–PAGE_BREAK–Сервер
Сервером называется компьютер, выделенный из группы персональных компьютеров (или рабочих станций) для выполнения какой-либо сервисной задачи без непосредственного участия человека. Сервер и рабочая станция могут иметь одинаковую аппаратную конфигурацию, так как различаются лишь по участию в своей работе человека за консолью.
Некоторые сервисные задачи могут выполняться на рабочей станции параллельно с работой пользователя. Такую рабочую станцию условно называют невыделенным сервером.
Консоль (обычно — монитор/клавиатура/мышь) и участие человека необходимы серверам только на стадии первичной настройки, при аппаратно-техническом обслуживании и управлении в нештатных ситуациях (штатно, большинство серверов управляются удаленно). Для нештатных ситуаций серверы обычно обеспечиваются одним консольным комплектом на группу серверов (с коммутатором, например KVM-переключателем, или без такового).
В результате специализации, серверное решение может получить консоль в упрощенном виде (например, коммуникационный порт), или потерять ее вовсе (в этом случае первичная настройка и нештатное управление могут выполняться только через сеть, а сетевые настройки могут быть сброшены в состояние по умолчанию).
Специализация серверного оборудования идет несколькими путями, выбор того в каком направлении идти каждый производитель определяет для себя сам. Большинство специализаций удорожают оборудование.
Серверное оборудование, как правило, комплектуется более надежными элементами:
памятью с повышенной устойчивостью к сбоям, например для i386-совместимых компьютеров, память, предназначенная для серверов, имеет технологию коррекции ошибок (ECC англ. Error Checking and Correction). На некоторых других платформах, например SPARC(Sun Microsystems), коррекцию ошибок имеет вся память. резервированием, в том числе: блоков питания(в том числе с горячим подключением) жестких дисков(RAID; в том числе с горячими подключением и заменой). Не путать с «RAID»-системами обычных компьютеров. более продуманным охлаждением (функцией)
Серверы (и другое оборудование), которые требуется устанавливать на некоторое стандартное шасси (например, в 19-дюймовые стойкии шкафы) приводятся к стандартным размерам и снабжаются необходимыми крепежными элементами.
Серверы, не требующие высокой производительности и большого количества внешних устройств зачастую уменьшают в размерах. Часто это уменьшение сопровождается уменьшением ресурсов.
В так называемом «промышленном исполнении», кроме уменьшенных размеров, корпус имеет бо́льшую прочность, защищенность от пыли (снабжен сменными фильтрами), влажности и вибрации, а также имеет дизайн кнопок, предотвращающий случайные нажатия.
Конструктивно аппаратные серверы могут исполняться в настольном, напольном, стоечном и потолочном вариантах. Последний вариант обеспечивает наибольшую плотность размещения вычислительных мощностей на единицу площади, а также максимальную масштабируемость. С конца 1990-хвсё большую популярность в системах высокой надёжностии масштабируемостиполучили так называемые блэйд-серверы(от англ.blade — лезвие) — компактные модульные устройства, позволяющие сократить расходы на электропитание, охлаждение, обслуживание и т. п…
По ресурсам (частота и количество процессоров, количество памяти, количество и производительность жестких дисков, производительность сетевых адаптеров) серверы специализируются в двух противоположных направлениях — наращивании ресурсов и их уменьшении.
Наращивание ресурсов преследует целью увеличение емкости (например, специализация для файл-сервера) и производительности сервера. Когда производительность достигает некоторого предела, дальнейшее наращивание продолжают другими методами, например, распараллеливанием задачи между несколькими серверами.
Уменьшение ресурсов преследует цели уменьшения размеров и энергопотребления серверов.
Крайней степенью специализации серверов являются, так называемые аппаратные решения (аппаратные роутеры, сетевые дисковые массивы, аппаратные терминалы и т. п.). Аппаратное обеспечение таких решений строится «с нуля» или перерабатывается из существующей компьютерной платформы без учета совместимости, что делает невозможным использование устройства со стандартным программным обеспечением.
Программное обеспечение в аппаратных решениях загружается в постоянную и/или энергонезависимую память производителем.
Аппаратные решения, как правило, более надежны в работе, чем обычные серверы, но менее гибки и универсальны. По цене, аппаратные решения могут быть как дешевле, так и дороже серверов, в зависимости от класса оборудования.
Последнее время, распространилось большое количество бездисковых серверных решений, на базе компьютеров (как правило x86) формфактора Mini-ITXи меньше cо специализированной переработкой GNU/Linuxна SSD-диске (ATA-флэш или флеш-карте), позиционируемых как «аппаратные решения». Данные решения не принадлежат к классу аппаратных, а являются обычными специализированными серверами. В отличие от (более дорогих) аппаратных решений они наследуют проблемы платформы и программных решений, на которых основаны.
Модем
Модем(аббревиатура, составленная из слов модулятор-демодулятор) — устройство, применяющееся в системах связи и выполняющее функцию модуляции и демодуляции. Модулятор осуществляет модуляцию несущего сигнала, то есть изменяет его характеристики в соответствии с изменениями входного информационного сигнала, демодулятор осуществляет обратный процесс. Частным случаем модема является широко применяемое периферийное устройство для компьютера, позволяющее ему связываться с другим компьютером, оборудованным модемом, через телефонную сеть (телефонный модем) или кабельную сеть (кабельный модем).
Модем выполняет функцию оконечного оборудования линии связи. При этом формирование данных для передачи и обработку принимаемых данных осуществляет терминальное оборудование, в простейшем случае — персональный компьютер.
продолжение
–PAGE_BREAK–Типы модемов для компьютеров
По исполнению:
внешние — подключаются через COM, USB порт или стандартный разъем в сетевой карте RJ-45 обычно имеют внешний блок питания (существуют USB-модемы, питающиеся от USB и LPT-модемы). внутренние
— устанавливаются внутрь компьютера в слот ISA, PCI, PCI-E, PCMCIA, AMR, CNR встроенные — являются внутренней частью устройства, например ноутбука или док-станции.
По принципу работы:
аппаратные — все операции преобразования сигнала, поддержка физических протоколов обмена, производятся встроенным в модем вычислителем (например с использованием DSP, контроллера). Так же в аппаратном модеме присутствует ПЗУ, в котором записана микропрограмма, управляющая модемом. Софт-модем, винмодемы (англ. Host
based
soft
–
modem) — аппаратные модемы, лишённые ПЗУ с микропрограммой. Микропрограмма такого модема хранится в памяти компьютера, к которому подключён (или в котором установлен) модем. При этом в модеме находится аналоговая схема и преобразователи: АЦП, ЦАП, контроллер интерфейса (например USB). Работоспособен только при наличии драйверов которые обрабатывают все операции по кодированию сигнала, проверке на ошибки и управление протоколами, соответственно реализованы программно и производятся центральным процессором компьютера. Изначально имелись только версии для операционных систем семейства MS Windows, откуда и появилось второе название. полупрограммные(Controller based soft-modem) — модемы, в которых часть функций модема выполняет компьютер, к которому подключён модем.
По виду соединения:
Модемы для коммутируемых телефонных линий — наиболее распространённый тип модемов ISDN — модемы для цифровых коммутируемых телефонных линий DSL
— используются для организации выделенных (некоммутируемых)
линий используя обычную телефонную сеть. Отличаются от коммутируемых модемов тем, что используют другой частотный диапазон, а также тем, что по телефонным линиям сигнал передается только до АТС. Обычно позволяют одновременно с обменом данными осуществлять использование телефонной линии в обычном порядке. Кабельные — используются для обмена данными по специализированным кабелям — к примеру, через кабель коллективного телевидения по протоколу DOCSIS. Сотовые— работают по протоколам сотовой связи — GPRS, EDGE, 3G, 4G и т. п. Часто имеют исполнения в виде USB-брелока. В качестве таких модемов также часто используют терминалы мобильной связи. Спутниковые
PLC — используют технологию передачи данных по проводам бытовой электрической сети.
Наиболее распространены в настоящее время:
внутренний программный модем
внешний аппаратный модем
встроенныев ноутбуки модемы.
Сетевой адаптер
Сетевой адаптер, также известный как сетевая карта,Сетевая плата, Ethernet-адаптер, NIC (англ. network
interface
controller) — периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети.
Типы
По конструктивной реализации сетевые платы делятся на:
внутренние — отдельные платы, вставляющиеся в PCI, ISA или PCI-E слот; внешние, подключающиеся через USB или PCMCIA интерфейс, преимущественно использующиеся в ноутбуках; встроенные в материнскую плату.
На 10-мегабитных сетевых платах для подключения к локальной сети используются 3 типа разъёмов:
8P8C для витой пары; BNC-коннектор для тонкого коаксиального кабеля; 15-контактный разъём трансивера для толстого коаксиального кабеля.
Эти разъёмы могут присутствовать в разных комбинациях, иногда даже все три сразу, но в любой данный момент работает только один из них.
На 100-мегабитных платах устанавливают только разъём для витой пары (8P8C, ошибочно называемый RJ-45).
Рядом с разъёмом для витой пары устанавливают один или несколько информационных светодиодов, сообщающих о наличии подключения и передаче информации.
Одной из первых массовых сетевых карт стала серия NE1000/NE2000 фирмы Novell, а также немало в конце 1980-х было советских клонов сетевых карт с разъемом BNC, которые выпускались с различными советскими компьютерами и отдельно.
продолжение
–PAGE_BREAK–Параметры сетевого адаптера
При конфигурировании карты сетевого адаптера могут быть доступны следующие параметры:
номер линии запроса на аппаратное прерывание IRQ номер канала прямого доступа к памяти DMA (если поддерживается) базовый адрес ввода/вывода базовый адрес памяти ОЗУ (если используется) поддержка стандартов автосогласования дуплекса/полудуплекса, скорости поддержка теггрированных пакетов VLAN (802.1q) с возможностью фильтрации пакетов заданного VLAN ID параметрыWOL (Wake-on-LAN)
В зависимости от мощности и сложности сетевой карты она может реализовывать вычислительные функции (преимущественно подсчёт и генерацию контрольных сумм кадров) аппаратно либо программно (драйвером сетевой карты с использованием центрального процессора).
Серверные сетевые карты могут поставляться с двумя (и более) сетевыми разъёмами. Некоторые сетевые карты (встроенные в материнскую плату) также обеспечивают функции межсетевого экрана (например, nforce).
Функции и характеристики сетевых адаптеров
Сетевой адаптер (Network Interface Card, NIC) вместе со своим драйвером реализует второй, канальный уровень модели открытых систем в конечном узле сети — компьютере. Более точно, в сетевой операционной системе пара адаптер и драйвер выполняет только функции физического и МАС-уровней, в то время как LLC-уровень обычно реализуется модулем операционной системы, единым для всех драйверов и сетевых адаптеров. Собственно так оно и должно быть в соответствии с моделью стека протоколов IEEE 802. Например, в ОС Windows NT уровень LLC реализуется в модуле NDIS, общем для всех драйверов сетевых адаптеров, независимо от того, какую технологию поддерживает драйвер.
Сетевой адаптер совместно с драйвером выполняют две операции: передачу и прием кадра. Передача кадра из компьютера в кабель состоит из перечисленных ниже этапов (некоторые могут отсутствовать, в зависимости от принятых методов кодирования):
Прием кадра данных LLC через межуровневый интерфейс вместе с адресной информацией МАС-уровня. Обычно взаимодействие между протоколами внутри компьютера происходит через буферы, расположенные в оперативной памяти. Данные для передачи в сеть помещаются в эти буферы протоколами верхних уровней, которые извлекают их из дисковой памяти либо из файлового кэша с помощью подсистемы ввода/вывода операционной системы. Оформление кадра данных МАС-уровня, в который инкапсулируется кадр LLC (с отброшенными флагами 01111110). Заполнение адресов назначения и источника, вычисление контрольной суммы. Формирование символов кодов при использовании избыточных кодов типа 4В/5В. Скрэмблирование кодов для получения более равномерного спектра сигналов. Этот этап используется не во всех протоколах — например, технология Ethernet 10 Мбит/с обходится без него. Выдача сигналов в кабель в соответствии с принятым линейным кодом — манчестерским, NRZ1. MLT-3 и т. п.
Прием кадра из кабеля в компьютер включает следующие действия:
Прием из кабеля сигналов, кодирующих битовый поток. Выделение сигналов на фоне шума. Эту операцию могут выполнять различные специализированные микросхемы или сигнальные процессоры DSP. В результате в приемнике адаптера образуется некоторая битовая последовательность, с большой степенью вероятности совпадающая с той, которая была послана передатчиком. Если данные перед отправкой в кабель подвергались скрэмблированию, то они пропускаются через дескрэмблер, после чего в адаптере восстанавливаются символы кода, посланные передатчиком. Проверка контрольной суммы кадра. Если она неверна, то кадр отбрасывается, а через межуровневый интерфейс наверх, протоколу LLC передается соответствующий код ошибки. Если контрольная сумма верна, то из МАС-кадра извлекается кадр LLC и передается через межуровневый интерфейс наверх, протоколу LLC. Кадр LLC помещается в буфер оперативной памяти.
Распределение обязанностей между сетевым адаптером и его драйвером стандартами не определяется, поэтому каждый производитель решает этот вопрос самостоятельно. Обычно сетевые адаптеры делятся на адаптеры для клиентских компьютеров и адаптеры для серверов.
В адаптерах для клиентских компьютеров значительная часть работы перекладывается на драйвер, тем самым адаптер оказывается проще и дешевле. Недостатком такого подхода является высокая степень загрузки центрального процессора компьютера рутинными работами по передаче кадров из оперативной памяти компьютера в сеть. Центральный процессор вынужден заниматься этой работой вместо выполнения прикладных задач пользователя.
Поэтому адаптеры, предназначенные для серверов, обычно снабжаются собственными процессорами, которые самостоятельно выполняют большую часть работы по передаче кадров из оперативной памяти в сеть и в обратном направлении. Примером такого адаптера может служить сетевой адаптер SMS EtherPower со встроенным процессором Intel i960.
В зависимости от того, какой протокол реализует адаптер, адаптеры делятся на Ethernet-адаптеры, Token Ring-адаптеры, FDDI-адаптеры и т. д. Так как протокол Fast Ethernet позволяет за счет процедуры автопереговоров автоматически выбрать скорость работы сетевого адаптера в зависимости от возможностей концентратора, то многие адаптеры Ethernet сегодня поддерживают две скорости работы и имеют в своем названии приставку 10/100. Это свойство некоторые производители называют авточувствительностью.
Сетевой адаптер перед установкой в компьютер необходимо конфигурировать. При конфигурировании адаптера обычно задаются номер прерывания IRQ, используемого адаптером, номер канала прямого доступа к памяти DMA (если адаптер поддерживает режим DMA) и базовый адрес портов ввода/вывода.
Если сетевой адаптер, аппаратура компьютера и операционная система поддерживают стандарт Plug-and-Play, то конфигурирование адаптера и его драйвера осуществляется автоматически. В противном случае нужно сначала сконфигурировать сетевой адаптер, а затем повторить параметры его конфигурации для драйвера. В общем случае, детали процедуры конфигурирования сетевого адаптера и его драйвера по многом зависят от производителя адаптера, а также от возможностей шины, для которой разработан адаптер.
продолжение
–PAGE_BREAK–Классификация сетевых адаптеров
В качестве примера классификации адаптеров используем подход фирмы 3Com, имеющей репутацию лидера в области адаптеров Ethernet. Фирма 3Com считает, что сетевые адаптеры Ethernet прошли в своем развитии три поколения.
Адаптеры первого поколения были выполнены на дискретных логических микросхемах, в результате чего обладали низкой надежностью. Они имели буферную память только на один кадр, что приводило к низкой производительности адаптера, так как все кадры передавались из компьютера в сеть или из сети в компьютер последовательно. Кроме этого, задание конфигурации адаптера первого поколения происходило вручную, с помощью перемычек. Для каждого типа адаптеров использовался свой драйвер, причем интерфейс между драйвером и сетевой операционной системой не был стандартизирован.
В сетевых адаптерах второго поколения для повышения производительности стали применять метод многокадровой буферизации. При этом следующий кадр загружается из памяти компьютера в буфер адаптера одновременно с передачей предыдущего кадра в сеть. В режиме приема, после того как адаптер полностью принял один кадр, он может начать передавать этот кадр из буфера в память компьютера одновременно с приемом другого кадра из сети.
В сетевых адаптерах второго поколения широко используются микросхемы с высокой степенью интеграции, что повышает надежность адаптеров. Кроме того, драйверы этих адаптеров основаны на стандартных спецификациях. Адаптеры второго поколении обычно поставляются с драйверами, работающими как в стандарте NDIS (спецификация интерфейса сетевого драйвера), разработанном фирмами 3Com и Microsoft и одобренном IBM, так и в стандарте ODI (интерфейс открытого драйвера), разработанном фирмой Novell.
В сетевых адаптерах третьего поколения (к ним фирма 3Com относит свои адаптеры семейства EtherLink III) осуществляется конвейерная схема обработки кадров. Она заключается в том, что процессы приема кадра из оперативной памяти компьютера и передачи его в сеть совмещаются во времени. Таким образом, после приема нескольких первых байт кадра начинается их передача. Это существенно (на 25—55 %) повышает производительность цепочки оперативная память — адаптер — физический канал — адаптер — оперативная память. Такая схема очень чувствительна к порогу начала передачи, то есть к количеству байт кадра, которое загружается в буфер адаптера перед началом передачи в сеть. Сетевой адаптер третьего поколения осуществляет самонастройку этого параметра путем анализа рабочей среды, а также методом расчета, без участия администратора сети.
Самонастройка обеспечивает максимально возможную производительность для конкретного сочетания производительности внутренней шины компьютера, его системы прерываний и системы прямого доступа к памяти.
Адаптеры третьего поколения базируются на специализированных интегральных схемах (ASIC), что повышает производительность и надежность адаптера при одновременном снижении его стоимости. Компания 3Com назвала свою технологию конвейерной обработки кадров Parallel Tasking, другие компании также реализовали похожие схемы в своих адаптерах. Повышение производительности канала «адаптер-память» очень важно для повышения производительности сети в целом, так как производительность сложного маршрута обработки кадров, включающего, например, концентраторы, коммутаторы, маршрутизаторы, глобальные каналы связи и т. п., всегда определяется производительностью самого медленного элемента этого маршрута. Следовательно, если сетевой адаптер сервера или клиентского компьютера работает медленно, никакие быстрые коммутаторы не смогут повысить скорость работы сети.
Выпускаемые сегодня сетевые адаптеры можно отнести к четвертому поколению. В эти адаптеры обязательно входит ASIC, выполняющая функции МАС-уровня, скорость развита до 1 гБит/сек, а также большое количество высокоуровневых функций. В набор таких функций может входить поддержка агента удаленного мониторинга RMON, схема приоритезации кадров, функции дистанционного управления компьютером и т. п. В серверных вариантах адаптеров почти обязательно наличие мощного процессора, разгружающего центральный процессор. Примером сетевого адаптера четвертого поколения может служить адаптер компании 3Com Fast EtherLink XL 10/100.
Сетевой концентратор
Сетевой концентраторили Хаб (жарг. от англ. hub — центр деятельности) — сетевое устройство, предназначенное для объединения нескольких устройств Ethernet в общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Термин концентратор (хаб) применим также к другим технологиям передачи данных: USB, FireWire и пр.
В настоящее время хабы почти не выпускаются — им на смену пришли сетевые коммутаторы (свитчи), выделяющие каждое подключённое устройство в отдельный сегмент. Сетевые коммутаторы ошибочно называют «интеллектуальными концентраторами».
Принцип работы
Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключённые к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключённые устройства Ethernet разделяют между собой предоставляемую полосу доступа.
Многие модели концентраторов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключённых устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре, гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано концентратором от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.
В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы — устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключённого устройства в отдельный сегмент, домен коллизии.
продолжение
–PAGE_BREAK–