Вертьянов С. Ю.
Все живые существа тесно связаны между собой и с окружающей средой, образуя экосистемы — сообщества взаимодействующих организмов. Экосистемой является и лишайник, прилепившийся к стволу дерева, и обширная степь, и океанический шельф. Экосистемы, конечно же, не изолированы друг от друга: существа различных биоценозов вступают между собой в определенные взаимоотношения, прежде всего пищевые, экосистемы обмениваются веществом и энергией. В тесной взаимосвязи они образуют единую планетарную экосистему — биосферу. Термин впервые ввел в науку Ж.-Б. Ламарк в 1803 году, понимая под биосферой всю совокупность живых организмов планеты. В конце ХIХ в. понятие биосферы использовал знаменитый австрийский геолог Э. Зюсс, включив в него и неживую материю осадочных пород.
Годом рождения учения о биосфере считается 1926 г., когда вышла книга В. И. Вернадского "Биосфера". Заслуга академика Вернадского — в обобщении огромного количества научных данных, указывающих на тесную взаимосвязь жизни и неживого вещества планеты. Ученый показал, что Земля не только населена, но и активно преобразуется живыми организмами.
Вернадский утверждал, что вмешательство человека в природные процессы, обусловленное научными достижениями, столь существенно, что следует говорить о новой фазе развития биосферы — ноосфере ("сфере разума"). Труды Вернадского инициировали ряд научных исследований и появление новых направлений — учения о биосфере и ноосфере, биогеохимии.
Современная наука о биосфере — системная дисциплина, объединяющая данные биологии и геологии, химии, климатологии, океанологии, почвоведения и ряда других наук.
Состав и строение биосферы
Живые организмы обогащают окружающую среду кислородом, регулируют количество углекислого газа, солей различных металлов и целого ряда других соединений — словом, поддерживают необходимый для жизни состав атмосферы, гидросферы и почвы. Во многом благодаря живым организмам биосфера обладает свойством саморегуляции — способностью к поддержанию на планете условий, созданных Творцом.
Огромная средообразующая роль живых организмов позволила ученым выдвинуть гипотезу о том, что атмосферный воздух и почва созданы самими живыми организмами за сотни миллионов лет эволюции. Согласно Писанию, и почва, и воздух уже присутствовали на Земле в день сотворения первых живых существ.
Академик Вернадский на основе сходства строения геологических пород, лежащих глубже кембрийских, с более поздними предположил, что жизнь в виде простых организмов присутствовала на планете "практически изначально". Ошибочность этих научных построений стала впоследствии очевидна геологам.
Несомненной заслугой В. И. Вернадского является твердая убежденность в том, что жизнь появляется только от живых организмов, но ученый, отвергая библейское учение о сотворении мира, полагал, что "жизнь вечна, как вечен космос", и попала на Землю с других планет. Фантастическая идея Вернадского не подтвердилась. Гипотеза эволюционного происхождения организмов планеты от простейших форм сегодня еще более противоречива, чем во времена Вернадского.
Энергетической основой существования жизни на Земле является Солнце, поэтому биосферу можно определить как пронизанную жизнью оболочку Земли, состав и структура которой формируется совместной деятельностью живых организмов и определяется постоянным притоком солнечной энергии.
Вернадский указывал на главное отличие биосферы от других оболочек планеты — проявление в ней геологической деятельности живых существ. По словам ученого, "все бытие земной коры, по крайней мере, по весу массы ее вещества, в своих существенных, с геохимической точки зрения, чертах обусловлено жизнью". Живые организмы Вернадский рассматривал как систему преобразования энергии солнечного света в энергию геохимических процессов.
В составе биосферы различают живое и неживое вещество — живые организмы и инертную материю. Основная масса живого вещества сосредоточена в зоне пересечения трех геологических оболочек планеты: атмосферы, гидросферы (океаны, моря, реки и пр.) и литосферы (поверхностный слой пород). К неживому веществу биосферы относится составная часть этих оболочек, связанная с живым веществом циркуляцией вещества и энергии.
В неживом компоненте биосферы различают: биогенное вещество, являющееся результатом жизнедеятельности организмов (нефть, каменный уголь, торф, природный газ, известняки биогенного происхождения и пр.); биокосное вещество, формирующееся совместно организмами и небиологическими процессами (почвы, илы, природная вода рек, озер и пр.); косное вещество, не являющееся продуктом жизнедеятельности организмов, но входящее в биологический круговорот (вода, атмосферный азот, соли металлов и пр.).
Границы биосферы можно определить лишь приблизительно. Хотя известны факты обнаружения бактерий и спор на высоте до 85 км, концентрация живого вещества на больших высотах столь ничтожна, что биосферу считают ограниченной на высоте 20-25 км озоновым слоем, защищающим живые существа от разрушительного воздействия жесткого излучения.
В гидросфере жизнь распространена повсюду. В Марианской впадине на глубине 11 км, где давление 1100 атм и температура 2,4°С, французский ученый Ж. Пикар наблюдал в иллюминатор голотурий, других беспозвоночных и даже рыб. Под толщей антарктического льда более 400 м обитают бактерии, диатомовые и синезеленые водоросли, фораминиферы, ракообразные. Бактерий обнаруживают под слоем морского ила в 1 км, в нефтяных скважинах на глубине до 1,7 км, в подземных водах на глубине 3,5 км. Глубины 2-3 км считаются нижней границей биосферы. Общая мощность биосферы, таким образом, в разных частях планеты изменяется от 12-15 до 30-35 км.
Атмосфера в основном состоит из азота и кислорода. В небольших количествах входят аргон (1%), углекислый газ (0,03%) и озон. От состояния атмосферы зависит жизнедеятельность как организмов суши, так и водных существ. Кислород используется в основном для дыхания и минерализации (окисления) отмирающего органического вещества. Углекислый газ необходим для фотосинтеза.
Гидросфера. Вода — один из самых необходимых компонентов биосферы. Около 90% воды находится в мировом океане, занимающем 70% поверхности нашей планеты и содержащем 1,3 млрд. км3 воды. Реки и озера включают всего 0,2 млн. км3 воды, а живые организмы — около 0,001 млн. км3. Существенное значение для жизнедеятельности организмов имеет концентрация в воде кислорода и углекислого газа. Содержание двуокиси углерода в воде в 660 раз больше, чем в воздухе. В морях и океанах различают пять типов сгущений жизни:
1. Шельфовые прибрежные. Эта зона богата кислородом, органикой и другими питательными веществами, поступающими с суши (например, с речной водой). Здесь на глубине до 100 м процветает планктон и его донный "напарник" бентос, перерабатывающий отмирающие организмы планктона.
Океанический планктон составляют два сообщества:
а) фитопланктон — водоросли (70% из них микроскопические диатомовые) и бактерии;
б) зоопланктон — первичные консументы фитопланктона (моллюски, рачки, простейшие, оболочники, различные беспозвоночные).
Жизнь зоопланктона протекает в постоянном движении, он то поднимается, то опускается на глубину до 1 км, избегая своих пожирателей (отсюда и название:греч. plankton блуждающий). Зоопланктон — основная пища усатых китов. Фитопланктон составляет всего 8% от массы зоопланктона, но, быстро размножаясь, продуцирует в 10 раз больше биомассы, чем вся остальная океаническая жизнь. Фитопланктон дает 50% кислорода (остальные 50% производят леса).
Организмы бентоса — крабы, головоногие и двустворчатые моллюски, черви, морские звезды и ежи, голотурии ("морские огурцы" или другое название — трепанги), фораминиферы (морские корненожки), водоросли и бактерии приспособлены к жизни почти без света. Перерабатывая органику и превращая ее в минеральные вещества, восходящими потоками доставляющиеся в верхние слои, бентос питает планктон. Чем богаче бентос, тем богаче планктон, и наоборот. За пределами шельфа количество обоих резко падает.
Планктон и бентос формируют в океане мощный слой известковых и кремнеземных илов, образующих осадочные породы. Карбонатные осадки способны превращаться в камень всего за несколько десятков лет.
2. Апвелинговые сгущения образованы на местах восходящих потоков, выносящих к поверхности продукцию бентоса. Известны Калифорнийский, Сомалийский, Бенгальский, Канарский и особенно Перуанский апвелинг, дающий около 20% мирового промысла рыбы.
3. Рифовые — известные всем коралловые рифы, изобилующие водорослями и моллюсками, иглокожими, синезелеными, кораллами и рыбой. Растут рифы необыкновенно быстро (до 20-30 см в год) не только за счет коралловых полипов, но и за счет жизнедеятельности моллюсков и иглокожих, концентрирующих кальций, а также зеленых и красных водорослей с известковым скелетом.
Основной продуцент рифовых экосистем — микроскопические фототрофные водоросли, поэтому рифы находятся на глубинах не более 50 м, им требуется прозрачная теплая вода с определенной соленостью. Рифы — одна из самых продуктивных систем биосферы, образующая ежегодно до 2 т/га биомассы.
4. Саргасовые сгущения — поля плавающих на поверхности бурых и багрянниковых водорослей с множеством воздушных пузырьков. Распространены в Саргасовом и Черном морях.
5. Абиссальные рифтовые придонные сгущения формируются на глубине до 3 км вокруг горячих источников на разломах океанической коры (рифтах). В этих местах выносится из земных недр сероводород, ионы железа и марганца, соединения азота (аммиак, оксиды), питающие хемотрофные бактерии — продуценты, потребляемые более сложными организмами — моллюсками, крабами, раками, рыбами и огромными сидячими червеобразными животными рифтиями. Эти организмы не нуждаются в солнечном свете. В рифтовых зонах существа растут примерно в 500 раз быстрее и достигают внушительных размеров. Двустворчатые моллюски вырастают до 30 см в диаметре, бактерии — до 0,11 мм! Известны галапагосские рифтовые сгущения, а также у острова Пасхи.
В море преобладает разнообразие животных, а на суше — растений. Только покрытосеменные составляют 50% видов, а морские водоросли — всего 5%. Общая биомасса на суше представлена на 92% зелеными растениями, а в океане 94% составляют животные и микроорганизмы.
Биомасса планеты обновляется в среднем каждые 8 лет, растения суши — за 14 лет, океана — за 33 дня (фитопланктон — ежедневно). Вся вода проходит через живые организмы за 3 тыс. лет, кислород — за 2-5 тыс. лет, а углекислый газ атмосферы — всего за 6 лет. Существенно более длительны циклы углерода, азота и фосфора. Биологический круговорот не замкнут, около 10% вещества уходит в виде осадочных отложений и захоронений в литосферу.
Масса биосферы составляет всего 0,05% массы Земли, а ее объем — около 0,4%. Общая масса живого вещества составляет 0,01-0,02% от косного вещества биосферы, но роль живых организмов в геохимических процессах весьма значительна. Ежегодная продукция живого вещества составляет около 200 млрд. т сухого веса органики, в процессе фотосинтеза 70 млрд. т воды реагирует с 170 млрд. т углекислого газа. Ежегодно жизнедеятельность организмов вовлекает в биогенный круговорот 6 млрд. т азота, 2 млрд. т фосфора, железо, серу, магний, кальций, калий и др. элементы. Человечество, используя многочисленную технику, добывает около 100 млрд. т полезных ископаемых в год.
Жизнедеятельность организмов вносит существенный вклад в планетарный круговорот веществ, осуществляя его регуляцию, жизнь служит мощным геологическим фактором, стабилизирующим и преображающим биосферу.
Биогеохимические процессы в биосфере
Функции живого вещества. Различают следующие функции живого вещества биосферы:
1. Энергетическая функция. Растения поглощают солнечный свет и насыщают энергией биосферу. Около 10% улавливаемой солнечной энергии используется самими продуцентами (в основном, на процессы клеточного дыхания), остальная часть по пищевым цепям распределяется по экосистемам биосферы. Некоторое количество энергии консервируется в виде полезных ископаемых (угля, нефти), насыщая энергией земные недра.
В энергетической функции иногда выделяют окислительно-восстановительную функцию. Хемосинтезирующие бактерии, являясь продуцентами, извлекают энергию из окислительно-восстановительных реакций неорганических соединений. Серобактерии получают энергию, окисляя сероводород, а железобактерии — двухвалентное железо до трехвалентного. Нитрифицирующие бактерии окисляют соединения аммония до нитритов и нитратов. Именно в расчете на работу бактерий на поля вносят в качестве удобрения соединения аммония, сами по себе эти соединения не усваиваются растениями. Непосредственное удобрение полей нитратами приводит к насыщению запасающих тканей растений водой, фиктивному увеличению урожайности, резкому ухудшению вкусовых качеств овощей и опасности заболеваний пищеварительной системы.
2. Средообразующая. Живые существа формируют почву, поддерживают состав атмосферы и гидросферы. Без фотосинтеза атмосферный кислород израсходовался бы за 2000 лет, а рост количества углекислого газа через 100 лет привел бы к гибели организмов. За день лесной массив способен поглотить до 20-25% углекислого газа из слоя воздуха в 50 м. Среднее дерево обеспечивает кислородом 4 человек, один гектар лиственного леса вблизи города задерживает более 100 т пыли в год.
Благодаря деятельности маленьких байкальских рачков, трижды в год процеживающих всю воду озера, Байкал славится своей чистой водой. Двустворчатые моллюски Волгоградского водохранилища, дважды в месяц профильтровывая полный его объем — 35 км3, осаждают на грунт с апреля по ноябрь более 29 млн. т взвеси.
3. Концентрационная функция. Живые существа концентрируют в своих организмах различные химические элементы, рассеянные в биосфере. Активнейшими концентраторами являются микроорганизмы. До 90% почвенного азота — результат "труда" синезеленых. Из бактерий одни концентрируют железо (например, окисляя хорошо растворимый в воде гидрокарбонат до нерастворимого гидроксида, накапливающегося в среде их обитания), другие — марганец, третьи — серебро. Бактерии способны увеличивать содержание: железа — в 650 тыс. раз, марганца — в 120 тыс. раз, ванадия — в 420 тыс. раз.
Эта удивительная способность позволила ученым предположить, что сообщества бактерий вносят существенный вклад в формирование месторождений металлов.
Германий и селен в некоторых странах добывают из растений. В водоросли фукус накапливается титана в 10 тыс. раз больше, чем в окружающей морской воде. Каждая тонна бурых водорослей содержит несколько килограммов йода. Австралийский шелковистый дуб концентрирует алюминий, один из видов американского дуба — медь, сосна накапливает бериллий, береза — стронций и барий, лиственница — марганец и ниобий, а черемуха, осина и пихта — торий. Золото "собирают" дуб, кукуруза, хвощ, бурые и красные водоросли, а в 1 т золы полыни может содержаться до 85 г этого драгоценного металла. Моллюски концентрируют никель, осьминоги — медь, медузы — цинк и алюминий.
4. Деструктивная функция. При активном участии живых существ идет минерализация органических остатков, выветривание горных пород. Синезеленые водоросли, бактерии, грибы и лишайники выделяют серную, азотную, угольную, а также органические кислоты, разрушающие твердые породы. Корни деревьев и растений тоже выделяют разъедающие соединения. Существуют бактерии, разрушающие стекло и даже золото.
5. Транспортная функция организмов связана с переносом масс вещества. Растения втягивают корнями воду и испаряют ее в атмосферу, рыба плывет против течения, роющие существа выбрасывают землю наверх, стада и стаи мигрируют. Вес стаи перелетной саранчи может достигать миллионов тонн.
Разнообразные функции живого вещества позволяют ему проводить грандиозную геологическую работу, формировать облик биосферы, активно участвовать во всех ее процессах.
Роль живых организмов в формировании осадочных пород. Первым этапом образования осадочных пород является выветривание — разрушение литосферы под действием естественных факторов: воздуха, воды, солнца и живых организмов. Корни растений наделены удивительной жизнеспособностью, внедряясь в породу, они разрушают ее. Просачиваясь в образованные корнями трещинки, вода растворяет и уносит вещество. Растворению способствуют содержащиеся в природной воде разъедающие вещества растений. Особенно интенсивно выделяют органические кислоты лишайники. Слизь, образуемая синезелеными и диатомовыми водорослями, превращает в песок минералы, основу которых составляют соединения кремния и алюминия. Физическое выветривание пород сопровождается, таким образом, химическим выветриванием.
За счет отмирания организмов планктона и бентоса ежегодно на дне отлагается около 100 млн. т органогенных известняков (многие известняки химического происхождения, они отлагаются, например, в зоне контакта кислотных и щелочных подземных вод). Отмирая, одноклеточные диатомовые водоросли и радиолярии формируют кремнийсодержащие илы, покрывающие сотни тысяч квадратных километров морского дна.
Живые существа вносят существенный вклад в осадконакопление и формирование литосферы.
Почвообразующая роль живых организмов. Разрушение горных пород и их дальнейшая переработка микроорганизмами и растениями приводит к образованию рыхлой плодородной оболочки земли — почвы. Корни деревьев извлекают из глубоких горизонтов почвы элементы минерального питания и обогащают ими верхние слои, повышая плодородность почв. Мертвые корни и листья растений, трупы и экскременты животных обогащают почву органическими соединениями, служат пищей для почвенных организмов, минерализующих органику и превращающих ее в углекислый газ, аммиак, органические кислоты.
Беспозвоночные животные, почвенные насекомые и их личинки проводят огромную структурообразующую работу. Они разрыхляют почву, делают ее пористой и пригодной для жизнедеятельности растений. Число особей дождевых червей достигает 2-3 млн. (1-2 т)/га, за сутки они могут перерыть до 10 т земли. Пропуская почву через кишечник и вынося ее на поверхность, они ежегодно формируют слой переработанного грунта толщиной до 0,5 см, массой 25 т/га. Черви обитают в почве несколькими ярусами. Одни проникают на глубину до метра и затаскивают туда остатки листвы, другие живут в тонком слое почвенного перегноя (20-30 см), а третьи проводят жизнь в слое лиственного опада. Почвенные беспозвоночные вырабатывают и выделяют в почву различные биологически активные вещества, так, например, дождевые черви продуцируют биостимуляторы группы "В". Различные позвоночные животные — кроты, землеройки, — разрыхляя почву, способствуют развитию кустарников и деревьев, а также газообмену.
Ночью при охлаждении и сжатии воздух проникает в почву. Кислород используется для дыхания почвенными организмами и клетками корней растений. Азот связывается бактериями и синезелеными водорослями. Днем при нагревании почва выделяет продукты жизнедеятельности почвенных организмов и разложения органики — аммиак, сероводород и углекислый газ. Дождевая вода частично удерживается почвой, другая ее часть, растворяя минеральные соли, выносит их в реки и океаны, где они осаждаются или используются водными организмами. В нагретой почве вода поднимается по капиллярам и испаряется. Происходит перемещение растворов и отложение солей в разных почвенных горизонтах.
Мощность слоя почвы, как и количество биомассы, увеличивается с приближением к экватору. Тундровая почва северных широт имеет толщину 5-10 см, в хвойных и лиственных лесах она достигает 20-40 см, в степях — до 1,5 м, а в тропических лесах — 10 м.
В состав почвы входит 50-60 объемных процентов минеральных веществ, 25-35% воды, 15-25% воздуха и до 10-16% органических веществ. Около 90% органики входит лат. humus почва). Количество гумуса служит показателем<в состав гумуса ( плодородия почвы. В черноземах его 400-700 т/га, а в почвах тундр и пустынь — всего 0,6-0,7 т/га. Из чего же состоит гумус?
Частички гумуса строятся из фрагментов органических молекул (белков, углеводов) при активном участии микроорганизмов почвы. Сначала почвенные животные (черви, насекомые) размельчают остатки растений. Затем грибы и микроорганизмы расщепляют сложные органические молекулы (целлюлозу, белки и пр.) на простые фрагменты. Другие микроорганизмы с помощью ферментов соединяют эти фрагменты в органические молекулы гумуса (в основном, гуминовые кислоты) длинными цепями обвивающие частички глины в несколько слоев. Получаются устойчивые к действию химических соединений и микроорганизмов гранулы, способные сохранять запас плодородия длительное время. При недостатке питательных веществ особые микроорганизмы "распечатывают" эти гранулы и пускают их плодородную силу в дело. Частички гумуса придают почве водо- и воздухопроницаемость. Гумус участвует в разрушении минералов почвенной подложки, вовлекает их в биологический круговорот. Микроорганизмы-гумусообразователи теплолюбивы, поэтому в южных широтах почвы особенно богаты гумусом. Когда почву распахивают и оставляют под паром на год-два, то в прогретой вспаханной земле микроорганизмы синтезируют гумус из отмершей при вспахивании растительности и запасов растительных остатков. Почва, обогащенная гумусом, становится более плодородной. В этом секрет "черного пара".
Особенно богата гумусом степная почва. В степи обитает множество копытных, змей, грызунов, лис, ящериц. Их навоз хорошо удобряет почву, микроорганизмы эффективно переводят его в гумус. Азотные удобрения резко снижают содержание гумуса, поскольку в условиях избытка азота активизируются микроорганизмы, разрушающие гумус. Черноземы русских степей содержали до 12-16% гумуса, превосходя плодородием почвы Бразилии, Венесуэлы и США. Поэтому-то немцы и вывозили эшелонами русский и украинский чернозем. Степи в биосфере — главный почвообразующий источник.
В гумусе содержится основной энергетический запас почвы. Растительность чернозема использует лишь 10% энергии, запасенной в гумусе.
Почва может отдавать гумус растениям, а может накапливать его в нижних горизонтах, расходуя свою энергию экономно. Способность мышц человека к напряжению зависит от присутствия в них кальция, почва тоже "напрягается" или "расслабляется" в зависимости от присутствия этого элемента в верхних горизонтах. При его наличии частички гумуса делаются нерастворимыми и не вымываются в нижний горизонт. Они расходуются на питание, и растительность бурно развивается. При отсутствии кальция частички гумуса растворяются и уносятся водой в нижний запасающий горизонт, а растения развиваются достаточно скромно. Почва с недостатком кальция не может быть плодородной, в нее вносят дополнительно кальцийсодержащие соединения.
Под Псковом расположены рядом два лесных участка с резко различающейся растительностью. На одном — дубрава и клеверный луг, на другом — еловый лес и скудная осока. Влияющая на состав почвы подложка на границе участков меняется. На одном участке — богатая кальцием известковая почва, на другом — бедные кальцием суглинки. Количество растительности и ее развитие зависит и от содержания в почве других химических элементов. Взаимосвязью растительности и состава пород давно научились пользоваться геологи. На месторождениях угля и нефти растения обычно очень крупные. Там, где недра содержат железо, свинец, медь или радиоактивные руды, растительность всегда угнетенная. При избытке алюминия листья закручиваются, а медь делает розовые и желтые лепестки роз голубыми или даже черными. Розовые цветки иван-чая делаются на урановых рудах белыми или пурпурными. На месторождениях платины чернеет сосновая хвоя.
Среди всех биокосных систем биосферы почва имеет самую высокую концентрацию живых организмов. Экологи предполагают, что специфический запах земли обусловлен продуктами метаболизма микроорганизмов. В 1 см3 лесной почвы — 10 млн. бактерий, 200 тыс. водорослей, 20 тыс. простейших, общая длина грибницы — до 2 км, в 1 г чернозема — до 10 млрд. бактерий (100 мг). Все эти мелкие существа — основные труженики почвы, чутко реагирующие на присутствие посторонней химии. Поэтому так важно защищать природные биоценозы от загрязнения.