Металловедение и термическая обработка металлов

Контрольная работа По предмету Металловедение и термическая обработка металлов Содержание 1 Контрольная работа 1 вариант-1.Существенные характеристики кристаллической структуры 2. Энергетические условия процесса кристаллизации. Почему превращения происходят при строго определенных температурах? 3. Какую роль играют несовершенства структуры кристаллов. Какую роль играют дислокации в вопросах прочности и пластичности материала.
4. Характеристика твердых растворов замещения. 2 Контрольная работа 2 вариант-1.Вычертите диаграмму состояния железо – карбид железа, спишите превращения и постройте кривую нагревания в интервале температур от 00 до 16000 с применением правила фаз для сплава, содержащего 0,3 С. 2. Отжиг. Цель и назначение диффузионного, изотермического отжига. 3. Назовите режим термической обработки температуру закалки, охлаждающую среду и температуру отпуска
фрез из стали У12. Опишите сущность проходящих превращений, микроструктуру и твердость инструмента после термообработки. 4. Опишите в каких отраслях промышленности особенно перспективно применение титана и сплава титана. 3 Список используемой литературы. Контрольная работа 1. Существенные характеристики кристаллической структуры Все вещества могут находиться в трех агрегатных состояниях твердом, жидком и газообразном, переходы
между которыми так называемые фазовые переходы сопровождаются скачкообразными изменениями свободной энергии энтропии, плотности и других физических свойств. Четвертым агрегатным состоянием часто называют плазму – сильно ионизированный газ т. е. газ заряженных частиц – ионов, электронов , образующийся при высоких температурах свыше 105 К . Однако это утверждение неточно, так как между плазмой и газом нет фазового перехода. Тем не менее, плазма резко отличается от газа прежде всего сильным электрическим взаимодействием ионов и электронов, проявляющимся на больших расстояниях Реализация того или иного агрегатного состояния вещества зависит главным образом от температуры и давления, при которых оно находится В газах межмолекулярные расстояния большие, молекулы практически не взаимодействуют друг с другом и, свободно двигаясь, заполняют весь возможный объем.
Таким образом, для газа характерно отсутствие собственного объема и формы. Жидкости и твердые тела относят к конденсированному состоянию вещества. В отличие от газообразного состояния у вещества в конденсированном состоянии атомы расположены ближе друг к другу, что приводит к их более сильному взаимодействию и, как следствие этого, жидкости и твердые тела имеют постоянный собственный объем. Для теплового движения атомов в жидкости характерны малые колебания
атомов вокруг равновесных положений и частые перескоки из одного равновесного положения в другое. Это приводит к наличию в жидкости только так называемого ближнего порядка в расположении атомов, т. е. некоторой закономерности в расположении соседних атомов на расстояниях, сравнимых с межатомными. Для жидкости в отличие от твердого тела характерно такое свойство, как текучесть. Атомы в твердом теле, для которого в отличие от жидкого тела характерна стабильная, постоянная собственная
форма, совершают только малые колебания около своих равновесных положений. Это приводит к правильному чередованию атомов на одинаковых расстояниях для сколь угодно далеко удаленных атомов, т. е существования так называемого дальнего порядка в расположении атомов. Такое правильное, регулярное расположение атомов в твердом теле, характеризующееся периодической повторяемостью в трех измерениях образует кристаллическую решетку, а тела, имеющие кристаллическую решетку, называют твердыми телами. Кроме того, существуют аморфные тела стекло, воск и т. д В аморфных телах атомы совершают малые колебания вокруг хаотически расположенных равновесных положений, т. е. не образуют кристаллическую решетку. Аморфное тело находится с термодинамической точки зрения в неустойчивом так называемом метастабильном состоянии и его следует рассматривать как сильно загустевшую жидкость, которая с течением времени должна закристаллизоваться, т. е. атомы в твердом теле должны образовать
кристаллическую решетку и превратиться в истинно твердое тело. Аморфное состояние образуется при быстром- 106 О С с и более охлаждении расплава. Например, при охлаждении ряда сплавов из жидкого состояния образуются так называемые металлические стекла, обладающие специфическими физико-механическими свойствами. Атомы в кристаллическом твердом теле располагаются в пространстве закономерно, периодически повторяясь
в трех измерениях через строго определенные расстояния, т. е. образуют кристаллическую решетку. Кристаллическую решетку можно построить , выбрав для этого определенный строи тельный блок аналогично постройке стены из кирпичей и многократно смещая этот блок по трем, непараллельным направлениям. Такая строительная единица кристаллической решетки имеет форму параллелепипеда и называется элементарной ячейкой. Все элементарные ячейки, составляющие кристаллическую решетку, имеют одинаковую форму и объемы.
Атомы могут располагаться как в вершинах элементарной ячейки, так и в других ее точках в узлах кристаллической решетки . В первом случае элементарные ячейки называются простыми примитивными , во втором – сложными. Если форма элементарной ячейки определена и известно расположение всех атомов внутри нее, то имеется полное геометрическое описание кристалла, т. е. известна его атомно-кристаллическая структура. 2. Энергетические условия процесса кристаллизации. Почему превращения происходят при строго определенных температурах? Любое вещество, как известно, может находиться в трех агрегатных состояниях газообразном, жидком и твердом. В чистых металлах при определенных температурах происходит изменение агрегатного стояния твердое состояние сменяется жидким при температуре плавления, жидкое состояние переходит в газообразное при температуре кипения. Температуры перехода зависят от давления но при постоянном давлении они вполне
определенны. При переходе из жидкого состояния в твердое образуется кристаллическая решетка, возникают кристаллы. Такой процесс называется кристаллизацией. Чем объясняется существование при одних температурах жидкого, а при других температурах твердого состояния и почему превращение происходит при строго определенных температурах? В природе все самопроизвольно протекающие превращения, а следовательно, кристаллизация и плавление
обусловлены тем, что новое состояние в новых условиях является энергетически более устойчивым, обладает меньшим запасом энергии. Поясним примером. Тяжелый шарик из положения 1 рис. 1 стремится попасть в более устойчивое положение 2, так как потенциальная энергия в положении 2 меньше, чем в положении 1. Энергетическое состояние системы, имеющей огромное число охваченных тепловым движением частиц атомов, молекул , характеризуется особой термодинамической функцией
F, называемой свободной энергией свободная энергия F U – ТS, где U – внутренняя энергия системы Т- абсолютная температура S-энтропия . Можно сказать, что чем больше свободная энергия системы, тем система менее устойчива, и если имеется возможность, то система переходит в состояние, где свободная энергия меньше подобно шарику, который скатывается из положения 1 в положение 2, если на пути нет препятствия . С изменением внешних условий, например температуры, свободная энергия системы изменяется по сложному закону, но различно для жидкого и кристаллического состояний. Схематически характер изменения свободной энергии жидкого и твердого состояний с температурой показан на рис. 2 Выше температуры Тs, меньшей свободной энергией обладает вещество в жидком состоянии, ниже Тs – вещество в твердом состоянии. Следовательно, выше
Ts, вещество должно находиться в жидком состоянии, а ниже Тs в твердом, кристаллическом. Очевидно, что при температуре, равной Ts, свободные энергии жидкого и твердого состояний равны, металл в обоих состояниях находится в равновесии. Эта температура Ts и есть равновесная или теоретическая температура кристаллизации. Однако при Ts не может происходить процесс кристаллизации плавление , так как при данной температуре
Fж Fкр и процесс Рис. 2. Изменение свободной энергии жидкого 1 и кристаллического 2 состояния в зависимости от температуры Рис. 27. Кривые охлаждения при кристаллизации кристаллизации плавления не может идти, так как при равенстве обеих фаз это не будет сопровождаться уменьшением свободной энергии. Для начала кристаллизации необходимо, чтобы процесс был термодинамически выгоден системе и сопровождался уменьшением свободной энергии системы. Из кривых, приведенных на рис.
2 видно, что это возможно только тогда, когда жидкость будет охлаждена ниже точки Ts. Температура, при которой практически начинается кристаллизация, может быть названа фактической температурой кристаллизации. Охлаждение жидкости ниже равновесной температуры кристаллизации называется переохлаждением. Указанные причины обусловливают и то, что обратное превращение из кристаллического состояния в жидкое может произойти только выше температуры Ts это явление называется перенагреванием. Величиной или степенью переохлаждения называют разность между теоретической и фактической температурами кристаллизации. Процесс перехода металла из жидкого состояния в кристаллическое можно изобразить кривыми в координатах время – температура рис. 3 . Охлаждение металла в жидком состоянии сопровождается плавным понижением температуры и может быть названо простым охлаждением, так как при этом нет качественного изменения состояния. При достижении температуры кристаллизации на кривой температура – время появляется
горизонтальная площадка кривая 1, рис.3 , так как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. По окончании кристаллизации, т. е. после полного перехода в твердое состояние, температура снова начинает снижаться, и твердое кристаллическое вещество охлаждается. Теоретически процесс кристаллизации изображается кривой 1. Кривая 2 показывает реальный процесс кристаллизации.
Жидкость непрерывно охлаждается до температуры переохлаждения Тп, лежащей ниже теоретической температуры кристаллизации Ts. При охлаждении ниже температуры Ts создаются энергетические условия, необходимые для протекания процесса кристаллизации. У некоторых металлов из-за большого переохлаждения скрытая теплота плавления выделяется в первый момент кристаллизации настолько бурно, что температура скачкообразно повышается,
приближается к теоретической кривая 3, рис.3 . Чем больше скорость охлаждения, тем больше величина переохлаждения. Для того, чтобы полностью переохладить металл в жидком состоянии требуются большие скорости охлаждения миллионы и даже миллиарды градусов в секунду , охлаждение жидкого металла до комнатной температуры следует проводить так, чтобы получить переохлажденный жидкий металл т. е. металл, не имеющий кристаллического строения за ничтожную долю секунды. Такой, металл называется аморфным или металлическим стеклом, который начинает применяться на практике. 1.3. Какую роль играют несовершенства структуры кристаллов. Какую роль играют дислокации в вопросах прочности и пластичности материала. Встречающиеся в природе кристаллы, как монокристаллы, так и зерна в поликристаллах, никогда не обладают строгой периодичностью в расположении атомов т. е. не являются идеальными кристаллами. В действительности реальные кристаллы содержат те или иные несовершенства дефекты кристаллического
строения. Дефекты в кристаллах принято классифицировать по характеру их измерения в пространстве на точечные нульмерные , линейные одномерные , поверхностные двухмерные , объемные трехмерные . Точечными дефектами называются такие нарушения периодичности кристаллической решетки, размеры которых во всех измерениях сопоставимы с размерами атома. К точечным дефектам относят вакансии узлы в кристаллической решетке, свободные от атомов , межузельные атомы атомы, находящиеся вне узлов кристаллической решетки
, а также примесные атомы, которые могут или замещать атомы основного металла примеси замещения , или внедряться в наиболее свободные места решетки поры или междоузлия аналогично межузельным атомам примеси, внедрения Линейные дефекты в кристаллах характеризуются тем, что их поперечные размеры не превышают нескольких межатомных расстояний, а длина может достигать размера кристалла. К линейным дефектам относятся дислокации – линии, вдоль и вблизи которых нарушено правильное периодическое
расположение атомных плоскостей кристалла. Различают краевую и винтовую дислокации. Краевая дислокация представляет собой границу неполной атомной плоскости экстраплоскости . Винтовую дислокацию можно определить как сдвиг одной части кристалла относительно другой. В кристаллах встречаются и так называемые смешанные дислокации. Дислокации не могут обрываться внутри кристалла – они должны быть либо замкнутыми, либо выходить на поверхность кристалла. Плотность дислокации, т. е. число линий дислокации, пересекающих внутри металла площадку в 1 см2, составляет 103-104 в наиболее совершенных монокристаллах до 1012 в сильно деформированных металлах Дислокации создают в кристалле вокруг себя поля упругих напряжений, убывающих обратно пропорционально расстоянию от них. Наличие упругих напряжений вокруг дислокации приводит к их взаимодействию, которое зависит от типа дислокации и их векторов Бюргерса.
Под действием внешних напряжений дислокации двигаются скользят , что определяет дислокационный механизм пластической деформации. Перемещение дислокации в плоскости скольжения сопровождается разрывом и образованием вновь межатомных связей только у линии дислокации, поэтому пластическая деформация может протекать при малых внешних напряжениях, гораздо меньших тех, которые необходимы для пластической деформации идеального кристалла путем разрыва всех межатомных связей в плоскости скольжения.
Обычно дислокации возникают при образовании кристалла из расgлава. Основным механизмом размножения дислокации при пластической деформации являются так называемые источники Франка-Рида. Это отрезки дислокации, закрепленные на концах, которые под действием напряжений могут прогибатся ,испуская при этом дислокации,и вновь востанавливатся. Обычно упрочненное состояние достигается при взаимодействии дислокации друг с другом, с атомами примесей
и частицами другой фазы. Дислокации влияют не только на прочностные и пластические свойства металлов, но также и на их физические свойства увеличивают электросопротивление, скорость диффузии и т.д Процесс сдвига в кристалле будет происходить тем легче, чем больше дислокации будет в металле. В металле, в котором нет дислокации, сдвиг возможен только за счет одновременного смещения всей части кристалла. В случае, если под действием напряжений дислокации не зарождаются, то прочность бездислокационного металла должна быть равна теоретической. Существует и другой способ упрочнения металлов. Оказывается, что реальная прочность металлов падает с увеличением числа дислокации только вначале. Достигнув минимального значения при некоторой плотности дислокации, реальная прочность вновь начинает возрастать. Повышение реальной прочности с возрастанием плотности дислокации объясняется тем, что при этом возникают не только параллельные друг другу дислокации, но и дислокации в разных плоскостях и направлениях.
Такие дислокации будут мешать друг другу перемещаться, и реальная прочность металла повысится. Давно известны способы упрочнения, ведущие к увеличению полезной плотности дислокации это – механический наклеп, измельчение зерна и блоков мозаики, термическая обработка и т. д. Кроме того, известные методы легирования т. е. внедрение в решетку чужеродных атомов , создающие всякого рода несовершенства и искажения, кристаллической решетки, также являются методами создания – препятствий
для свободного перемещения дислокации блокирования дислокаций .Сюда же относятся способы образования структур с так называемыми упрочняющими фазами, вызывающими дисперсионное твердение и др. Однако при всех этих способах упрочнения прочность не достигает теоретического значения. Следовательно, в той или иной степени наличие дислокации в реальном металлическом кристалле является причиной более низкой его прочности по сравнению с теоретической, и одновременно придающей способность
пластически деформироваться. Можно ли в связи с этим рассматривать способность металла к пластическому деформированию как его недостаток? Опыт показывает, что способность реального металла пластически деформироваться является его важнейшим и полезнейшим свойством. Это свойство используют при различных технологических процессах – при протяжке проволоки, операциях гибки, высадки, вытяжки, штамповки и т. д. Большое значение оно имеет и для обеспечения конструктивной прочности или надежности металлических конструкций, деталей машин и других изделий из металла. Опыт показывает. что если металл находится в хрупком состоянии, т. е. если его способность к пластическому деформированию низка, то он в изделиях склонен к внезапным так называемым хрупким разрушениям, которые часто происходят даже при пониженных нагрузках на изделие. 1.4. Характеристика твердых растворов замещения. В жидком состоянии большинство металлических сплавов,
применяемых в технике, представляет собой однородные жидкости, т. е. жидкие растворы. При переходе в твердое состояние во многих таких сплавах однородность сохраняется, следовательно, сохраняется и растворимость. Твердая фаза, образующаяся в результате кристаллизации такого сплава, называется твердым раствором. Химический или спектральный анализ показывает в твердых растворах наличие двух элементов или более, тогда как по данным металлографического анализа такой сплав, как и чистый металл, имеет однородные
зерна рис. 3 . Рентгеновский анализ обнаруживает в твердом растворе, как и у чистого металла, только один тип решетки. Следовательно, в отличие от механической смеси твердый раствор является однофазным, состоит из одного вида кристаллов, имеет одну кристаллическую решетку в отличие от химического соединения твердый раствор существует не при определенном соотношении компонентов, а в интервале концентраций. Строение твердых растворов на основе одного из компонентов сплава таково, что в решетку основного металла-
растворителя входят атомы растворенного вещества. Здесь возможны два принципиально различных случая 1. твердые растворы замещения 2. Твердые растворы внедрения мы рассмотрим 1-вый. Твердые растворы замещения Металл А имеет, например, решетку, изображенную на рис. 4, а. Растворение компонента В в металле А происходит путем частичного замещения атомов А атомами В в решетке основного металла рис. 4, б . Рис4 а – чистый металл б – твердый раствор замещения При образовании растворов внедрения и замещения атомы растворенного компонента распределяются в решетке растворителя беспорядочно. При образовании твердого раствора сохраняется решетка одного из элементов и этот элемент называется растворителем. Атомы растворенного вещества искажают и изменяют средние размеры элементарной ячейки растворителя. При образовании твердых растворов замещения периоды решетки изменяются
в зависимости от разности атомных диаметров растворенного элемента и растворителя. Если атом растворенного элемента больше атома растворителя, то элементарная ячейка, решетки увеличивается, если меньше, то сокращается. В первом приближении это изменение пропорционально концентрации растворенного компонента, выраженной в атомных процентах однако отклонения от линейной зависимости бывают иногда довольно значительными. Изменение параметров решетки при образовании твердых растворов – весьма важный момент,
определяющий изменение свойств. В общем независимо от вида металла относительное упрочнение при образовании твердого раствора пропорционально относительному изменению параметров решетки, причем уменьшение параметров решетки ведет к большему упрочнению, чем её расширение. Твердые растворы замещения могут быть ограниченные и неограниченные. При неограниченной растворимости любое количество атомов
А может быть заменено атомами В. Следовательно, если увеличивается концентрация атомов В, то все больше и больше атомов В будет находиться в узлах решетки вместо атомов А до тех пор, пока все атомы А не будут заменены атомами В и, таким образом, как бы плавно совершится переход от металла Л к металлу В рис. 5 . Это. конечно, возможно при условии, если оба металла имеют одинаковую кристаллическую структуру, т. е. оба компонента являются изоморфными. Следовательно, первым условием образования неорганического ряда твердых растворов является наличие у обоих компонентов одинаковых кристаллических решеток, т. е. условие изоморфности компонентов. Рис. 5. Кристаллические решетки твердых растворов аамещения при неограниченной растворимости компонентов Если у двух металлов с одинаковыми кристаллическими решетками сильно различаются атомные радиусы, то
образование твердых растворов между этими металлами сильно искажает кристаллическую решетку, что приводит к накоплению в решетке упругой энергии когда это искажение достигает определенной величины, кристаллическая решетка становится неустойчивой и наступает предел растворимости Итак, вторым условием образования неограниченных твердых растворов является достаточно малое различие атомных размеров компонентов. Наконец, замечено, что неограниченная растворимость наблюдается преимущественно
у элементов, близко расположенных друг от друга в периодической таблице Д. И. Менделеева, т. е. близких друг к другу по строению валентной оболочки атомов, по физической природе. Если кристаллические решетки и неодинаковы, но близки, похожи, например гранецентрированные кубические и тетрагональные, то возможен плавный переход от одной решетки к другой с образованием и в этом случае неограниченного твердого раствора. Если сплавляемые металлы принадлежат к далеко расположенным друг
от друга группам Периодической системы и поэтому имеют различную физическую природу, то они часто бывают склонны к образованию химических соединений, а не твердых растворов. Если два металла не отвечают перечисленным выше условиям, то они могут ограниченно растворяться друг в друге. Замечено, что растворимость тем меньше, чем больше различие в размерах атомов и в свойствах, компонентов, образующих раствор. Ограниченная растворимость в большинстве случаев уменьшается с понижением температуры. Контрольная работа 2 1.1 Вычертите диаграмму состояния железо – карбид железа, спишите превращения и постройте кривую нагревания в интервале температур от 00 до 16000 с применением правила фаз для сплава, содержащего 0,3 С. 2.2. Отжиг. Цель и назначение диффузионного, изотермического отжига. Отжиг – термическая обработка, при которой сталь нагревается выше Ас3 или только выше Ас1 – неполный отжиг с последующим, медленным охлаждением.
Нагрев выше Ас3 обеспечивает полную перекристаллизацию стали. Медленное охлаждение при отжиге Обязательно должно привести к распаду аустенита и превращению его в перлитные структуры. Нормализация есть разновидность отжига, при нормализации охлаждение проводят на спокойном воздухе, что создает несколько более быстрое охлаждение, чем при обычном отжиге. И в случае нормализации превращение должно произойти в верхнем районе температур с образованием перлита,
но при несколько большем переохлаждении, что определяет некоторое различие свойств отожженной и нормализованной стали. Отжиг и нормализация обычно являются первоначальными операциями термической обработки, цель которых – либо устранить Некоторые дефекты предыдущих операций горячей обработки литья, ковки и т. д либо подготовить структуру к последующим технологическим операциям например, обработке резанием, закалке . Однако довольно часто отжиг, и особенно нормализация, являются окончательной термической обработкой.
Это бывает тогда, когда после отжига или нормализации получаются удовлетворительные с точки зрения эксплуатации детали свойства и не требуется их 1ьнейшее улучшение с помощью закалки и отпуска. Основные цели отжига перекристаллизация стали и устранение внутренних напряжений или исправление структуры. Обе эти задачи выполняются обычным полным отжигом, заключающимся в нагреве стали выше верхней критической точки с последующим медленным охлаждением. Феррито-перлитная структура переходит при нагреве в аустенитную, а затем при охлаждении аустенит превращается обратно в феррит и перлит, т. е. Происходит полная перекристаллизация. Структура, состоящая из крупных зерен перлита и феррита, какая часто бывает после литья или ковки, после такого отжига превращается в структуру из мелких зерен феррита и перлита. Если нет необходимости изменить расположение ферритной составляющей, если исходная структура не очень крупнозерниста, и не имеет характера видманштеттовой структуры, то достаточно провести более
низкий нагрев – выше Ас1, но ниже Ас3. При этом произойдет лишь перекристаллизация перлитной составляющей, но не ферритной. Это будет так называемый неполный отжиг . Неполный отжиг-более экономичная операция, чем полный, так как нагрев в этом случае осуществляется до более низких температур. Если исходная структура хорошая и нет необходимости в перекристаллизации, а требуется только снизить внутренние напряжения, то нагрев под отжиг ограничивают еще более низкими
температурами, ниже критической точки. Это будет низкий отжиг. Очевидно, что эта операция относится к первой группе видов термической обработки отжиг I рода, тогда как полный и неполный отжиг относится во второй группе отжиг II рода, или фазовая перекристаллизация . Если исходное состояние имеет структуры закалки бейнит, мартенсит то такую операцию правельнее называют высоким смягчающим отпуском.
Литая сталь обычно характеризуется неоднородностью состава, дендритной и зональной ликвацией. Нагрев до высоких температур и выдержка при них приводят к устранению или смягчению дендритной неоднородности. Такая операция называется гомогенизацией, или диффузионным отжигом. В результате высокого нагрева обычно до 1000-1100 С и длительной выдержки наблюдается сильный рост зерна, и поэтому после такой обработки структура получается крупнозернистой и требуется дополнительная операция термической обработки для исправления структуры обычный отжиг . Если диффузионный отжиг был применен к слиткам, которые будут подвергаться пластической деформации прокатке, ковке , то необходимость в последующем отжиге отпадает, так как крупнозернистая структура исправится пластической деформацией. Неполный отжиг заэвтектоидных сталей называют также сфероидизацией, так как это – основной способ получения зернистого перлита.
Выше было отмечено, что для получения зернистого перлита нагрев должен не на много превосходить критическую точку Ас1, в противном случае получается пластинчатый перлит. Структурой зернистого перлита должны обладать инструментальные стали, так как это обеспечивает хорошую обрабатываемость режущим инструментом и малую склонность к перегреву при закалке. При отжиге скорость охлаждения должна быть такова, чтобы успели произойти превращения аустенита при
малой степени переохлаждения. Практически скорость охлаждения не должна быть больше 50-100 С ч, что достигается охлаждением в печи. В заводской практике с целью экономии времени чаще проводят так называемый изотермический отжиг. Для этого сталь, нагретая выше верхней или только нижней критической точки, охлаждается быстро точнее с любой скоростью до температуры, лежащей на 50-100 С ниже равновесной точки А1 и при этой температуре выдерживается столько, сколько необходимо для полного
распада аустенита. Поскольку температуру контролировать легче, чем скорость охлаждения, такой отжиг дает более стабильные результаты. В настоящее время изотермический отжиг применяют чаще, чем отжиг с непрерывным охлаждением, особенно для легированных сталей, так как это сокращает продолжительность операции. 2.3. Назовите режим термической обработки температуру закалки, охлаждающую среду и температуру отпуска фрез из стали У12. Опишите сущность проходящих превращений, микроструктуру и твердость инструмента после термообработки. Сталь У12 содержание С – 1,15-1,24 Mn – 0.15-0.35 Cr – 0,15 Фреза из стали указанной группы должны закаливаться в воде, с температуры 7900 С, с последующим низким отпуском 180-2000 С. Твердость рабочей части – 60-62 HRC. Инструмент из этих сталей имеет, как правило, незакаленную сердцевину. Сущность происходящих процессов такова происходит неполная закалка, при которой нагрев производят до
температуры, лежащей выше линии А1, но ниже А3 и в структуре стали сохраняется заэвтектоидный цементит, структура мартенсит цементит. Внутренние напряжения создают значительную хрупкость поэтому после закалки производится обязательный отпуск. 2.4. Опишите в каких отраслях промышленности особенно перспективно применение титана и сплава титана. Области применения сплавов. Титан и его сплавы используют там, где главную роль играют высокая удельная прочность и хорошая сопротивляемость
коррозии. Титановые сплавы применяют в авиации обшивка самолетов, диски и лопатки компрессора и т. д в ракетной технике корпуса двигателей, баллоны для сжатых и сжиженных газов, сопла и т. д в химическом машиностроении оборудование для таких сред, как хлор и его растворы, теплообменники, работающие в азотной кислоте и т. д судостроении гребные винты, обшивки морских судов, подводных лодок н торпед , в энергомашиностроении диски и лопатки стационарных турбин , в криогенной технике и т. д.
В настоящее время титан широко используется в ракетно-космической и авиационной технике, в судостроении и транспортном машиностроении, где особенно важную роль играют малая плотность в сочетании с высокой прочностью и сопротивляемостью коррозии. Из сплавов титана делают обшивку фюзеляжа и крыльев сверхскоростных самолетов, панели и шпангоуты ракет, морскую аппаратуру и обшивку корпусов судов, диски и лопатки турбин. Титановая обшивка морских судов не обрастает ракушками. Благодаря пластичности и вязкости при низких температурах, титановые сплавы начинают применяться в холодильной и криогенной технике. Высокая коррозионная стойкость в различных средах делает сплавы титана перспективными для применения в пищевой промышленности. Некоторые пищевые продукты могут портиться от контакта со сталью, тогда как титан не придает им постороннего запаха, цвета или вкуса. Титан используется в медицине благодаря высокой устойчивости в тканях человеческого
организма. Титан не отторгается костной и мышечной тканями и легко обрастает ими. По своей биологической инертности превосходит все известные коррозионно-стойкие стали и сплавы. Несмотря на то, что пока стоимость титановых сплавов примерно в 8 раз превышает стоимость коррозионно-стойких хромоникелевых сталей они имеют широкие перспективы применения в различных отраслях народного хозяйства, являясь важнейшими конструкционными материалами недалекого будущего.
Список использованной литературы Гуляев А.П. металловедение. М. Металлургия, 1986 554 с. Ляхтин Ю.М. Металловедение и термическая обработка металлов. М. Металлургия , 1984 360 с. Геллер Ю.А. Инструментальные стали. М. Металлургия, 1983 526