От биохимического сотрудничества – к общему геному

Александр МарковСимбиотические системы, или «сверхорганизмы», занимают в иерархии биосистем промежуточное положение между организмами и экосистемами. Важнейшую роль в функционировании симбиотических систем играет биохимическая интергация – тонкое разделение отдельных этапов обмена веществ между компонентами комплекса. Прогрессивное развитие симбиоза может приводить к интергации даже на уровне геномов, к возникновению общих систем генетической регуляции.Давно прошли те времена, когда симбиоз – длительное сожительство неродственных организмов, полезное хотя бы одному из них – считался редким явлением. Когда в 70-е годы XIX века было обнаружено, что лишайники представляют собой симбиотические комплексы из грибов и водорослей, это вызвало немалое удивление. Со временем ученый мир устал удивляться подобным вещам. Стало ясно, что симбиоз – не просто очень широко распространенное явление. Это магистральный путь эволюции, без которого прогрессивное развитие жизни на Земле было бы крайне затруднено, если вообще возможно.Пример симбиоза: кальмар Euprymna scolopes использует светящихся симбиотических бактерий Vibrio fischeri для отпугивания хищников. Кальмар способен регулировать силу свеченияВ принципе этого следовало ожидать. Для того чтобы выжить и оставить потомство, каждое живое существо должно справиться с множеством разнообразных проблем. Нужно каким-то образом получать из окружающей среды необходимые вещества, а недостающие самостоятельно синтезировать из подручного материала; нужно добывать энергию, необходимую для энергоемких химических и физических процессов; нужно во-время избавляться от отходов жизнедеятельности; находить подходящих партнеров для обмена наследственным материалом; заботиться о потомстве; защищаться от хищников и так далее – и все это в переменчивой, далеко не всегда благоприятной внешней среде. Требования, предъявляемые жизнью к каждому отдельному организму, не только многочисленны и разнообразны – очень часто они еще и противоречивы. Невозможно оптимизировать сложную систему сразу по всем параметрам: чтобы добиться совершенства в чем-то одном, приходится жертвовать другим. Поэтому эволюция – это вечный поиск компромисса, и отсюда следует неизбежная ограниченность возможностей любого отдельно взятого живого существа. Самый простой и эффективный путь преодоления этой ограниченности – симбиоз, то есть кооперация «специалистов разного профиля».На симбиозе были основаны многие важнейшие ароморфозы (прогрессивные преобразования), из которых упомянем самый значительный – формирование эукариотической (ядерной) клетки, той основы, из которой в дальнейшем развились все высшие формы жизни (животные, растения, грибы). Эукариотическая клетка сформировалась в результате симбиоза нескольких прокариотических (безъядерных) организмов – бактерий и архей. На симбиозе основаны важнейшие функциональные блоки современной биосферы. Так, возможности высших растений – основных производителей органики и кислорода – были бы весьма ограничены без симбиоза с бактериями, способными переводить атмосферный азот в доступную для растений форму, и с некоторыми грибами (микориза), без кооперации с насекомыми-опылителями и позвоночными – распространителями семян. Растительноядные животные – основные потребители производимой растениями органики – не могут эффективно переваривать растительную пищу без помощи разнообразных симбиотических бактерий и одноклеточных эукариот. Самые яркие и богатые жизнью морские экосистемы коралловых рифов невозможны без симбиоза коралловых полипов с одноклеточными водорослями – зооксантеллами. Сообщества различных экзотических, архаичных и экстремальных местообитаний (таких как наземные и подводные горячие источники, выходы метана и сероводорода, соленые лагуны, подземные воды и др.) тоже сплошь и рядом представляют собой сложные симбиотические комплексы микроорганизмов, в которых порой принимают участие и высшие органгизмы.Большинство живых существ, населяющих планету, в действительности являются «сверхорганизмами» — сложными симбиотическими комплексами. Несмотря на общеизвестность этих фактов, в биологии по-прежнему господствует старый «организмоцентрический» подход. Поэтому новые обзоры и обобщения, связанные с организацией, функционированием, разнообразием и экологической ролью симбиотических систем, не теряют своей актуальности.Обзорная статья Н.А.Проворова и Е.А.Долгих посвящена одной из важных и обширных групп симбиотических систем, а именно симбиозам, основанным на биохимической кооперации. В таких системах общий метаболизм (обмен веществ) симбиотического комплекса, в первую очередь обмен углерода и азота (C- и N-метаболизм), оказывается тем или иным способом поделен между симбионтами к их общей выгоде. Авторы указывают, что «обобществление путей обмена позволяет партнерам эффективно использовать все доступные источники C и N, что определяет широкое распространение и экологическую значимость этих симбиозов». Рассматриваются три большие группы «биохимических» симбиозов: 1) азотфиксирующие симбиозы, 2) симбиозы гетеротрофов и автотрофов (т.е. потребителей органики с ее производителями) и 3) симбиозы животных с микробами, помогающими усваивать растительную пищу.1. Азотфиксирующие симбиозы – это кооперация растений с микроорганизмами, способными переводить азот из атмосферы или захороненной в почве органики в доступную для растений форму (аммоний, NH4+). Основная часть биосферного азота содержится в атмосфере в химически инертной молекулярной форме (N2). Восстановление (фиксация) этого азота требует огромного количества энергии. На это способны лишь некоторые бактерии и археи, у которых есть специальные ферменты – нитрогеназы. Дополнительная сложность состоит в том, что нитрогеназы работают только в анаэробных (бескислородных) условиях. Все высшие (эукариотические) организмы, в том числе растения – по определению аэробны, и в этом, возможно, главная причина того, что у высших организмов способность к фиксации азота не встречается. Много азота содержится также в почве в составе органических веществ, но и этот азот для растений недоступен, поскольку у них нет пищеварительных ферментов, необходимых для деструкции этой органики.Азотфиксирующие симбиозы образуют представители всех типов наземных растений с альфапротеобактериями (ризобиями), цианобактериями и актинобактериями. Наиболее изучен симбиоз бобовых с клубеньковыми бактериями – ризобиями. Ризобии, живущие в специализированных органах (клубеньках), снабжают растение аммонием, взамен получая весь комплекс элементов питания, в первую очередь – углеводы, образуемые в ходе фотосинтеза. Между растительным и бактериальным компонентами симбиотического комплекса сложилась эффективная и гибкая система взаимной координации и регуляции. Например, специальные ферменты растений, работающие только в клубеньках, «заботятся» о том, чтобы концентрация кислорода в центральной части клубенька, где живут ризобии, была как можно ниже (и она там действительно ниже, чем в атмосфере, на 5-6 порядков). Биохимическая и генетическая интеграция симбиотического комплекса доходит даже до того, что активность некоторых растительных генов регулируется бактериальными белками-регуляторами!Важную экологическую роль играет также симбиоз различных растений с азотфиксирующими цианобактериями. В отличие от ризобий, цианобактерии сами способны к фотосинтезу, что несколько упрощает задачу снабжения азотфиксирующих симбионтов необходимой энергией. Симбиотический комплекс водного папоротника Azolla и цианобактерии Anabaena имеет большое сельскохозяйственное значение: заселение рисовых плантаций этим папоротником резко повышает урожайность риса. Не случайно в некоторых районах Юго-Восточной Азии азоллу обожествляют.Клубеньки с азотфиксирующими бактериями встречаются не только у бобовых, но и у многих других растений. На снимке – клубеньки на корнях ольхиАвторы указывают, что эффективность азотфиксации подобных сибмиотических комплексов невысока по сравнению со свободноживущими цианобактериями, и в принципе может быть повышена искусственными методами. Теоретически возможно «научить» фиксировать атмосферный азот даже сами растительные клетки, точнее их органеллы – пластиды, служащие для фотосинтеза и ведущие свое происхождение от симбиотических цианобактерий. Наверное, можно генно-инженерными методами создать пластиды с генами нитрогеназ, которые могли бы работать в темновых условиях (например, в корнях). Конечно, будет очень сложно добиться достаточно низкой концентрации кислорода в растительных клетках, но перспектива выглядит весьма заманчивой, ведь недостаток доступного азота – главный лимитирующий фактор, ограничивающий рост растений. Сняв это ограничение, теоретически можно добиться колоссального увеличения урожайности.2. Симбиозы автотрофов с гетеротрофами – это кооперация организмов, синтезирующих органику из углекислого газа, с потребителями готовой органики. В роли первых выступают фотосинтезирующие организмы (растения, одноклеточные эукариоты, цианобактерии) или бактерии-хемосинтетики, использующие для фиксации CO2 энергию окисления неорганических веществ (например, сероводорода или метана). В роли вторых выступают животные или грибы. Широко распространены симбиозы с участием грибов – микоризы и лишайники. В случае микоризы грибной компонент получает от растения-хозяина углеводы (глюкозу, фруктозу), а сам берет на себя функцию корневых волосков (которые на микоризных корнях часто не развиваются) и вдобавок снабжает хозяина соединениями азота (аммонием и аминокислотами), которые гриб добывает, разлагая почвенную органику. Лишайники иногда называют «микоризой наоборот», поскольку в этих симбиотических комплексах гриб выступает в роли «хозяина», а фотоситезирующие организмы (одноклеточные водоросли или цианобактерии) – в роли «симбионта». Однако система биохимической интергации у лишайников и микориз во многом сходна. Наибольшего совершенства эта система достигает у трехкомпонентных лишайников, в состав которых входят, помимо гриба-хозяина, специализирующиеся на фотосинтезе зеленые водоросли и специализирующиеся на азотфиксации цианобактерии.Симбиоз с автотрофами открывает большие возможности для многих водных животных, особенно малоподвижных (кишечнополостных, губок, асцидий, некоторых червей и моллюсков). Такие симбиотические комплексы представляют собой «сверхорганизмы», сочетающие признаки растений и животных (яркий пример – коралловые полипы). Автотрофы не только снабжают хозяина органикой, полученной в результате фото- или хемосинтеза, но и в ряде случаев помогают ему избавляться от конечных продуктов азотного обмена (например, мочевой кислоты или мочевины), которые служат для симбионтов ценным источником азота.3. Симбиозы животных с микробами, помогающими усваивать растительную пищу. Потребление органики, производимой растениями в ходе фотосинтеза – главная «экологическая роль» животных в биосфере, однако, как это ни парадоксально, сами по себе животные практически не способны справляться с этой задачей. Подавляющее большинство растительноядных животных попросту лишены ферментов для расщепления растительных полимеров (главным из которых является целлюлоза). Поэтому практически все животные-фитофаги – это на самом деле симбиотические комплексы из животного-хозяина и разнообразных бактерий, грибов или простейших (причем в последнем случае симбиотические простейшие зачастую сами имеют бактериальных симбионтов). По мнению авторов, растительноядность изначально была симбиотическим феноменом. Роль симбионтов не сводится к расщеплению растительных полимеров: они могут также утилизировать азотные шлаки хозяина, и синтезировать многие вещества, необходимые хозяину, но отсутствующие в растительной пище. Микробное сообщество, обитающее в пищеварительном тракте термитов, обладает даже способностью к азотфиксации, что позволяет этим насекомым питаться такими несъедобными вещами, как химически чистая целлюлоза. Некоторые биохимические процессы в таких симбиотических системах оказываются весьма причудливым образом распределены между хозяином и симбионтом. Например, комплекс «тли – бактерия Buchnera» синтезирует важнейшее вещество кофермент А совместными усилиями: сначала бактерия синтезирует из пирувата пантотенат (чего не может насекомое), а затем тля синтезирует из пантотената кофермент А (чего не может бактерия). Конечным продуктом пользуются они вместе.Авторы отмечают ряд общих закономерностей в развитии симбиотических систем, основанных на «биохимической кооперации». Совместное существование позволяет каждому из компонентов симбиотического комплекса отказаться от тех биохимических функций, которые лучше удаются патрнеру, и сосредоточиться на том, что лучше получается у него самого. Например, клубеньковые бактерии занимаются почти исключительно фиксацией азота, переложив заботу обо всем остальном на растение-хозяина. Один из партнеров обычно специализируется на поставке в систему азота, а другой – углерода. Авторы указывают также на зыбкость и относительность грани между мутуалистическими (взаимовыгодными) и антагонистическими симбиозами: сформулировать четкие биохимические критерии для их разграничения в настоящее время не представляется возможным. Например, многие растительно-грибные симбиозы в ходе эволюции могли долго «балансировать» на грани мутуализма и антагонизма, причем преобладающие потоки питательных веществ могли неоднократно менять свое направление. Непосредственный переход паразитизма в мутуализм – сранительно редкое явление (пример – «защитные симбиозы» растений со спорыньевыми грибами, в которых исходно паразитический гриб стал защищать растение от растительноядных животных путем синтеза токсичных веществ). В большинстве случаев симбиотические системы развиваются из фрагментов экосистем. В частности, симбиозы, основанные на биохимической кооперации, в большинстве случаев развиваются из «синтрофических консорций», то есть кооперативных объединений свободноживущих организмов, соместно утилизирующих какой-то ресурс, или из фрагментов «трофической пирамиды» (симбиозы производителей органики с ее потребителями). Особый и весьма удивительный случай связи между трофической цепью и биохимическим симбиозом представляет морской моллюск Elysia viridis, питающийся водорослью Codium fragile. Этот моллюск ухитряется переселять хлоропласты съеденных водорослей в свои собственные клетки и долгое время сохранять их там живыми, приобретая таким образом способность к фотосинтезу. Настоящий гибрид животного и растения! Главным отличием симбиотической системы от биоценоза является существование у первых общих биохимических путей, а не только механического переноса питательных веществ между организмами. Это сокращает потери и позволяет добиться максимальной эффективности использования ресурсов.