwl.zil.mmt.ru, ftp.zil.mmt.ru, mail.mmt.ru и т. д. Во втором случае этот сервер хранит отображения только имен типа mail.mmt.ru, www.mmt.ru, а все остальные отображения должны храниться на DNS-сервере поддомена zil.

Каждый DNS-сервер кроме таблицы отображений имен содержит ссылки на DNS-серверы своих поддоменов. Эти ссылки связывают отдельные DNS-серверы в единую службу DNS. Ссылки представляют собой IP-адреса соответствующих серверов. Для обслуживания корневого домена выделено несколько дублирующих друг друга DNS-серверов, IP-адреса которых являются широко известными (их можно узнать, например, в InterNIC).

Процедура разрешения DNS-имени во многом аналогична процедуре поиска файловой системой адреса файла по его символьному имени. Действительно, в обоих случаях составное имя отражает иерархическую структуру организации соответствующих справочников — каталогов файлов или таблиц DNS. Здесь домен и доменный DNS-сервер являются аналогом каталога файловой системы. Для доменных имен, так же как и для символьных имен файлов, характерна независимость именования от физического местоположения.

Процедура поиска адреса файла по символьному имени заключается в последовательном просмотре каталогов, начиная с корневого. При этом предварительно проверяется кэш и текущий каталог. Для определения IP-адреса по доменному имени также необходимо просмотреть все DNS-серверы, обслуживающие цепочку поддоменов, входящих в имя хоста, начиная с корневого домена. Существенным же отличием является то, что файловая система расположена на одном компьютере, а служба DNS по своей природе является распределенной.

Существуют две основные схемы разрешения DNS-имен. В первом варианте работу по поиску IP-адреса координирует DNS-клиент:

·         DNS-клиент обращается к корневому DNS-серверу с указанием полного доменного имени;

·         DNS-сервер отвечает, указывая адрес следующего DNS-сервера, обслуживающего домен верхнего уровня, заданный в старшей части запрошенного имени;

·         DNS-клиент делает запрос следующего DNS-сервера, который отсылает его к DNS-серверу нужного поддомена, и т. д., пока не будет найден DNS-сервер, в котором хранится соответствие запрошенного имени IP-адресу. Этот сервер дает окончательный ответ клиенту.

Такая схема взаимодействия называется нерекурсивной или итеративной, когда клиент сам итеративно выполняет последовательность запросов к разным серверам имен. Так как эта схема загружает клиента достаточно сложной работой, то она применяется редко.

Во втором варианте реализуется рекурсивная процедура:

·         DNS-клиент запрашивает локальный DNS-сервер, то есть тот сервер, который обслуживает поддомен, к которому принадлежит имя клиента;

·         если локальный DNS-сервер знает ответ, то он сразу же возвращает его клиенту; это может соответствовать случаю, когда запрошенное имя входит в тот же поддомен, что и имя клиента, а также может соответствовать случаю, когда сервер уже узнавал данное соответствие для другого клиента и сохранил его в своем кэше;

·         если же локальный сервер не знает ответ, то он выполняет итеративные запросы к корневому серверу и т. д. точно так же, как это делал клиент в первом варианте; получив ответ, он передает его клиенту, который все это время просто ждал его от своего локального DNS-сервера.

В этой схеме клиент перепоручает работу своему серверу, поэтому схема называется косвенной или рекурсивной. Практически все DNS-клиенты используют рекурсивную процедуру.

Для ускорения поиска IP-адресов DNS-серверы широко применяют процедуру кэширования проходящих через них ответов. Чтобы служба DNS могла оперативно отрабатывать изменения, происходящие в сети, ответы кэшируются на определенное время — обычно от нескольких часов до нескольких дней.
    продолжение
–PAGE_BREAK–Выводы
·         В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена. Все эти типы адресов присваиваются узлам составной сети независимо друг от друга.

·         IP-адрес имеет длину 4 байта и состоит из номера сети и номера узла. Для определения границы, отделяющей номер сети от номера узла, реализуются два подхода. Первый основан на понятии класса адреса, второй — на использовании масок.

·         Класс адреса определяется значениями нескольких первых бит адреса. В адресах класса А под номер сети отводится один байт, а остальные три байта — под номер узла, поэтому они используются в самых больших сетях. Для небольших сетей больше подходят адреса класса С, в которых номер сети занимает три байта, а для нумерации узлов может быть использован только один байт. Промежуточное положение занимают адреса класса В.

·         Другой способ определения, какая часть адреса является номером сети, а какая номером узла, основан на использовании маски. Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые в IP-адресе должны интерпретироваться как номер сети.

·         Номера сетей назначаются либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно.

·         Процесс распределения IP-адресов по узлам сети может быть автоматизирован с помощью протокола DHCP.

·         Установление соответствия между IP-адресом и аппаратным адресом (чаще всего МАС — адресом) осуществляется протоколом разрешения адресов ARP, который для этой цели просматривает ARP-таблицы. Если нужный адрес отсутствует, то выполняется широковещательный ARP-запрос.

·         В стеке TCP/IP применяется доменная система символьных имен, которая имеет иерархическую древовидную структуру, допускающую использование в имени произвольного количества составных частей. Совокупность имен, у которых несколько старших составных частей совпадают, образуют домен имен. Доменные имена назначаются централизованно, если сеть является частью Internet, в противном случае — локально.

·         Соответствие между доменными именами и IP-адресами может устанавливаться как средствами локального хоста с использованием файла hosts, так и с помощью централизованной службы DNS, основанной на распределенной базе отображений «доменное имя — IP-адрес».
5.3. Протокол IP 5.3.1. Основные функции протокола IP
Основу транспортных средств стека протоколов TCP/IP составляет протокол межсетевого взаимодействия (Internet Protocol, IP). Он обеспечивает передачу дейтаграмм от отправителя к получателям через объединенную систему компьютерных сетей.

Название данного протокола — Intrenet Protocol — отражает его суть: он должен передавать пакеты между сетями. В каждой очередной сети, лежащей на пути перемещения пакета, протокол IP вызывает средства транспортировки, принятые в этой сети, чтобы с их помощью передать этот пакет на маршрутизатор, ведущий к следующей сети, или непосредственно на узел-получатель.

Протокол IP относится к протоколам без установления соединений. Перед IP не ставится задача надежной доставки сообщений от отправителя к получателю. Протокол IP обрабатывает каждый IP-пакет как независимую единицу, не имеющую связи ни с какими другими IP-пакетами. В протоколе IP нет механизмов, обычно применяемых для увеличения достоверности конечных данных: отсутствует квитирование — обмен подтверждениями между отправителем и получателем, нет процедуры упорядочивания, повторных передач или других подобных функций. Если во время продвижения пакета произошла какая-либо ошибка, то протокол IP по своей инициативе ничего не предпринимает для исправления этой ошибки. Например, если на промежуточном маршрутизаторе пакет был отброшен по причине истечения времени жизни или из-за ошибки в контрольной сумме, то модуль IP не пытается заново послать испорченный или потерянный пакет. Все вопросы обеспечения надежности доставки данных по составной сети в стеке TCP/IP решает протокол TCP, работающий непосредственно над протоколом IP. Именно TCP организует повторную передачу пакетов, когда в этом возникает необходимость.

Важной особенностью протокола IP, отличающей его от других сетевых протоколов (например, от сетевого протокола IPX), является его способность выполнять динамическую фрагментацию пакетов при передаче их между сетями с различными, максимально допустимыми значениями поля данных кадров MTU. Свойство фрагментации во многом способствовало тому, что протокол IP смог занять доминирующие позиции в сложных составных сетях.

Имеется прямая связь между функциональной сложностью протокола и сложностью заголовка пакетов, которые этот протокол использует. Это объясняется тем, что основные служебные данные, на основании которых протокол выполняет то или иное действие, переносятся между двумя модулями, реализующими этот протокол на разных машинах, именно в полях заголовков пакетов. Поэтому очень полезно изучить назначение каждого поля заголовка IP-пакета, и это изучение дает не только формальные знания о структуре пакета, но и объясняет все основные режимы работы протокола по обработке и передаче IP-дейтаграмм.
    продолжение
–PAGE_BREAK–5.3.2. Структура IP-пакета
IP-пакет состоит из заголовка и поля данных. Заголовок, как правило, имеющий длину 20 байт, имеет следующую структуру (рис. 5.12).

Поле Номер версии (Version), занимающее 4 бит, указывает версию протокола IP. Сейчас повсеместно используется версия 4 (IPv4), и готовится переход на версию 6 (IPv6).

Поле Длина заголовка (IHL) IP-пакета занимает 4 бит и указывает значение длины заголовка, измеренное в 32-битовых словах. Обычно заголовок имеет длину в 20 байт (пять 32-битовых слов), но при увеличении объема служебной информации эта длина может быть увеличена за счет использования дополнительных байт в поле Опции (IP Options). Наибольший заголовок занимает 60 октетов.

Поле Тип сервиса (Type of Service) занимает один байт и задает приоритетность пакета и вид критерия выбора маршрута. Первые три бита этого поля образуют подполе приоритета пакета (Precedence), Приоритет может иметь значения от самого низкого — 0 (нормальный пакет) до самого высокого — 7 (пакет управляющей информации). Маршрутизаторы и компьютеры могут принимать во внимание приоритет пакета и обрабатывать более важные пакеты в первую очередь. Поле Тип сервиса содержит также три бита, определяющие критерий выбора маршрута. Реально выбор осуществляется между тремя альтернативами: малой задержкой, высокой достоверностью и высокой пропускной способностью. Установленный бит D (delay) говорит о том, что маршрут должен выбираться для минимизации задержки доставки данного пакета, бит Т — для максимизации пропускной способности, а бит R — для максимизации надежности доставки. Во многих сетях улучшение одного из этих параметров связано с ухудшением другого, кроме того, обработка каждого из них требует дополнительных вычислительных затрат. Поэтому редко, когда имеет смысл устанавливать одновременно хотя бы два из этих трех критериев выбора маршрута. Зарезервированные биты имеют нулевое значение.

Поле Общая длина (Total Length) занимает 2 байта и означает общую длину пакета с учетом заголовка и поля данных. Максимальная длина пакета ограничена разрядностью поля, определяющего эту величину, и составляет 65 535 байт, однако в большинстве хост-компьютеров и сетей столь большие пакеты не используются. При передаче по сетям различного типа длина пакета выбирается с учетом максимальной длины пакета протокола нижнего уровня, несущего IP-пакеты. Если это кадры Ethernet, то выбираются пакеты с максимальной длиной в 1500 байт, умещающиеся в поле данных кадра Ethernet. В стандарте предусматривается, что все хосты должны быть готовы принимать пакеты вплоть до 576 байт длиной (приходят ли они целиком или по фрагментам). Хостам рекомендуется отправлять пакеты размером более чем 576 байт, только если они уверены, что принимающий хост или промежуточная сеть готовы обслуживать пакеты такого размера.

Поле Идентификатор пакета (Identification) занимает 2 байта и используется для распознавания пакетов, образовавшихся путем фрагментации исходного пакета. Все фрагменты должны иметь одинаковое значение этого поля.

Поле Флаги (Flags) занимает 3 бита и содержит признаки, связанные с фрагментацией. Установленный бит DF (Do not Fragment) запрещает маршрутизатору фрагментировать данный пакет, а установленный бит MF (More Fragments) говорит о том, что данный пакет является промежуточным (не последним) фрагментом. Оставшийся бит зарезервирован.

Поле Смещение фрагмента (Fragment Offset) занимает 13 бит и задает смещение в байтах поля данных этого пакета от начала общего поля данных исходного пакета, подвергнутого фрагментации. Используется при сборке/разборке фрагментов пакетов при передачах их между сетями с различными величинами MTU. Смещение должно быть кратно 8 байт.

Поле Время жизни (Time to Live) занимает один байт и означает предельный срок, в течение которого пакет может перемещаться по сети. Время жизни данного пакета измеряется в секундах и задается источником передачи. На маршрутизаторах и в других узлах сети по истечении каждой секунды из текущего времени жизни вычитается единица; единица вычитается и в том случае, когда время задержки меньше секунды. Поскольку современные маршрутизаторы редко обрабатывают пакет дольше, чем за одну секунду, то время жизни можно считать равным максимальному числу узлов, которые разрешено пройти данному пакету до того, как он достигнет места назначения. Если параметр времени жизни станет нулевым до того, как пакет достигнет получателя, этот пакет будет уничтожен. Время жизни можно рассматривать как часовой механизм самоуничтожения. Значение этого поля изменяется при обработке заголовка IP-пакета.

Идентификатор Протокол верхнего уровня (Protocol) занимает один байт и указывает, какому протоколу верхнего уровня принадлежит информация, размещенная в поле данных пакета (например, это могут быть сегменты протокола TCP, дейтаграммы UDP, пакеты ICMP или OSPF). Значения идентификаторов для различных протоколов приводятся в документе RFC «Assigned Numbers».

Контрольная сумма (Header Checksum)занимает 2 байта и рассчитывается только по заголовку. Поскольку некоторые поля заголовка меняют свое значение в процессе передачи пакета по сети (например, время жизни), контрольная сумма проверяется и повторно рассчитывается при каждой обработке IP-заголовка. Контрольная сумма — 16 бит — подсчитывается как дополнение к сумме всех 16-битовых слов заголовка. При вычислении контрольной суммы значение самого поля «контрольная сумма» устанавливается в нуль. Если контрольная сумма неверна, то пакет будет отброшен, как только ошибка будет обнаружена.

Поля IP-адрес источника (Source IP Address) и IP-адрес назначения (Destination IP Address) имеют одинаковую длину — 32 бита — и одинаковую структуру.

Поле Опции (IP Options) является необязательным и используется обычно только при отладке сети. Механизм опций предоставляет функции управления, которые необходимы или просто полезны при определенных ситуациях, однако он не нужен при обычных коммуникациях. Это поле состоит из нескольких подполей, каждое из которых может быть одного из восьми предопределенных типов. В этих подполях можно указывать точный маршрут прохождения маршрутизаторов, регистрировать проходимые пакетом маршрутизаторы, помещать данные системы безопасности, а также временные отметки. Так как число подполей может быть произвольным, то в конце поля Опции должно быть добавлено несколько байт для выравнивания заголовка пакета по 32-битной границе.

Поле Выравнивание (Padding) используется для того, чтобы убедиться в том, что IP-заголовок заканчивается на 32-битной границе. Выравнивание осуществляется нулями.

Ниже приведена распечатка значений полей заголовка одного из реальных IP-пакетов, захваченных в сети Ethernet средствами анализатора протоколов Microsoft Network Monitor.

IP Version = 4 (0х4)

IP Header Length = 20 (0х14)

IP Service Type = 0 (0х0)

IP Precedence = Routine

IP …0… = Normal Delay

IP ….0… = Normal Throughput

IP …..0… = Normal Reliability

IP Total Length = 54 (0х36)

IP Identification = 31746 (0x7C02)

IP Flags Summary ° 2 (0х2)

IP… 0 = Last fragment in datagram

IP… 1. = Cannot fragment datagram

IP Fragment Offset = 0 (0х0) bytes

IP Time to Live = 128 (0х80)

IP Protocol = TCP — Transmission Control

IP Checksum =0xEB86

IP Source Address = 194.85.135.75

IP Destination Address = 194.85.135.66

IP Data: Number of data bytes remaining = 34 (0х0022)
    продолжение
–PAGE_BREAK–5.3.3. Таблицы маршрутизации в IP-сетях
Программные модули протокола IP устанавливаются на всех конечных станциях и маршрутизаторах сети. Для продвижения пакетов они используют таблицы маршрутизации.
Примеры таблиц различных типов маршрутизаторов
Структура таблицы маршрутизации стека TCP/IP соответствует общим принципам построения таблиц маршрутизации, рассмотренным выше. Однако важно отметить, что вид таблицы IP-маршрутизации зависит от конкретной реализации стека TCP/IP. Приведем пример трех вариантов таблицы маршрутизации, с которыми мог бы работать маршрутизатор Ml в сети, представленной на рис. 5.13.

Если представить, что в качестве маршрутизатора Ml в данной сети работает штатный программный маршрутизатор MPR операционной системы Microsoft Windows NT, то его таблица маршрутизации могла бы иметь следующий вид (табл. 5.9).
Если на месте маршрутизатора М1 установить аппаратный маршрутизатор NetBuilder II компании 3 Com, то его таблица маршрутизации для этой же сети может выглядеть так, как показано в табл. 5.10.

ПРИМЕЧАНИЕЗаметим, что поскольку между структурой сети и таблицей маршрутизации в принципе нет однозначного соответствия, то и для каждого из приведенных вариантов таблицы можно предложить свои «подварианты», отличающиеся выбранным маршрутом к той или иной сети. В данном случае внимание концентрируется на существенных различиях в форме представления маршрутной информации разными реализациями маршрутизаторов.
Назначение полей таблицы маршрутизации
Несмотря на достаточно заметные внешние различия, во всех трех таблицах есть все те ключевые параметры, необходимые для работы маршрутизатора, которые были рассмотрены ранее при обсуждении концепции маршрутизации.

К таким параметрам, безусловно, относятся адрес сети назначения (столбцы «Destination» в маршрутизаторах NetBuilder и Unix или «Network Address» в маршрутизаторе MPR) и адрес следующего маршрутизатора (столбцы «Gateway» в маршрутизаторах NetBuilder и Unix или «Gateway Address» в маршрутизаторе MPR).

Третий ключевой параметр — адрес порта, на который нужно направить пакет, в некоторых таблицах указывается прямо (поле «Interface» в таблице Windows NT), а в некоторых — косвенно. Так, в таблице Unix-маршрутизатора вместо адреса порта задается его условное наименование — 1е0 для порта с адресом 198.21.17.5, lei для порта с адресом 213.34.12.3 и 1о0 для внутреннего порта с адресом 127.0.0.1.

В маршрутизаторе NetBuilder II поле, обозначающее выходной порт в какой-либо форме, вообще отсутствует. Это объясняется тем, что адрес выходного порта всегда можно косвенно определить по адресу следующего маршрутизатора. Например, попробуем определить по табл. 5.10 адрес выходного порта для сети 56.0.0.0. Из таблицы следует, что следующим маршрутизатором для этой сети будет маршрутизатор с адресом 213.34.12.4. Адрес следующего маршрутизатора должен принадлежать одной из непосредственно присоединенных к маршрутизатору сетей, и в данном случае это сеть 213.34.12.0. Маршрутизатор имеет порт, присоединенный к этой сети, и адрес этого порта 213.34.12.3 мы находим в поле «Gateway» второй строки таблицы маршрутизации, которая описывает непосредственно присоединенную сеть 213.34.12.0. Для непосредственно присоединенных сетей адресом следующего маршрутизатора всегда является адрес собственного порта маршрутизатора. Таким образом, адрес выходного порта для сети 56.0.0 — это адрес 213.34.12.3.

Остальные параметры, которые можно найти в представленных версиях таблицы маршрутизации, являются необязательными для принятия решения о пути следования пакета.

Наличие или отсутствие поля маски в таблице говорит о том, насколько современен данный маршрутизатор. Стандартным решением сегодня является использование поля маски в каждой записи таблицы, как это сделано в таблицах маршрутизаторов MPR Windows NT (поле «Netmask») и NetBuilder (поле «Mask»). Обработка масок при принятии решения маршрутизаторами будет рассмотрена ниже. Отсутствие поля маски говорит о том, что либо маршрутизатор рассчитан на работу только с тремя стандартными классами адресов, либо он использует для всех записей одну и ту же маску, что снижает гибкость маршрутизации.

Метрика, как видно из примера таблицы Unix-маршрутизатора, является необязательным параметром. В остальных двух таблицах это поле имеется, однако оно используется только в качестве признака непосредственно подключенной сети. Действительно, если в таблице маршрутизации каждая сеть назначения упомянута только один раз, то поле метрики не будет приниматься во внимание при выборе маршрута, так как выбор отсутствует. А вот признак непосредственно подключенной сети маршрутизатору нужен, поскольку пакет для этой сети обрабатывается особым способом — он не передается следующему маршрутизатору, а отправляется узлу назначения. Поэтому метрика 0 для маршрутизатора NetBuilder или 1 для маршрутизатора MPR просто говорит маршрутизатору, что эта сеть непосредственно подключена к его порту, а другое значение метрики соответствует удаленной сети. Выбор значения метрики для непосредственно подключенной сети является достаточно произвольным, главное, чтобы метрика удаленной сети отсчитывалась с учетом этого выбранного начального значения. В Unix-маршрутизаторе используется поле признаков, где флаг G отмечает удаленную сеть, а его отсутствие — непосредственно подключенную.

Однако существуют ситуации, когда маршрутизатор должен обязательно хранить значение метрики для записи о каждой удаленной сети. Эти ситуации возникают, когда записи в таблице маршрутизации являются результатом работы некоторых протоколов маршрутизации, например протокола RIP. В таких протоколах новая информация о какой-либо удаленной сети сравнивается с имеющейся в таблице, и если метрика новой информации лучше имеющейся, то новая запись вытесняет имеющуюся. В таблице Unix-маршрутизатора поле метрики отсутствует, и это значит, что он не использует протокол RIP.

Флаги записей присутствуют только в таблице Unix-маршрутизатора. Они описывают характеристики записи.

·         U — показывает, что маршрут активен и работоспособен. Аналогичный смысл имеет поле «Status» в маршрутизаторе NetBuilder.

·         Н — признак специфического маршрута к определенному хосту. Маршрут ко всей сети, к которой принадлежит данный хост, может отличаться от данного маршрута.

·         G — означает, что маршрут пакета проходит через промежуточный маршрутизатор (gateway). Отсутствие этого флага отмечает непосредственно подключенную сеть.

·         D — означает, что маршрут получен из сообщения Redirect (перенаправление) протокола ICMP. Этот признак может присутствовать только в таблице маршрутизации конечного узла. Признак означает, что конечный узел в какой-то предыдущей передаче пакета выбрал не самый рациональный следующий маршрутизатор на пути к данной сети, и этот маршрутизатор с помощью протокола ICMP сообщил, что все последующие пакеты к данной сети нужно отправлять через другой следующий маршрутизатор. Протокол ICMP может посылать сообщения только узлу-отправителю, поэтому у промежуточного маршрутизатора этот признак встретиться не может. Признак никак не влияет на процесс маршрутизации, он только указывает администратору источник появления записи. В таблице Unix-маршрутизатора используются еще два поля, имеющих справочное значение. Поле «Refcnt» показывает, сколько раз на данный маршрут ссылались при продвижении пакетов. Поле «Use» отражает количество пакетов, переданных по данному маршруту.

В таблице маршрутизатора NetBuilder также имеются два справочных поля. Поле времени жизни «TTL» (Time To Live) имеет смысл для динамических записей, которые имеют ограниченный срок жизни. Текущее значение поля показывает оставшийся срок жизни записи в секундах. Поле «Source» отражает источник появления записи в таблице маршрутизации. Хотя это поле имеется не во всех маршрутизаторах, но практически для всех маршрутизаторов существуют три основных источника появления записи в таблице.
    продолжение
–PAGE_BREAK–Источники и типы записей в таблице маршрутизации
Первым источником является программное обеспечение стека TCP/IP. При инициализации маршрутизатора это программное обеспечение автоматически заносит в таблицу несколько записей, в результате чего создается так называемая минимальная таблица маршрутизации.

Это, во-первых, записи о непосредственно подключенных сетях и маршрутизаторах по умолчанию, информация о которых появляется в стеке при ручном конфигурировании интерфейсов компьютера или маршрутизатора. К таким записям в приведенных примерах относятся записи о сетях 213.34.12.0 и 198.21.17.0, а также запись о маршрутизаторе по умолчанию — default в Unix-маршрутизаторе и 0.0.0.0 в маршрутизаторе MPR Windows NT, В приведенном примере таблицы для маршрутизатора NetBuilder маршрутизатор по умолчанию не используется, следовательно, при поступлении пакета с адресом назначения, отсутствующим в таблице маршрутизации, этот пакет будет отброшен.

Во-вторых, программное обеспечение автоматически заносит в таблицу маршрутизации записи об адресах особого назначения. В приведенных примерах таблица маршрутизатора MPR Windows NT содержит наиболее полный набор записей такого рода. Несколько записей в этой таблице связаны с особым адресом 127.0.0.0 (loopback), который используется для локального тестирования стека TCP/IP. Пакеты, направленные в сеть с номером 127.0.0.0, не передаются протоколом IP на канальный уровень для последующей передачи в сеть, а возвращаются в источник — локальный модуль IP. Записи с адресом 224.0.0.0 требуются для обработки групповых адресов (multicast address). Кроме того, в таблицу могут быть занесены адреса, предназначенные для обработки широковещательных рассылок (например, записи 8 и 11 содержат адрес отправки широковещательного сообщения в соответствующих подсетях, а последняя запись в таблице — адрес ограниченной широковещательной рассылки сообщения). Заметим, что в некоторых таблицах записи об особых адресах вообще отсутствуют.

Вторым источником появления записи в таблице является администратор, непосредственно формирующий запись с помощью некоторой системной утилиты, например программы route, имеющейся в операционных системах Unix и Windows NT. В аппаратных маршрутизаторах также всегда имеется команда для ручного задания записей таблицы маршрутизации. Заданные вручную записи всегда являются статическими, то есть не имеют срока истечения жизни. Эти записи могут быть как постоянными, то есть сохраняющимися при перезагрузке маршрутизатора, так и временными, хранящимися в таблице только до выключения устройства. Часто администратор вручную заносит запись default о маршрутизаторе по умолчанию. Таким же образом в таблицу маршрутизации может быть внесена запись о специфичном для узла маршруте. Специфичный для узла маршрут содержит вместо номера сети полный IP-адрес, то есть адрес, имеющий ненулевую информацию не только в поле номера сети, но и в поле номера узла. Предполагается, что для такого конечного узла маршрут должен выбираться не так, как для всех остальных узлов сети, к которой он относится. В случае когда в таблице есть разные записи о продвижении пакетов для всей сети и ее отдельного узла, при поступлении пакета, адресованного узлу, маршрутизатор отдаст предпочтение записи с полным адресом узла.

И наконец, третьим источником записей могут быть протоколы маршрутизации, такие как RIP или OSPF. Такие записи всегда являются динамическими, то есть имеют ограниченный срок жизни. Программные маршрутизаторы Windows NT и Unix не показывают источник появления той или иной записи в таблице, а маршрутизатор NetBuilder использует для этой цели поле «Source». В приведенном в табл. 5.10 примере первые две записи созданы программным обеспечением стека на основании данных о конфигурации портов маршрутизатора — это показывает признак «Connected». Следующие две записи обозначены как «Static», что указывает на то, что их ввел вручную администратор. Последняя запись является следствием работы протокола RIP, поэтому в ее поле «TTL» имеется значение 160.
5.3.4. Маршрутизация без использования масок
Рассмотрим на примере IP-сети (рис. 5.14) алгоритм работы средств сетевого уровня по продвижению пакета в составной сети. При этом будем считать, что все узлы сети, рассматриваемой в примере, имеют адреса, основанные на классах, без использования масок. Особое внимание будет уделено взаимодействию протокола IP с протоколами разрешения адресов ARP и DNS.

1.       Итак, пусть пользователь компьютера cit.dol.ru, находящегося в сети Ethernet и имеющего IP-адрес 194.87.23.17 (адрес класса С), обращается по протоколу FTP к компьютеру sl.msk.su, принадлежащему другой сети Ethernet и имеющему IP-адрес 142.06,13.14 (адрес класса В): > ftp sl.msk.su

Модуль FTP упаковывает свое сообщение в сегмент транспортного протокола TCP, который в свою очередь помещает свой сегмент в пакет протокола IP. В заголовке IP-пакета должен быть указан IP-адрес узла назначения. Так как пользователь компьютера cit.dol.ru использует символьное имя компьютера sl.msk.su, то стек TCP/IP должен определить IP-адрес узла назначения самостоятельно.

При конфигурировании стека TCP/IP в компьютере cit.dol.ru был задан его собственный IP-адрес, IP-адрес маршрутизатора по умолчанию и IP-адрес DNS-сервера. Модуль IP может сделать запрос к серверу DNS, но обычно сначала просматривается локальная таблица соответствия символьных имен и IP-адресов. Такая таблица хранится чаще всего в виде текстового файла простой структуры — каждая его строка содержит запись об одном символьном имени и его IP-адресе. В ОС Unix такой файл традиционно носит имя hosts и находится в каталоге /etc.

2.       Будем считать, что компьютер dt.dol.ru имеет файл hosts, а в нем есть строка 142.06.13.14 sl.msk.su.

Таким образом, разрешение имени выполняется локально, и протокол IP может теперь формировать IP-пакеты с адресом назначения 142.06.13.14 для взаимодействия с компьютером sl.msk.su.

3.       Модуль IP компьютера cit.dol.ru проверяет, нужно ли маршрутизировать пакеты с адресом 142.06.13.14. Так как адрес сети назначения (142.06.0.0) не совпадает с адресом (194.87.23.0) сети, которой принадлежит компьютер-отправитель, то маршрутизация необходима.

4.       Компьютер cit.dol.ru начинает формировать кадр Ethernet для отправки IP-пакета маршрутизатору по умолчанию, IP-адрес которого известен — 194.87.23.1, но неизвестен МАС — адрес, необходимый для перемещения кадра в локальной сети. Для определения МАС — адреса маршрутизатора протокол IP обращается к протоколу ARP, который просматривает ARP-таблицу. Если в последнее время компьютер cit.dol.ru выполнял какие-либо межсетевые обмены, то скорее всего искомая запись, содержащая соответствие между IP- и МАС — адресами маршрутизатора по умолчанию уже находится в кэш-таблице протокола ARP. Пусть в данном случае нужная запись была найдена именно в кэш-таблице: 194.87.23.1 008048ЕВ7Е60

Обозначим найденный МАС — адрес 008048ЕВ7Е60 в соответствии с номером маршрутизатора и его порта через МАС11.

5.       В результате компьютер cit.dol.ru отправляет по локальной сети пакет, упакованный в кадр Ethernet, имеющий следующие поля:

6.       Кадр принимается портом 1 маршрутизатора 1 в соответствии с протоколом Ethernet, так как МАС — узел этого порта распознает свой адрес МАС11. Протокол Ethernet извлекает из этого кадра IP-пакет и передает его программному обеспечению маршрутизатора, реализующему протокол IP. Протокол IP извлекает из пакета адрес назначения 142.06.13.14 и просматривает записи своей таблицы маршрутизации. Пусть маршрутизатор 1 имеет в своей таблице маршрутизации запись 142.06.0.0 135.12.0.11 2, которая говорит о том, что пакеты для сети 142.06. 0.0 нужно передавать маршрутизатору 135.12.0.11, находящемуся в сети, подключенной к порту 2 маршрутизатора 1.

7.       Маршрутизатор 1 просматривает параметры порта 2 и находит, что к нему подключена сеть FDDI. Так как сеть FDDI имеет значение MTU большее, чем сеть Ethernet, то фрагментация IP-пакета не требуется. Поэтому маршрутизатор 1 формирует кадр формата FDDI. На этом этапе модуль IP должен определить МАС — адрес следующего маршрутизатора по известному IP-адресу 135.12.0.11. Для этого он обращается к протоколу ARP. Допустим, что нужной записи в кэш-таблице не оказалось, тогда в сеть FDDI отправляется широковещательный ARP-запрос, содержащий наряду с прочей следующую информацию.

8.       Порт 1 маршрутизатора 2 распознает свой IP-адрес и посылает ARP-ответ по адресу запросившего узла:

9.       Теперь, зная МАС — адрес следующего маршрутизатора 00E0F77F51A0, маршрутизатор 1 отсылает кадр FDDI по направлению к маршрутизатору 2. Заметим, что в поле IP-адреса назначения никаких изменений не произошло.

10.   Аналогично действует модуль IP на маршрутизаторе 2. Получив кадр FDDI, он отбрасывает его заголовок, а из заголовка IP извлекает IP-адрес сети назначения и просматривает свою таблицу маршрутизации. Там он может найти запись о конкретной сети назначения:

142.06.0.0 203.21.4.12 2

или при отсутствии такой записи будет использована запись о маршрутизаторе по умолчанию:

default 203.21.4.12 2.

Определив IP-адрес следующего маршрутизатора 203.21.4.12, модуль IP формирует кадр Ethernet для передачи пакета маршрутизатору 3 по сети Ethernet. С помощью протокола ARP он находит МАС — адрес этого маршрутизатора и помещает его в заголовок кадра. IP-адрес узла назначения, естественно, остается неизменным.

11.   Наконец, после того как пакет поступил в маршрутизатор сети назначения — маршрутизатор 3, — появляется возможность передачи этого пакета компьютеру назначения. Маршрутизатор 3 определяет, что пакет нужно передать в сеть 142.06.0,0, которая непосредственно подключена к его первому порту. Поэтому он посылает ARP-запрос по сети Ethernet с IP-адресом компьютера sl.msk.su. ARP-ответ содержит МАС — адрес конечного узла, который модуль IP передает канальному протоколу для формирования кадра Ethernet:

12.   Сетевой адаптер компьютера sl.msk.su захватывает кадр Ethernet, обнаруживает совпадение МАС — адреса, содержащегося в заголовке, со своим собственным адресом и направляет его модулю IP. После анализа полей IP-заголовка из пакета извлекаются данные, которые в свою очередь содержат сообщение выше лежащего протокола. Поскольку в данном примере рассматривается обмен данными по протоколу FTP, который использует в качестве транспортного протокола TCP, то в поле данных IP-пакета находится ТСР — сегмент. Определив из TCP-заголовка номер порта, модуль IP переправляет сегмент в соответствующую очередь, из которой данный сегмент попадет программному модулю FTP-сервера.
    продолжение
–PAGE_BREAK–5.3.5. Маршрутизация с использованием масок Использование масок для структуризации сети
Алгоритм маршрутизации усложняется, когда в систему адресации узлов вносятся дополнительные элементы — маски. В чем же причина отказа от хорошо себя зарекомендовавшего в течение многих лет метода адресации, основанного на классах? Таких причин несколько, и одна из них — потребность в структуризации сетей.

Часто администраторы сетей испытывают неудобства из-за того, что количество централизованно выделенных им номеров сетей недостаточно для того, чтобы структурировать сеть надлежащим образом, например разместить все слабо взаимодействующие компьютеры по разным сетям. В такой ситуации возможны два пути. Первый из них связан с получением от InterNIC или поставщика услуг Internet дополнительных номеров сетей. Второй способ, употребляющийся чаще, связан с использованием технологии масок, которая позволяет разделять одну сеть на несколько сетей.

Допустим, администратор получил в свое распоряжение адрес класса В: 129.44.0.0. Он может организовать сеть с большим числом узлов, номера которых он может брать из диапазона 0.0.0.1-0.0.255.254 (с учетом того, что адреса из одних нулей и одних единиц имеют специальное назначение и не годятся для адресации узлов). Однако ему не нужна одна большая неструктурированная сеть, производственная необходимость диктует администратору другое решение, в соответствии с которым сеть должна быть разделена на три отдельных подсети, при этом трафик в каждой подсети должен быть надежно локализован. Это позволит легче диагностировать сеть и проводить в каждой из подсетей особую политику безопасности.

Посмотрим, как решается эта проблема путем использования механизма масок.

Итак, номер сети, который администратор получил от поставщика услуг, — 129.44.0.0 (10000001 00101100 00000000 00000000). В качестве маски было выбрано значение 255.255.192.0 (111111111111111111000000 00000000). После наложения маски на этот адрес число разрядов, интерпретируемых как номер сети, увеличилось с 16 (стандартная длина поля номера сети для класса В) до 18 (число единиц в маске), то есть администратор получил возможность использовать для нумерации подсетей два дополнительных бита. Это позволяет ему сделать из одного, централизованно заданного ему номера сети, четыре:

129.44.0.0 (10000001 00101100 00000000 00000000)

129.44.64.0 (10000001 00101100 01000000 00000000)

129.44.128.0 (10000001 00101100 10000000 00000000)

129.44.192.0 (10000001 00101100 11000000 00000000)

Два дополнительных последних бита в номере сети часто интерпретируются как номера подсетей (subnet), и тогда четыре перечисленных выше подсети имеют номера 0 (00), 1 (01), 2 (10) и 3 (11) соответственно.

ПРИМЕЧАНИЕНекоторые программные и аппаратные маршрутизаторы не поддерживают номера подсетей, которые состоят либо только из одних нулей, либо только из одних единиц. Например, для некоторых типов оборудования номер сети 129.44.0.0 с маской 255.255.192.0, использованный в нашем примере, окажется недопустимым, поскольку в этом случае разряды в поле номера подсети имеют значение 00. По аналогичным соображениям недопустимым может оказаться и номер сети 129.44.192.0 с тем же значением маски. Здесь номер подсети состоит только из единиц. Однако более современные маршрутизаторы свободны от этих ограничений. Поэтому, принимая решение об использовании механизма масок, необходимо выяснить характеристики того оборудования, которым вы располагаете, чтобы соответствующим образом сконфигурировать маршрутизаторы и компьютеры сети.

В результате использования масок была предложена следующая схема распределения адресного пространства (рис. 5.15).

Сеть, получившаяся в результате проведенной структуризации, показана на рис. 5.16. Весь трафик во внутреннюю сеть 129.44.0.0, направляемый из внешней сети, поступает через маршрутизатор Ml. В целях структуризации информационных потоков во внутренней сети установлен дополнительный маршрутизатор М2.

Все узлы были распределены по трем разным сетям, которым были присвоены номера 129.44.0.0, 129.44.64.0 и 129.44.128.0 и маски одинаковой длины — 255.255.192.0. Каждая из вновь образованных сетей была подключена к соответственно сконфигурированным портам внутреннего маршрутизатора М2. Кроме того, еще одна сеть (номер 129.44.192.0, маска 255.255.192.0) была выделена для создания соединения между внешним и внутренним маршрутизаторами. Особо отметим, что в этой сети для адресации узлов были заняты всего два адреса 129.44.192.1 (порт маршрутизатора М2) и 129.44.192.2 (порт маршрутизатора Ml), еще два адреса 129.44.192.0 и 129.44.192.255 являются особыми адресами. Следовательно, огромное число узлов (214 — 4) в этой подсети никак не используются.

Извне сеть по-прежнему выглядит, как единая сеть класса В, а на местном уровне это полноценная составная сеть, в которую входят три отдельные сети. Приходящий общий трафик разделяется местным маршрутизатором М2 между этими сетями в соответствии с таблицей маршрутизации. (Заметим, что разделение большой сети, имеющей один адрес старшего класса, например А или В, с помощью масок несет в себе еще одно преимущество по сравнению с использованием нескольких адресов стандартных классов для сетей меньшего размера, например С. Оно позволяет скрыть внутреннюю структуру сети предприятия от внешнего наблюдения и тем повысить ее безопасность.)

Рассмотрим, как изменяется работа модуля IP, когда становится необходимым учитывать наличие масок. Во-первых, в каждой записи таблицы маршрутизации появляется новое поле — поле маски.

Во-вторых, меняется алгоритм определения маршрута по таблице маршрутизации. После того как IP-адрес извлекается из очередного полученного IP-пакета, необходимо определить адрес следующего маршрутизатора, на который надо передать пакет с этим адресом. Модуль IP последовательно просматривает все записи таблицы маршрутизации. С каждой записью производятся следующие действия.

·         Маска М, содержащаяся в данной записи, накладывается на IP-адрес узла назначения, извлеченный из пакета.

·         Полученное в результате число является номером сети назначения обрабатываемого пакета. Оно сравнивается с номером сети, который помещен в данной записи таблицы маршрутизации.

·         Если номера сетей совпадают, то пакет передается маршрутизатору, адрес которого помещен в соответствующем поле данной записи.

Теперь рассмотрим этот алгоритм на примере маршрутизации пакетов в сети, изображенной на рис. 5.16. Все маршрутизаторы внешней сети, встретив пакеты с адресами, начинающимися с 129.44, интерпретируют их как адреса класса В и направляют по маршрутам, ведущим к маршрутизатору Ml. Маршрутизатор Ml в свою очередь направляет весь входной трафик сети 129.44.0.0 на маршрутизатор М2, а именно на его порт 129.44.192.1.

Маршрутизатор М2 обрабатывает все поступившие на него пакеты в соответствии с таблицей маршрутизации (табл. 5.12).

Первые четыре записи в таблице соответствуют внутренним подсетям, непосредственно подключенным к портам маршрутизатора М2.

Запись 0.0.0.0 с маской 0.0.0.0 соответствует маршруту по умолчанию. Действительно, любой адрес в пришедшем пакете после наложения на него маски 0.0.0.0 даст адрес сети 0.0.0.0, что совпадает с адресом, указанным в записи. Маршрутизатор выполняет сравнение с адресом 0.0.0.0 в последнюю очередь, в том случае когда пришедший адрес не дал совпадения ни с одной записью в таблице, отличающейся от 0.0.0.0. Записей с адресом 0.0.0.0 в таблице маршрутизации может быть несколько. В этом случае маршрутизатор передает пакет по всем таким маршрутам.

Пусть, например, с маршрутизатора Ml на порт 129.44.192.1 маршрутизатора М2 поступает пакет с адресом назначения 129.44.78.200. Модуль IP начинает последовательно просматривать все строки таблицы, до тех пор пока не найдет совпадения номера сети в адресе назначения и в строке таблицы. Маска из первой строки 255.255.192.0 накладывается на адрес 129.44,78.200, в результате чего получается номер сети 129.44.64.0.

В двоичном виде эта операция выглядит следующим образом:

10000001.00101100.01001110.11001000

11111111.11111111.11000000.00000000

— — — — — — — — — — — — — — — — — — — — — — — — — — –

10000001.00101100.01000000.00000000

Полученный номер 129.44.64.0 сравнивается с номером сети в первой строке таблицы 129.44.0.0. Поскольку они не совпадают, то происходит переход к следующей строке. Теперь извлекается маска из второй строки (в данном случае она имеет такое же значение, но в общем случае это совсем не обязательно) и накладывается на адрес назначения пакета 129.44.78.200. Понятно, что из-за совпадения длины масок будет получен тот же номер сети 129.44.64.0. Этот номер совпадает с номером сети во второй строке таблицы, а значит, найден маршрут для данного пакета — он должен быть отправлен на порт маршрутизатора 129.44.64.7 в сеть, непосредственно подключенную к данному маршрутизатору.

Вот еще пример. IP-адрес 129.44.141.15(10000001 00101100 10001101 00001111), который при использовании классов делится на номер сети 129.44.0.0 и номер узла 0.0.141.15, теперь, при использовании маски 255.255.192.0, будет интерпретироваться как пара: 129.44.128.0 — номер сети, 0.0.13.15 — номер узла.
    продолжение
–PAGE_BREAK–Использование масок переменной длины
В предыдущем примере использования масок (см. рис. 5.15 и 5.16) все подсети имеют одинаковую длину поля номера сети — 18 двоичных разрядов, и, следовательно, для нумерации узлов в каждой из них отводится по 14 разрядов. То есть все сети являются очень большими и имеют одинаковый размер. Однако в этом случае, как и во многих других, более эффективным явилось бы разбиение сети на подсети разного размера. В частности, большое число узлов, вполне желательное для пользовательской подсети, явно является избыточным для подсети, которая связывает два маршрутизатора по схеме «точка-точка». В этом случае требуются всего два адреса для адресации двух портов соседних маршрутизаторов. В предыдущем же примере для этой вспомогательной сети Ml — М2 был использован номер, позволяющий адресовать 214 узлов, что делает такое решение неприемлемо избыточным. Администратор может более рационально распределить имеющееся в его распоряжении адресное пространство с помощью масок переменной длины.

На рис. 5.17 приведен пример распределения адресного пространства, при котором избыточность имеющегося множества IP-адресов может быть сведена к минимуму. Половина из имеющихся адресов (215) была отведена для создания сети с адресом 129.44.0.0 и маской 255.255.128.0. Следующая порция адресов, составляющая четверть всего адресного пространства (214), была назначена для сети 129.44.128.0 с маской 255.255.192.0. Далее в пространстве адресов был «вырезан» небольшой фрагмент для создания сети, предназначенной для связывания внутреннего маршрутизатора М2 с внешним маршрутизатором Ml.

В IP-адресе такой вырожденной сети для поля номера узла как минимум должны быть отведены два двоичных разряда. Из четырех возможных комбинаций номеров узлов: 00, 01,10 и 11 два номера имеют специальное назначение и не могут быть присвоены узлам, но оставшиеся два 10 и 01 позволяет адресовать порты маршрутизаторов. В нашем примере сеть была выбрана с некоторым запасом — на 8 узлов. Поле номера узла в таком случае имеет 3 двоичных разряда, маска в десятичной нотации имеет вид 255.255.255.248, а номер сети, как видно из рис. 5.17, равен в данном конкретном случае 129.44.192.0. Если эта сеть является локальной, то на ней могут быть расположены четыре узла помимо двух портов маршуртизаторов.

ПРИМЕЧАНИЕЗаметим, что глобальным связям между маршрутизаторами типа «точка-точка» не обязательно давать IP-адреса, так как к такой сети не могут подключаться никакие другие узлы, кроме двух портов маршрутизаторов. Однако чаще всего такой вырожденной сети все же дают IP-адрес. Это делается, например, для того, чтобы скрыть внутреннюю структуру сети и обращаться к ней по одному адресу входного порта маршрутизатора, в данном примере по адресу 129.44.192.1. Кроме того, этот адрес может понадобиться при туннелировании немаршрутизируемых протоколов в IP-пакеты, что будет рассмотрено ниже.

Оставшееся адресное пространство администратор может «нарезать» на разное количество сетей разного объема в зависимости от своих потребностей. Из оставшегося пула (214 — 4) адресов администратор может образовать еще одну достаточно большую сеть с числом узлов 213. При этом свободными останутся почти столько же адресов (213 — 4), которые также могут быть использованы для создания новых сетей. К примеру, из этого «остатка» можно образовать 31 сеть, каждая из которых равна размеру стандартной сети класса С, и к тому же еще несколько сетей меньшего размера. Ясно, что разбиение может быть другим, но в любом случае с помощью масок переменного размера администратор всегда имеет возможность гораздо рациональнее использовать все имеющиеся у него адреса.

Таблица маршрутизации М2, соответствующая структуре сети, показанной на рис. 5.18, содержит записи о четырех непосредственно подключенных сетях и запись о маршрутизаторе по умолчанию (табл. 5.13). Процедура поиска маршрута при использовании масок переменной длины ничем не отличается от подобной процедуры, описанной ранее для масок одинаковой длины.

Некоторые особенности масок переменной длины проявляются при наличии так называемых «перекрытий». Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети или одному и тому же узлу. В этом случае адрес сети в пришедшем пакете может совпасть с адресами сетей, содержащихся сразу в нескольких записях таблицы маршрутизации.

Рассмотрим пример. Пусть пакет, поступивший из внешней сети на маршрутизатор Ml, имеет адрес назначения 129.44.192.5. Ниже приведен фрагмент таблицы маршрутизации маршрутизатора Ml. Первая из приведенных двух записей говорит о том, что все пакеты, адреса которых начинаются на 129.44, должны быть переданы на маршрутизатор М2. Эта запись выполняет агрегирование адресов всех подсетей, созданных на базе одной сети 129.44.0.0. Вторая строка говорит о том, что среди всех возможных подсетей сети 129.44.0.0 есть одна, 129.44.192.0, для которой пакеты можно направлять непосредственно, а не через маршрутизатор М2.

Если следовать стандартному алгоритму поиска маршрута по таблице, то сначала на адрес назначения 129.44.192.5 накладывается маска из первой строки 255.255.0.0 и получается результат 129.44.0.0, который совпадает с номером сети в этой строке. Но и при наложении на адрес 129.44.192.5 маски из второй строки 255.255.255.248 полученный результат 129.44.192.0 также совпадает с номером сети во второй строке. В таких случаях должно быть применено следующее правило: «Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть выбирается адрес подсети, дающий большее совпадение разрядов».

В данном примере будет выбран второй маршрут, то есть пакет будет передан в непосредственно подключенную сеть, а не пойдет кружным путем через маршрутизатор М2.

Механизм выбора самого специфического маршрута является обобщением понятия «маршрут по умолчанию». Поскольку в традиционной записи для маршрута по умолчанию 0.0.0.0 маска 0.0.0.0 имеет нулевую длину, то этот маршрут считается самым неспецифическим и используется только при отсутствии совпадений со всеми остальными записями из таблицы маршрутизации.
    продолжение
–PAGE_BREAK–
ПРИМЕЧАНИЕВ IP-пакетах при использовании механизма масок по-прежнему передается только IP-адрес назначения, а маска сети назначения не передается. Поэтому из IP-адреса пришедшего пакета невозможно выяснить, какая часть адреса относится к номеру сети, а какая — к номеру узла. Если маски во всех подсетях имеют один размер, то это не создает проблем. Если же для образования подсетей применяют маски переменной длины, то маршрутизатор должен каким-то образом узнавать, каким адресам сетей какие маски соответствуют. Для этого используются протоколы маршрутизации, переносящие между маршрутизаторами не только служебную информацию об адресах сетей, но и о масках, соответствующих этим номерам. К таким протоколам относятся протоколы RIPv2 и OSPF, а вот, например, протокол RIP маски не распространяет и для использования масок переменной длины не подходит.
Технология бесклассовой междоменной маршрутизации CIDR
За последние несколько лет в сети Internet многое изменилось: резко возросло число узлов и сетей, повысилась интенсивность трафика, изменился характер передаваемых данных. Из-за несовершенства протоколов маршрутизации обмен сообщениями об обновлении таблиц стал иногда приводить к сбоям магистральных маршрутизаторов из-за перегрузки при обработке большого объема служебной информации. Так, в 1994 году таблицы магистральных маршрутизаторов в Internet содержали до 70 000 маршрутов.

На решение этой проблемы была направлена, в частности, и технология бес-классовой междоменной маршрутизации (Classless Inter-Domain Routing, CIDR), впервые о которой было официально объявлено в 1993 году, когда были опубликованы RFC 1517, RFC 1518, RFC 1519 и RFC 1520.

Суть технологии CIDR заключается в следующем. Каждому поставщику услуг Internet должен назначаться непрерывный диапазон в пространстве IP-адресов. При таком подходе адреса всех сетей каждого поставщика услуг имеют общую старшую часть — префикс, поэтому маршрутизация на магистралях Internet может осуществляться на основе префиксов, а не полных адресов сетей. Агрегирование адресов позволит уменьшить объем таблиц в маршрутизаторах всех уровней, а следовательно, ускорить работу маршрутизаторов и повысить пропускную способность Internet.

Деление IP-адреса на номер сети и номер узла в технологии CIDR происходит не на основе нескольких старших бит, определяющих класс сети (А, В или С), а на основе маски переменной длины, назначаемой поставщиком услуг. На рис. 5.19 показан пример некоторого пространства IP-адресов, которое имеется в распоряжении гипотетического поставщика услуг. Все адреса имеют общую часть в k старших разрядах — префикс. Оставшиеся п разрядов используются для дополнения неизменяемого префикса переменной частью адреса. Диапазон имеющихся адресов в таком случае составляет 2n. Когда потребитель услуг обращается к поставщику услуг с просьбой о выделении ему некоторого количества адресов, то в имеющемся пуле адресов «вырезается» непрерывная область S1, S2, S3 или S4 соответствующего размера. Причем границы этой области выбираются такими, чтобы для нумерации требуемого числа узлов хватило некоторого числа младших разрядов, а значения всех оставшихся (старших) разрядов было одинаковым у всех адресов данного диапазона. Таким условиям могут удовлетворять только области, размер которых кратен степени двойки, А границы выделяемого участка должны быть кратны требуемому размеру.

Рассмотрим пример. Пусть поставщик услуг Internet располагает пулом адресов в диапазоне 193.20.0.0-193.23.255.255 (1100 0001.0001 0100.0000 0000.0000 0000-11000001.0001 0111.11111111.11111111) с общим префиксом 193.20(11000001.0001 01) и маской, соответствующей этому префиксу 255.252.0.0.

Если абоненту этого поставщика услуг требуется совсем немного адресов, например 13, то поставщик мог бы предложить ему различные варианты: сеть 193.20.30.0, сеть 193.20.30.16 или сеть 193.21.204.48, все с одним и тем же значением маски 255.255.255.240. Во всех случаях в распоряжении абонента для нумерации узлов имеются 4 младших бита.

Рассмотрим другой вариант, когда к поставщику услуг обратился крупный заказчик, сам, возможно собирающийся оказывать услуги по доступу в Internet. Ему требуется блок адресов в 4000 узлов. В этом случае поставщик услуг мог бы предложить ему, например, диапазон адресов 193,22.160.0-193.22.175.255 с маской 255.255.240.0. Агрегированный номер сети (префикс) в этом случае будет равен 193.22.160.0.

Администратор маршрутизатора М2 (рис. 5.20) поместит в таблицу маршрутизации только по одной записи на каждого клиента, которому был выделен пул адресов, независимо от количества подсетей, организованных клиентом. Если клиент, получивший сеть 193.22.160.0, через некоторое время разделит ее адресное пространство в 4096 адресов на 8 подсетей, то в маршрутизаторе М2 первоначальная информация о выделенной ему сети не изменится.

Для поставщика услуг верхнего уровня, поддерживающего клиентов через маршрутизатор Ml, усилия поставщика услуг нижнего уровня по разделению его адресного пространства также не будут заметны. Запись 193.20.0,0 с маской 255.252.0,0 полностью описывает сети поставщика услуг нижнего уровня в маршрутизаторе Ml.

Итак, внедрение технологии CIDR позволяет решить две основные задачи.

·         Более экономное расходование адресного пространства. Действительно, получая в свое распоряжение адрес сети, например, класса С, некоторые организации не используют весь возможный диапазон адресов просто потому, что в их сети имеется гораздо меньше 255 узлов. Технология CIDR отказывается от традиционной концепции разделения адресов протокола IP на классы, что позволяет получать в пользование столько адресов, сколько реально необходимо. Благодаря технологии CIDR поставщики услуг получают возможность «нарезать» блоки из выделенного им адресного пространства в точном соответствии с требованиями каждого клиента, при этом у клиента остается пространство для маневра на случай его будущего роста.

·         Уменьшение числа записей в таблицах маршрутизаторов за счет объединения маршрутов — одна запись в таблице маршрутизации может представлять большое количество сетей. Действительно, для всех сетей, номера которых начинаются с одинаковой последовательности цифр, в таблице маршрутизации может быть предусмотрена одна запись (см. рис. 5.20). Так, маршрутизатор М2 установленный в организации, которая использует технику CIDR для выделения адресов своим клиентам, должен поддерживать в своей таблице маршрутизации все 8 записей о сетях клиентов. А маршрутизатору Ml достаточно иметь одну запись о всех этих сетях, на основании которой он передает пакеты с префиксом 193.20 маршрутизатору М2, который их и распределяет по нужным портам.

Если все поставщики услуг Internet будут придерживаться стратегии CIDR, то особенно заметный выигрыш будет достигаться в магистральных маршрутизаторах.

Технология CIDR уже успешно используется в текущей версии IPv4 и поддерживается такими протоколами маршрутизации, как OSPF, RIP-2, BGP4. Предполагается, что эти же протоколы будут работать и с новой версией протокола IPv6. Следует отметить, что в настоящее время технология CIDR поддерживается магистральными маршрутизаторами Internet, а не обычными хостами в локальных сетях.

Использование CIDR в сетях IPv4 в общем случае требует перенумерации сетей. Поскольку эта процедура сопряжена с определенными временными и материальными затратами, для ее проведения пользователей нужно каким-либо образом стимулировать. В качестве таких стимулов рассматривается, например, введение оплаты за строку в таблице маршрутизации или же за количество узлов в сети. При использовании классов сетей абонент часто не полностью занимает весь допустимый диапазон адресов узлов — 254 адреса для сети класса С или 65 534 адреса для сети класса В. Часть адресов узлов обычно пропадает. Требование оплаты каждого адреса узла поможет пользователю решиться на перенумерацию, с тем чтобы получить ровно столько адресов, сколько ему нужно.
    продолжение
–PAGE_BREAK–5.3.6. Фрагментация IP-пакетов
Протокол IP позволяет выполнять фрагментацию пакетов, поступающих на входные порты маршрутизаторов.

Следует различать фрагментацию сообщений в узле-отправителе и динамическую фрагментацию сообщений в транзитных узлах сети — маршрутизаторах. Практически во всех стеках протоколов есть протоколы, которые отвечают за фрагментацию сообщений прикладного уровня на такие части, которые укладываются в кадры канального уровня. В стеке TCP/IP эту задачу решает протокол TCP, который разбивает поток байтов, передаваемый ему с прикладного уровня на сообщения нужного размера (например, на 1460 байт для протокола Ethernet). Поэтому протокол IP в узле-отправителе не использует свои возможности по фрагментации пакетов.

А вот при необходимости передать пакет в следующую сеть, для которой размер пакета является слишком большим, IP-фрагментация становится необходимой. В функции уровня IP входит разбиение слишком длинного для конкретного типа составляющей сети сообщения на более короткие пакеты с созданием соответствующих служебных полей, нужных для последующей сборки фрагментов в исходное сообщение.

В большинстве типов локальных и глобальных сетей значения MTU, то есть максимальный размер поля данных, в которое должен инкапсулировать свой пакет протокол IP, значительно отличается. Сети Ethernet имеют значение MTU, равное 1500 байт, сети FDDI — 4096 байт, а сети Х.25 чаще всего работают с MTU в 128 байт.

IP-пакет может быть помечен как не фрагментируемый. Любой пакет, помеченный таким образом, не может быть фрагментирован модулем IP ни при каких условиях. Если же пакет, помеченный как не фрагментируемый, не может достигнуть получателя без фрагментации, то этот пакет просто уничтожается, а узлу-отправителю посылается соответствующее ICMP-сообщение.

Протокол IP допускает возможность использования в пределах отдельной подсети ее собственных средств фрагментирования, невидимых для протокола IP. Например, технология АТМ делит поступающие IP-пакеты на ячейки с полем данных в 48 байт с помощью своего уровня сегментирования, а затем собирает ячейки в исходные пакеты на выходе из сети. Но такие технологии, как АТМ, являются скорее исключением, чем правилом.

Процедуры фрагментации и сборки протокола IP рассчитаны на то, чтобы пакет мог быть разбит на практически любое количество частей, которые впоследствии могли бы быть вновь собраны. Получатель фрагмента использует поле идентификации для того, чтобы не перепутать фрагменты различных пакетов. Модуль IP, отправляющий пакет, устанавливает в поле идентификации значение, которое должно быть уникальным для данной пары отправитель — получатель, а также время, в течение которого пакет может быть активным в сети.

Поле смещения фрагмента сообщает получателю положение фрагмента в исходном пакете. Смещение фрагмента и длина определяют часть исходного пакета, принесенную этим фрагментом. Флаг «more fragments» показывает появление последнего фрагмента. Модуль протокола IP, отправляющий неразбитый на фрагменты пакет, устанавливает в нуль флаг «more fragments» и смещение во фрагменте.

Эти поля дают достаточное количество информации для сборки пакета.

Чтобы разделить на фрагменты большой пакет, модуль протокола IP, установленный, например, на маршрутизаторе, создает несколько новых пакетов и копирует содержимое полей IP-заголовка из большого пакета в IP-заголовки всех новых пакетов. Данные из старого пакета делятся на соответствующее число частей, размер каждой из которых, кроме самой последней, обязательно должен быть кратным 8 байт. Размер последней части данных равен полученному остатку.

Каждая из полученных частей данных помещается в новый пакет. Когда происходит фрагментация, то некоторые параметры IP-заголовка копируются в заголовки всех фрагментов, а другие остаются лишь в заголовке первого фрагмента. Процесс фрагментации может изменить значения данных, расположенных в поле параметров, и значение контрольной суммы заголовка, изменить значение флага «more fragments» и смещение фрагмента, изменить длину IP-заголовка и общую длину пакета, В заголовок каждого пакета заносятся соответствующие значения в поле смещения «fragment offset», а в поле общей длины пакета помещается длина каждого пакета. Первый фрагмент будет иметь в поле «fragment offset» нулевое значение. Во всех пакетах, кроме последнего, флаг «more fragments» устанавливается в единицу, а в последнем фрагменте — в нуль.

Чтобы собрать фрагменты пакета, модуль протокола IP (например, модуль на хост — компьютере) объединяет IP-пакеты, имеющие одинаковые значения в полях идентификатора, отправителя, получателя и протокола. Таким образом, отправитель должен выбрать идентификатор таким образом, чтобы он был уникален для данной пары отправитель-получатель, для данного протокола и в течение того времени, пока данный пакет (или любой его фрагмент) может существовать в составной IP-сети.

Очевидно, что модуль протокола IP, отправляющий пакеты, должен иметь таблицу идентификаторов, где каждая запись соотносится с каждым отдельным получателем, с которым осуществлялась связь, и указывает последнее значение максимального времени жизни пакета в IP-сети. Однако, поскольку поле идентификатора допускает 65 536 различных значений, некоторые хосты могут использовать просто уникальные идентификаторы, не зависящие от адреса получателя.

В некоторых случаях целесообразно, чтобы идентификаторы IP-пакетов выбирались протоколами более высокого, чем IP, уровня. Например, в протоколе TCP предусмотрена повторная передача ТСР — сегментов, по каким-либо причинам не дошедшим до адресата. Вероятность правильного приема увеличивалась бы, если бы при повторной передаче идентификатор для IP-пакета был бы тем же, что и в исходном IP-пакете, поскольку его фрагменты могли бы использоваться для сборки правильного ТСР — сегмента.

Процедура объединения заключается в помещении данных из каждого фрагмента в позицию, указанную в заголовке пакета в поле «fragment offset».

Каждый модуль IP должен быть способен передать пакет из 68 байт без дальнейшей фрагментации. Это связано с тем, что IP-заголовок может включать до 60 байт, а минимальный фрагмент данных — 8 байт. Каждый получатель должен быть в состоянии принять пакет из 576 байт в качестве единого куска либо в виде фрагментов, подлежащих сборке.

Если бит флага запрета фрагментации (Don’t Fragment, DF) установлен, то фрагментация данного пакета запрещена, даже если в этом случае он будет потерян. Данное средство может использоваться для предотвращения фрагментации в тех случаях, когда хост — получатель не имеет достаточных ресурсов для сборки фрагментов.

Работа протокола IP по фрагментации пакетов в хостах и маршрутизаторах иллюстрируется на рис. 5.21.

Пусть компьютер 1 связан с сетью, имеющей значение MTU в 4096 байт, например с сетью FDDI, При поступлении на IP-уровень компьютера 1 сообщения от транспортного уровня размером в 5600 байт протокол IP делит его на два IP-пакета, устанавливая в первом пакете признак фрагментации и присваивая пакету уникальный идентификатор, например 486, В первом пакете величина поля смещения равна 0, а во втором — 2800. Признак фрагментации во втором пакете равен нулю, что показывает, что это последний фрагмент пакета. Общая величина IP-пакета составляет 2800 плюс 20 (размер IP-заголовка), то есть 2820 байт, что умещается в поле данных кадра FDDI. Далее модуль IP компьютера 1 передает эти пакеты своему сетевому интерфейсу (образуемому протоколами канального уровня К 1 и физического уровня Ф1), Сетевой интерфейс отправляет кадры следующему маршрутизатору.

После того, как кадры пройдут уровень сетевого интерфейса маршрутизатора (К1 и Ф1) и освободятся от заголовков FDDI, модуль IP по сетевому адресу определяет, что прибывшие два пакета нужно передать в сеть 2, которая является сетью Ethernet и имеет значение MTU, равное 1500. Следовательно, прибывшие IP-пакеты необходимо фрагментировать. Маршрутизатор извлекает поле данных из каждого пакета и делит его еще пополам, чтобы каждая часть уместилась в поле данных кадра Ethernet. Затем он формирует новые IP-пакеты, каждый из которых имеет длину 1400 + 20 — 1420 байт, что меньше 1500 байт, поэтому они нормально помещаются в поле данных кадров Ethernet.

В результате в компьютер 2 по сети Ethernet приходят четыре IP-пакета с общим идентификатором 486, что позволяет протоколу IP, работающему в компьютере 2, правильно собрать исходное сообщение. Если пакеты пришли не в том порядке, в котором были посланы, то смещение укажет правильный порядок их объединения.

Отметим, что IP-маршрутизаторы не собирают фрагменты пакетов в более крупные пакеты, даже если на пути встречается сеть, допускающая такое укрупнение. Это связано с тем, что отдельные фрагменты сообщения могут перемещаться по интерсети по различным маршрутам, поэтому нет гарантии, что все фрагменты проходят через какой-либо промежуточный маршрутизатор на их пути.

При приходе первого фрагмента пакета узел назначения запускает таймер, который определяет максимально допустимое время ожидания прихода остальных фрагментов этого пакета. Таймер устанавливается на максимальное из двух значений: первоначальное установочное время ожидания и время жизни, указанное в принятом фрагменте. Таким образом, первоначальная установка таймера является нижней границей для времени ожидания при c6opi. Если таймер истекает раньше прибытия последнего фрагмента, то все ресурсы сборки, связанные с данным пакетом, освобождаются, все полученные к этому моменту фрагменты пакета отбрасываются, а в узел, пославший исходный пакет, направляется сообщение об ошибке с помощью протокола ICMP.
    продолжение
–PAGE_BREAK–5.3.7. Протокол надежной доставки TCP-сообщений
Протокол IP является дейтаграммным протоколом и поэтому по своей природе не может гарантировать надежность передачи данных. Эту задачу — обеспечение надежного канала обмена данными между прикладными процессами в составной сети -решает протокол TCP (Transmission Control Protocol), относящийся к транспортному уровню.

Протокол TCP работает непосредственно над протоколом IP и использует для транспортировки своих блоков данных потенциально ненадежный протокол IP. Надежность передачи данных протоколом TCP достигается за счет того, что он основан на установлении логических соединений между взаимодействующими процессами. До тех пор пока программы протокола TCP продолжают функционировать корректно, а составная сеть не распалась на несвязные части, ошибки в передаче данных на уровне протокола IP не будут влиять на правильное получение данных.

Протокол IP используется протоколом TCP в качестве транспортного средства. Перед отправкой своих блоков данных протокол TCP помещает их в оболочку IP-пакета. При необходимости протокол IP осуществляет любую фрагментацию и сборку блоков данных TCP, требующуюся для осуществления передачи и доставки через множество сетей и промежуточных шлюзов.

На рис. 5.22 показано, как процессы, выполняющиеся на двух конечных узлах, устанавливают с помощью протокола TCP надежную связь через составную сеть, все узлы которой используют для передачи сообщений дейтаграммный протокол IP.
Порты
Протокол TCP взаимодействует через межуровневые интерфейсы с ниже лежащим протоколом IP и с выше лежащими протоколами прикладного уровня или приложениями.

В то время как задачей сетевого уровня, к которому относится протокол IP, является передача данных между произвольными узлами сети, задача транспортного уровня, которую решает протокол TCP, заключается в передаче данных между любыми прикладными процессами, выполняющимися на любых узлах сети. Действительно, после того как пакет средствами протокола IP доставлен в компьютер-получатель, данные необходимо направить конкретному процессу-получателю. Каждый компьютер может выполнять несколько процессов, более того, прикладной процесс тоже может иметь несколько точек входа, выступающих в качестве адреса назначения для пакетов данных.

Пакеты, поступающие на транспортный уровень, организуются операционной системой в виде множества очередей к точкам входа различных прикладных процессов. В терминологии TCP/IP такие системные очереди называются портами. Таким образом, адресом назначения, который используется протоколом TCP, является идентификатор (номер) порта прикладной службы. Номер порта в совокупности с номером сети и номером конечного узла однозначно определяют прикладной процесс в сети. Этот набор идентифицирующих параметров имеет название сокет (socket).

Назначение номеров портов прикладным процессам осуществляется либо централизованно, если эти процессы представляют собой популярные общедоступные службы (например, номер 21 закреплен за службой удаленного доступа к файлам FTP, a 23 — за службой удаленного управления telnet), либо локально для тех служб, которые еще не стали столь распространенными, чтобы закреплять за ними стандартные (зарезервированные) номера. Централизованное присвоение службам номеров портов выполняется организацией Internet Assigned Numbers Authority (IANA). Эти номера затем закрепляются и опубликовываются в стандартах Internet (RFC 1700).

Локальноеприсвоение номера порта заключается в том, что разработчик некоторого приложения просто связывает с ним любой доступный, произвольно выбранный числовой идентификатор, обращая внимание на то, чтобы он не входил в число зарезервированных номеров портов. В дальнейшем все удаленные запросы к данному приложению от других приложений должны адресоваться с указанием назначенного ему номера порта.

Протокол TCP ведет для каждого порта две очереди: очередь пакетов, поступающих в данный порт из сети, и очередь пакетов, отправляемых данным портом в сеть. Процедура обслуживания протоколом TCP запросов, поступающих от нескольких различных прикладных служб, называется мультиплексированием. Обратная процедура распределения протоколом TCP поступающих от сетевого уровня пакетов между набором высокоуровневых служб, идентифицированных номерами портов, называется демультиплексированием (рис. 5.23).
Сегменты и потоки
Единицей данных протокола TCP является сегмент. Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байтов. Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера «вырезается» некоторая непрерывная часть данных, которая и называется сегментом (см. рис. 5.23). В отличие от многих других протоколов, протокол TCP подтверждает получение не пакетов, а байтов потока.

Не все сегменты, посланные через соединение, будут одного и того же размера, однако оба участника соединения должны договориться о максимальном размере сегмента, который они будут использовать. Этот размер выбирается таким образом, чтобы при упаковке сегмента в IP-пакет он помещался туда целиком, то есть максимальный размер сегмента не должен превосходить максимального размера поля данных IP-пакета, В противном случае пришлось бы выполнять фрагментацию, то есть делить сегмент на несколько частей, чтобы разместить его в IP-пакете,
Соединения
Для организации надежной передачи данных предусматривается установление логического соединения между двумя прикладными процессами. Поскольку соединения устанавливаются через ненадежную коммуникационную систему, основанную на протоколе IP, то во избежание ошибочной инициализации соединений используется специальная многошаговая процедура подтверждения связи.

Соединение в протоколе TCP идентифицируется парой полных адресов обоих взаимодействующих процессов — сокетов. Каждый из взаимодействующих процессов может участвовать в нескольких соединениях.

Формально соединение можно определить как набор параметров, характеризующий процедуру обмена данными между двумя процессами. Помимо полных адресов процессов этот набор включает и параметры, значения которых определяются в результате переговорного процесса модулей TCP двух сторон соединения. К таким параметрам относятся, в частности, согласованные размеры сегментов, которые может посылать каждая из сторон, объемы данных, которые разрешено передавать без получения на них подтверждения, начальные и текущие номера передаваемых байтов. Некоторые из этих параметров остаются постоянными в течение всего сеанса связи, а некоторые адаптивно изменяются.

В рамках соединения осуществляется обязательное подтверждение правильности приема для всех переданных сообщений и при необходимости выполняется повторная передача. Соединение в TCP позволяет вести передачу данных одновременно в обе Стороны, то есть полнодуплексную передачу.
    продолжение
–PAGE_BREAK–Реализация скользящего окна в протоколе TCP
В рамках установленного соединения правильность передачи каждого сегмента должна подтверждаться квитанцией получателя. Квитирование — это один из традиционных методов обеспечения надежной связи. В протоколе TCP используется частный случай квитирования — алгоритм скользящего окна. Идея этого алгоритма была изложена в главе 2, «Основы передачи дискретных данных».

Особенность использования алгоритма скользящего окна в протоколе TCP состоит в том, что, хотя единицей передаваемых данных является сегмент, окно определено на множестве нумерованных байтов неструктурированного потока данных, поступающих с верхнего уровня и буферизуемых протоколом TCP. Получающий модуль TCP отправляет «окно» посылающему модулю TCP. Данное окно задает количество байтов (начиная с номера байта, о котором уже была выслана квитанция), которое принимающий модуль TCP готов в настоящий момент принять.

Квитанция (подтверждение) посылается только в случае правильного приема данных, отрицательные квитанции не посылаются. Таким образом, отсутствие квитанции означает либо прием искаженного сегмента, либо потерю сегмента, либо потерю квитанции. В качестве квитанции получатель сегмента отсылает ответное сообщение (сегмент), в которое помещает число, на единицу превышающее максимальный номер байта в полученном сегменте. Это число часто называют номером очереди.

На рис. 5.24 показан поток байтов, поступающий на вход протокола TCP. Из потока байтов модуль TCP нарезает последовательность сегментов. Для определенности на рисунке принято направление перемещения данных справа налево. В этом потоке можно указать несколько логических границ. Первая граница отделяет сегменты, которые уже были отправлены и на которые уже пришли квитанции. Следующую часть потока составляют сегменты, которые также уже отправлены, так как входят в границы, определенные окном, но квитанции на них пока не получены. Третья часть потока — это сегменты, которые пока не отправлены, но могут быть отправлены, так как входят в пределы окна. И наконец, последняя граница указывает на начало последовательности сегментов, ни один из которых не может быть отправлен до тех пор, пока не придет очередная квитанция и окно не будет сдвинуто вправо.

Если размер окна равен W, а последняя по времени квитанция содержала значение N, то отправитель может посылать новые сегменты до тех пор, пока в очередной сегмент не попадет байт с номером N+W. Этот сегмент выходит за рамки окна, и передачу в таком случае необходимо приостановить до прихода следующей квитанции.

Надежность передачи достигается благодаря подтверждениям и номерам очереди. Концептуально каждому байту данных присваивается номер очереди. Номер очереди для первого байта данных в сегменте передается вместе с этим сегментом и называется номером очереди для сегмента. Сегменты также несут номер подтверждения, который является номером для следующего ожидаемого байта данных, передаваемого в обратном направлении. Когда протокол TCP передает сегмент с данными, он помещает его копию в очередь повторной передачи и запускает таймер. Когда приходит подтверждение для этих данных, соответствующий сегмент удаляется из очереди. Если подтверждение не приходит до истечения срока, то сегмент посылается повторно.

Выбор времени ожидания (тайм-аута) очередной квитанции является важной задачей, результат решения которой влияет на производительность протокола TCP. Тайм-аут не должен быть слишком коротким, чтобы по возможности исключить избыточные повторные передачи, которые снижают полезную пропускную способность системы. Но он не должен быть и слишком большим, чтобы избежать длительных простоев, связанных с ожиданием несуществующей или «заблудившейся» квитанции.

При выборе величины тайм-аута должны учитываться скорость и надежность физических линий связи, их протяженность и многие другие подобные факторы. В протоколе TCP тайм-аут определяется с помощью достаточно сложного адаптивного алгоритма, идея которого состоит в следующем. При каждой передаче засекается время от момента отправки сегмента до прихода квитанции о его приеме (время оборота). Получаемые значения времени оборота усредняются с весовыми коэффициентами, возрастающими от предыдущего замера к последующему. Это делается с тем, чтобы усилить влияние последних замеров. В качестве тайм-аута выбирается среднее время оборота, умноженное на некоторый коэффициент. Практика показывает, что значение этого коэффициента должно превышать 2. В сетях с большим разбросом времени оборота при выборе тайм-аута учитывается и дисперсия этой величины.

Поскольку каждый байт пронумерован, то каждый из них может быть опознан. Приемлемый механизм опознавания является накопительным, поэтому опознавание номера Х означает, что все байты с предыдущими номерами уже получены. Этот механизм позволяет регистрировать появление дубликатов в условиях повторной передачи. Нумерация байтов в пределах сегмента осуществляется так, чтобы первый байт данных сразу вслед за заголовком имел наименьший номер, а следующие за ним байты имели номера по возрастающей.

Окно, посылаемое с каждым сегментом, определяет диапазон номеров очереди, которые отправитель окна (он же получатель данных) готов принять в настоящее время. Предполагается, что такой механизм связан с наличием в данный момент места в буфере данных.

Варьируя величину окна, можно влиять на загрузку сети. Чем больше окно, тем большую порцию неподтвержденных данных можно послать в сеть. Но если пришло большее количество данных, чем может быть принято программой TCP, данные будут отброшены. Это приведет к излишним пересылкам информации и ненужному увеличению нагрузки на сеть и программу TCP.

С другой стороны, указание окна малого размера может ограничить передачу данных скоростью, которая определяется временем путешествия по сети каждого посылаемого сегмента. Чтобы избежать применения малых окон, получателю данных предлагается откладывать изменение окна до тех пор, пока свободное место не составит 20-40 % от максимально возможного объема памяти для этого соединения. Но и отправителю не стоит спешить с посылкой данных, пока окно не станет достаточно большим. Учитывая эти соображения, разработчики протокола TCP предложили схему, согласно которой при установлении соединения заявляется большое окно, но впоследствии его размер существенно уменьшается.

Если сеть не справляется с нагрузкой, то возникают очереди в промежуточных узлах — маршрутизаторах и в конечных узлах-компьютерах.

При переполнении приемного буфера конечного узла «перегруженный» протокол TCP, отправляя квитанцию, помещает в нее новый, уменьшенный размер окна. Если он совсем отказывается от приема, то в квитанции указывается окно нулевого размера. Однако даже после этого приложение может послать сообщение на отказавшийся от приема порт. Для этого сообщение должно сопровождаться пометкой «срочно». В такой ситуации порт обязан принять сегмент, даже если для этого придется вытеснить из буфера уже находящиеся там данные. После приема квитанции с нулевым значением окна протокол-отправитель время от времени делает контрольные попытки продолжить обмен данными. Если протокол-приемник уже готов принимать информацию, то в ответ на контрольный ‘запрос он посылает квитанцию с указанием ненулевого размера окна.

Другим проявлением перегрузки сети является переполнение буферов в маршрутизаторах. В таких случаях они могут централизованно изменить размер окна, посылая управляющие сообщения некоторым конечным узлам, что позволяет им дифференцированно управлять интенсивностью потока данных в разных частях сети.
    продолжение
–PAGE_BREAK–Выводы
·         Протокол IP решает задачу доставки сообщений между узлами составной сети. Протокол IP относится к протоколам без установления соединений, поэтому он не дает никаких гарантий надежной доставки сообщений. Все вопросы обеспечения надежности доставки данных в составной сети в стеке TCP/IP решает протокол TCP, основанный на установлении логических соединений между взаимодействующими процессами.

·         IP-пакет состоит из заголовка и поля данных. Максимальная длина пакета 65 535 байт, Заголовок обычно имеет длину 20 байт и содержит информацию о сетевых адресах отправителя и получателя, о параметрах фрагментации, о времени жизни пакета, о контрольной сумме и некоторых других. В поле данных IP-пакета находятся сообщения более высокого уровня, например TCP или UDP.

·         Вид таблицы IP-маршрутизации зависит от конкретной реализации маршрутизатора, но, несмотря на достаточно сильные внешние различия, в таблицах всех типов маршрутизаторов есть все ключевые поля, необходимые для выполнения маршрутизации.

·         Существует несколько источников, поставляющих записи в таблицу маршрутизации. Во-первых, при инициализации программное обеспечение стека TCP/ IP заносит в таблицу записи о непосредственно подключенных сетях и маршрутизаторах по умолчанию, а также записи об особых адресах типа 127.0.0.0. Во-вторых, администратор вручную заносит статические записи о специфичных маршрутах или о маршрутизаторе по умолчанию. В-третьих, протоколы маршрутизации автоматически заносят в таблицу динамические записи о имеющихся маршрутах.

·         Эффективным средством структуризации IP-сетей являются маски. Маски позволяют разделить одну сеть на несколько подсетей. Маски одинаковой длины используются для деления сети на подсети равного размера, а маски переменной длины — для деления сети на подсети разного размера. Использование масок модифицирует алгоритм маршрутизации, поэтому в этом случае предъявляются особые требования к протоколам маршрутизации в сети, к техническим характеристикам маршрутизаторов и процедурам их конфигурирования.

·         Значительная роль в будущем IP-сетей отводится технологии бесклассовой междоменной маршрутизации (CIDR), которая решает две основные задачи. Первая состоит в более экономном расходование адресного пространства — благодаря CIDR поставщики услуг получают возможность «нарезать» блоки разных размеров из выделенного им адресного пространства в точном соответствии с требованиями каждого клиента. Вторая задача заключается в уменьшении числа записей в таблицах маршрутизации за счет объединения маршрутов — одна запись в таблице маршрутизации может представлять большое количество сетей с общим префиксом.

·         Важной особенностью протокола IP, отличающей его от других сетевых протоколов, является его способность выполнять динамическую фрагментацию пакетов при передаче их между сетями с различными MTU. Это свойство во многом способствовало тому, что протокол IP смог занять доминирующие позиции в сложных составных сетях.
5.4. Протоколы маршрутизации в IP-сетях 5.4.1. Внутренние и внешние протоколы маршрутизации Internet
Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы — сети ARPANET. Для того чтобы понять их назначение и особенности, полезно сначала познакомиться со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.

Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems, AS). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Необходимо подчеркнуть, что автономная система и домен имен Internet — это разные понятия, которые служат разным целям. Автономная система объединяет сети, в которых под общим административным руководством одной организации осуществляется маршрутизация, а домен объединяет компьютеры (возможно, принадлежащие разным сетям), в которых под общим административным руководством одной организации осуществляется назначение уникальных символьных имен. Естественно, области действия автономной системы и домена имен могут в частном случае совпадать, если одна организация выполняет обе указанные функции.

Общая схема архитектуры сети Internet показана на рис. 5.25. Далее маршрутизаторы мы будем называть шлюзами, чтобы оставаться в русле традиционной терминологии Internet.

Шлюзы, которые используются для образования сетей и подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Магистраль сети также является автономной системой. Все автономные системы имеют уникальный 16-разрядный номер, который выделяется организацией, учредившей новую автономную систему, InterNIC.

Соответственно протоколы маршрутизации внутри автономных систем называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети — протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также допустим любой собственный внутренний протокол IGP.

Смысл разделения всей сети Internet на автономные системы — в ее многоуровневом модульном представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Изменение протоколов маршрутизации внутри какой-либо автономной системы никак не должно влиять на работу остальных автономных систем. Кроме того, деление Internet на автономные системы должно способствовать агрегированию информации в магистральных и внешних шлюзах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации станет неприемлемо большим.

Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения — количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.

Техника бесклассовой маршрутизации CIDR может значительно сократить объемы маршрутной информации, передаваемой между автономными системами. Так, если все сети внутри некоторой автономной системы начинаются с общего префикса, например 194.27.0.0/16, то внешний шлюз этой автономной системы должен делать объявления только об этом адресе, не сообщая отдельно о существовании внутри данной автономной системы, например, сети 194.27.32.0/19 или 194.27.40.0/21, так как эти адреса агрегируются в адрес 194.27.0.0/16.

Приведенная на рис. 5.25 структура Internet с единственной магистралью достаточно долго соответствовала действительности, поэтому специально для нее был разработан протокол обмена маршрутной информации между автономными системами, названный EGP. Однако по мере развития сетей поставщиков услуг структура Internet стала гораздо более сложной, с произвольным характером связей между автономными системами. Поэтому протокол EGP уступил место протоколу BGP, который позволяет распознать наличие петель между автономными системами и исключить их из межсистемных маршрутов. Протоколы EGP и BGP используются только во внешних шлюзах автономных систем, которые чаще всего организуются поставщиками услуг Internet. В маршрутизаторах корпоративных сетей работают внутренние протоколы маршрутизации, такие как RIP и OSPF.
    продолжение
–PAGE_BREAK–5.4.2. Дистанционно-векторный протокол RIP Построение таблицы маршрутизации
Протокол RIP (Routing Information Protocol) является внутренним протоколом маршрутизации дистанционно-векторного типа, он представляет собой один из наиболее ранних протоколов обмена маршрутной информацией и до сих пор чрезвычайно распространен в вычислительных сетях ввиду простоты реализации. Кроме версии RIP для сетей TCP/IP существует также версия RIP для сетей IPX/SPX компании Novell.

Для IP имеются две версии протокола RIP: первая и вторая. Протокол RIPvl не поддерживает масок, то есть он распространяет между маршрутизаторами только информацию о номерах сетей и расстояниях до них, а информацию о масках этих сетей не распространяет, считая, что все адреса принадлежат к стандартными классам А, В или С. Протокол RIPv2 передает информацию о масках сетей, поэтому он в большей степени соответствует требованиям сегодняшнего дня. Так как при построении таблиц маршрутизации работа версии 2 принципиально не отличается от версии 1, то в дальнейшем для упрощения записей будет описываться работа первой версии.

В качестве расстояния до сети стандарты протокола RIP допускают различные виды метрик: хопы, метрики, учитывающие пропускную способность, вносимые задержки и надежность сетей (то есть соответствующие признакам D, Т и R в поле «Качество сервиса» IP-пакета), а также любые комбинации этих метрик. Метрика должна обладать свойством аддитивности — метрика составного пути должна быть равна сумме метрик составляющих этого пути. В большинстве реализации RIP используется простейшая метрика — количество хопов, то есть количество промежуточных маршрутизаторов, которые нужно преодолеть пакету до сети назначения.

Рассмотрим процесс построения таблицы маршрутизации с помощью протокола RIP на примере составной сети, изображенной на рис. 5.26.
Этап 1 — создание минимальных таблиц
В этой сети имеется восемь IP-сетей, связанных четырьмя маршрутизаторами с идентификаторами: Ml, М2, МЗ и М4. Маршрутизаторы, работающие по протоколу RIP, могут иметь идентификаторы, однако для работы протокола они не являются необходимыми. В RIP-сообщениях эти идентификаторы не передаются.

В исходном состоянии в каждом маршрутизаторе программным обеспечением стека TCP/IP автоматически создается минимальная таблица маршрутизации, в которой учитываются только непосредственно подсоединенные сети. На рисунке адреса портов маршрутизаторов в отличие от адресов сетей помещены в овалы.

Таблица 5.14 позволяет оценить примерный вид минимальной таблицы маршрутизации маршрутизатора Ml.

Минимальные таблицы маршрутизации в других маршрутизаторах будут выглядеть соответственно, например, таблица маршрутизатора М2 будет состоять из трех записей (табл. 5.15).
Этап 2 — рассылка минимальных таблиц соседям
После инициализации каждого маршрутизатора он начинает посылать своим соседям сообщения протокола RIP, в которых содержится его минимальная таблица.

RIP-сообщения передаются в пакетах протокола UDP и включают два параметра для каждой сети: ее IP-адрес и расстояние до нее от передающего сообщение маршрутизатора.

Соседями являются те маршрутизаторы, которым данный маршрутизатор непосредственно может передать IP-пакет по какой-либо своей сети, не пользуясь услугами промежуточных маршрутизаторов. Например, для маршрутизатора Ml соседями являются маршрутизаторы М2 и МЗ, а для маршрутизатора М4 — маршрутизаторы М2 и МЗ.

Таким образом, маршрутизатор Ml передает маршрутизатору М2 и МЗ следующее сообщение:

сеть 201.36.14.0, расстояние 1;

сеть 132.11.0.0, расстояние 1;

сеть 194.27.18.0, расстояние 1.
Этап 3 — получение RIP-сообщений от соседей и обработка полученной информации
После получения аналогичных сообщений от маршрутизаторов М2 и МЗ маршрутизатор Ml наращивает каждое полученное поле метрики на единицу и запоминает, через какой порт и от какого маршрутизатора получена новая информация (адрес этого маршрутизатора будет адресом следующего маршрутизатора, если эта запись будет внесена в таблицу маршрутизации). Затем маршрутизатор начинает сравнивать новую информацию с той, которая хранится в его таблице маршрутизации (табл. 5.16).

Записи с четвертой по девятую получены от соседних маршрутизаторов, и они претендуют на помещение в таблицу. Однако только записи с четвертой по седьмую попадают в таблицу, а записи восьмая и девятая — нет. Это происходит потому, что они содержат данные об уже имеющихся в таблице Ml сетях, а расстояние до них хуже, чем в существующих записях.

Протокол RIP замещает запись о какой-либо сети только в том случае, если новая информация имеет лучшую метрику (расстояние в хопах меньше), чем имеющаяся. В результате в таблице маршрутизации о каждой сети остаётся только одна запись; если же имеется несколько равнозначных в отношении расстояния путей к одной и той же сети, то все равно в таблице остается одна запись, которая пришла в маршрутизатор первая по времени. Для этого правила существует исключение — если худшая информация о какой-либо сети пришла от того же маршрутизатора, на основании сообщения которого была создана данная запись, то худшая информация замещает лучшую.

Аналогичные операции с новой информацией выполняют и остальные маршрутизаторы сети.
Этап 4 — рассылка новой, уже не минимальной, таблицы соседям
Каждый маршрутизатор отсылает новое RIP-сообщение всем своим соседям. В этом сообщении он помещает данные о всех известных ему сетях — как непосредственно подключенных, так и удаленных, о которых маршрутизатор узнал из RIP-сообщений.
Этап 5 — получение RIP-сообщений от соседей и обработка полученной информации
Этап 5 повторяет этап 3 — маршрутизаторы принимают RIP-сообщения, обрабатывают содержащуюся в них информацию и на ее основании корректируют свои таблицы маршрутизации.

Посмотрим, как это делает маршрутизатор Ml (табл. 5.17).

На этом этапе маршрутизатор Ml получил от маршрутизатора М3 информацию о сети 132.15.0.0, которую тот в свою очередь на предыдущем цикле работы получил от маршрутизатора М4. Маршрутизатор уже знает о сети 132.15.0.0, причем старая информация имеет лучшую метрику, чем новая, поэтому новая информация об этой сети отбрасывается.

О сети 202.101.16.0 маршрутизатор Ml узнает на этом этапе впервые, причем данные о ней приходят от двух соседей — от МЗ и М4. Поскольку метрики в этих сообщениях указаны одинаковые, то в таблицу попадают данные, которые пришли первыми. В нашем примере считается, что маршрутизатор М2 опередил маршрутизатор МЗ и первым переслал свое RIP-сообщение маршрутизатору Ml.

Если маршрутизаторы периодически повторяют этапы рассылки и обработки RIP-сообщений, то за конечное время в сети установится корректный режим маршругизации. Под корректным режимом маршрутизации здесь понимается такое состояние таблиц маршрутизации, когда все сети будут достижимы из любой сети с помощью некоторого рационального маршрута. Пакеты будут доходить до адресатов и не зацикливаться в петлях, подобных той, которая образуется на рис. 5.26, маршрутизаторами М1-М2-МЗ-М4.

Очевидно, если в сети все маршрутизаторы, их интерфейсы и соединяющие их каналы связи постоянно работоспособны, то объявления по протоколу RIP можно делать достаточно редко, например, один раз в день. Однако в сетях постоянно происходят изменения — изменяется как работоспособность маршрутизаторов и каналов, так и сами маршрутизаторы и каналы могут добавляться в существующую сеть или же выводиться из ее состава.

Для адаптации к изменениям в сети протокол RIP использует ряд механизмов.
    продолжение
–PAGE_BREAK–Адаптация RIP-маршрутизаторов к изменениям состояния сети
К новым маршрутам RIP-маршрутизаторы приспосабливаются просто — они передают новую информацию в очередном сообщении своим соседям и постепенно эта информация становится известна всем маршрутизаторам сети. А вот к отрицательным изменениям, связанным с потерей какого-либо маршрута, RIP-маршрутиза-торы приспосабливаются сложнее. Это связано с тем, что в формате сообщений протокола RIP нет поля, которое бы указывало на то, что путь к данной сети больше не существует.

Вместо этого используются два механизма уведомления о том, что некоторый маршрут более недействителен:

·         истечение времени жизни маршрута;

·         указание специального расстояния (бесконечности) до сети, ставшей недоступной.

Для отработки первого механизма каждая запись таблицы маршрутизации (как и записи таблицы продвижения моста/коммутатора), полученная по протоколу RIP, имеет время жизни (TTL). При поступлении очередного RIP-сообщения, которое подтверждает справедливость данной записи, таймер TTL устанавливается в исходное состояние, а затем из него каждую секунду вычитается единица. Если за время тайм-аута не придет новое маршрутное сообщение об этом маршруте, то он помечается как недействительный.

Время тайм-аута связано с периодом рассылки векторов по сети. В RIP IP период рассылки выбран равным 30 секундам, а в качестве тайм-аута выбрано шестикратное значение периода рассылки, то есть 180 секунд. Выбор достаточно малого времени периода рассылки объясняется несколькими причинами, которые станут понятны из дальнейшего изложения. Шестикратный запас времени нужен для уверенности в том, что сеть действительно стала недоступна, а не просто произошли потери RIP-сообщений (а это возможно, так как RIP использует транспортный протокол UDP, который не обеспечивает надежной доставки сообщений).

Если какой-либо маршрутизатор отказывает и перестает слать своим соседям сообщения о сетях, которые можно достичь через него, то через 180 секунд все записи, которые породил этот маршрутизатор, станут недействительными у его ближайших соседей. После этого процесс повторится уже для соседей ближайших соседей — они вычеркнут подобные записи уже через 360 секунд, так как первые 180 секунд ближайшие соседи еще передавали сообщения об этих записях.

Как видно из объяснения, сведения о недоступных через отказавший маршрутизатор сетях распространяются по сети не очень быстро, время распространения кратно времени жизни записи, а коэффициент кратности равен количеству хопов между самыми дальними маршрутизаторами сети. В этом заключается одна из причин выбора в качестве периода рассылки небольшой величины в 30 секунд.

Если отказывает не маршрутизатор, а интерфейс или сеть, связывающие его с каким-либо соседом, то ситуация сводится к только что описанной — снова начинает работать механизм тайм-аута и ставшие недействительными маршруты постепенно будут вычеркнуты из таблиц всех маршрутизаторов сети.

Тайм-аут работает в тех случаях, когда маршрутизатор не может послать соседям сообщение об отказавшем маршруте, так как либо он сам неработоспособен, либо неработоспособна линия связи, по которой можно было бы передать сообщение.

Когда же сообщение послать можно, RIP-маршрутизаторы не используют специальный признак в сообщении, а указывают бесконечное расстояние до сети, причем в протоколе RIP оно выбрано равным 16 хопам (при другой метрике необходимо указать маршрутизатору ее значение, считающееся бесконечностью). Получив сообщение, в котором некоторая сеть сопровождается расстоянием 16 (или 15, что приводит к тому же результату, так как маршрутизатор наращивает полученное значение на 1), маршрутизатор должен проверить, исходит ли эта «плохая» информация о сети от того же маршрутизатора, сообщение которого послужило в свое время основанием для записи о данной сети в таблице маршрутизации. Если это тот же маршрутизатор, то информация считается достоверной и маршрут помечается как недоступный.

Такое небольшое значение «бесконечного» расстояния вызвано тем, что в некоторых случаях отказы связей в сети вызывают длительные периоды некорректной работы RIP-маршрутизаторов, выражающейся в зацикливании пакетов в петлях сети. И чем меньше расстояние, используемое в качестве «бесконечного», тем такие периоды становятся короче.

Рассмотрим случай зацикливания пакетов на примере сети, изображенной на рис. 5.26.

Пусть маршрутизатор Ml обнаружил, что его связь с непосредственно подключенной сетью 201.36.14.0 потеряна (например, по причине отказа интерфейса 201.36.14.3). Ml отметил в своей таблице маршрутизации, что сеть 201.36.14.0 недоступна. В худшем случае он обнаружил это сразу же после отправки очередных RIP-сообщений, так что до начала нового цикла его объявлений, в котором он должен сообщить соседям, что расстояние до сети 201.36.14.0 стало равным 16, остается почти 30 секунд.

Каждый маршрутизатор работает на основании своего внутреннего таймера, не синхронизируя работу по рассылке объявлений с другими маршрутизаторами. Поэтому весьма вероятно, маршрутизатор М2 опередил маршрутизатор Ml и передал ему свое сообщение раньше, чем Ml успел передать новость о недостижимости сети 201.36.14.0. А в этом сообщении имеются данные, порожденные следующей записью в таблице маршрутизации М2 (табл. 5.18).

Эта запись была получена от маршрутизатора Ml и корректна до отказа интерфейса 201.36.14.3, а теперь она устарела, но маршрутизатор М2 об этом не узнал.

Теперь маршрутизатор Ml получил новую информацию о сети 201.36.14.0 — эта сеть достижима через маршрутизатор М2 с метрикой 2. Раньше Ml также получал эту информацию от М2. Но игнорировал ее, так как его собственная метрика для 201.36.14.0 была лучше. Теперь Ml должен принять данные о сети 201.36.14.0, полученные от М2, и заменить запись в таблице маршрутизации о недостижимости этой сети (табл. 5.19).

В результате в сети образовалась маршрутная петля: пакеты, направляемые узлам сети 201.36.14.0, будут передаваться маршрутизатором М2 маршрутизатору Ml, а маршрутизатор Ml будет возвращать их маршрутизатору М2. IP-пакеты будут циркулировать по этой петле до тех пор, пока не истечет время жизни каждого пакета.

Маршрутная петля будет существовать в сети достаточно долго. Рассмотрим периоды времени, кратные времени жизни записей в таблицах маршрутизаторов.

·         Время 0-180 с. После отказа интерфейса в маршрутизаторах Ml и М2 будут сохраняться некорректные записи, приведенные выше. Маршрутизатор М2 по-прежнему снабжает маршрутизатор Ml своей записью о сети 201.36.14.0 с метрикой 2, так как ее время жизни не истекло. Пакеты зацикливаются.

·         Время 180-360 с. В начале этого периода у маршрутизатора М2 истекает время жизни записи о сети 201.36.14.0 с метрикой 2, так как маршрутизатор Ml в предыдущий период посылал ему сообщения о сети 201.36.14.0 с худшей метрикой, чем у М2, и они не могли подтверждать эту запись. Теперь маршрутизатор М2 принимает от маршрутизатора Ml запись о сети 201.36.14.0 с метрикой 3 и трансформирует ее в запись с метрикой 4. Маршрутизатор Ml не получает новых сообщений от маршрутизатора М2 о сети 201.36.14.0 с метрикой 2, поэтому время жизни его записи начинает уменьшаться. Пакеты продолжают зацикливаться.

·         Время 360-540 с. Теперь у маршрутизатора Ml истекает время жизни записи о сети 201.36.14.0 с метрикой 3. Маршрутизаторы Ml и М2 опять меняются ролями — М2 снабжает Ml устаревшей информацией о пути к сети 201.36.14.0, уже с метрикой 4, которую Ml преобразует в метрику 5. Пакеты продолжают зацикливаться.

Если бы в протоколе RIP не было выбрано расстояние 16 в качестве недостижимого, то описанный процесс длился бы до бесконечности (вернее, пока не была бы исчерпана разрядная сетка поля расстояния и не было бы зафиксировано переполнения при очередном наращивании расстояния).

В результате маршрутизатор М2 на очередном этапе описанного процесса получает от маршрутизатора Ml метрику 15, которая после наращивания, превращаясь в метрику 16, фиксирует недостижимость сети. Период нестабильной работы сети длился 36 минут!

Ограничение в 15 хопов сужает область применения протокола RIP до сетей, в которых число промежуточных маршрутизаторов не может быть больше 15. Для более масштабных сетей нужно применять другие протоколы маршрутизации, например OSPF, или разбивать сеть на автономные области.

Приведенный пример хорошо иллюстрирует главную причину нестабильной работы маршрутизаторов, работающих по протоколу RIP. Эта причина коренится в самом принципе работы дистанционно-векторных протоколов — пользовании информацией, полученной из вторых рук. Действительно, маршрутизатор М2 передал маршрутизатору Ml информацию о достижимости сети 201.36.14.0, за достоверность которой он сам не отвечает. Искоренить эту причину полностью нельзя, ведь сам способ построения таблиц маршрутизации связан с передачей чужой информации без указания источника ее происхождения.

Не следует думать, что при любых отказах интерфейсов и маршрутизаторов в сетях возникают маршрутные петли. Если бы маршрутизатор Ml успел передать сообщение о недостижимости сети 201.36.14.0 раньше ложной информации маршрутизатора М2, то маршрутная петля не образовалась бы. Так что маршрутные петли даже без дополнительных методов борьбы с ними, описанными в следующем разделе, возникают в среднем не более чем в половине потенциально возможных случаев.
    продолжение
–PAGE_BREAK–