Повторные и независимые испытания. Теорема Бернулли о частоте вероятности

–PAGE_BREAK–№15.Найти вероятность того, что событие А наступит ровно 70 раз в 243 испытаниях, если вероятность появления этого события в каждом испытании равна 0,25.

Решение.По условию n=243; k=70; p=0,25; q=0,75. Воспользуемся формулой Лапласа:
.
Найдем значение x:

.
По таблице приложения1 находим
.
Искомая вероятность
.
№16.Найти вероятность того, что событие А наступит 1400 раз в 2400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,6.

Решение. По условию n=2400; k=1400; p=0,6; q=0,4. Как и в предыдущем примере, воспользуемся формулой Лапласа:

Вычислим x:
.
По таблице приложения1 находим

Искомая вероятность
.
4. Формула Пуассона
Эта формула применяется при неограниченном возрастании числа испытаний, когда вероятность наступления события достаточно близка к 0 или 1.
,

где .

Доказательство.

.

.
Таким образом получили формулу:
.
Примеры

№17. Вероятность изготовления негодной детали равна 0,0002. Найти вероятность того, что среди 10000 деталей только 2 детали будут негодными.

Решение.n=10000; k=2; p=0,0002.

Искомая вероятность
.
№18. Вероятность изготовления бракованной детали равна 0,0004. Найти вероятность того, что среди 1000 деталей только 5 детали будут бракованными.

Решение.n=1000; k=5; p=0,0004.

Искомая вероятность
.
№19. Вероятность выигрыша лотереи равна 0,0001. Найти вероятность того, что из 5000 попыток выиграть удастся 3 раза.

Решение.n=5000; k=3; p=0,0001.

Искомая вероятность
.

5.Теорема Бернулли о частоте вероятности

Теорема.Вероятность того, что в nнезависимых испытаниях, в каждом из которых вероятность появления события равна p, абсолютная величина отклонения относительной частоты появления события от вероятности появления события не превысит положительного числа , приближенно равна удвоенной функции Лапласа при :
.

Доказательство.Будем считать, что производится nнезависимых испытаний, в каждом из которых вероятность появления события А постоянна и равна p. Поставим перед собой задачу найти вероятность того, что отклонение относительной частоты  от постоянной вероятности pпо абсолютной величине не превышает заданного числа . Другими словами, найдем вероятность осуществления неравенства
. (*)
Заменим неравенство (*) ему равносильными:
.

Умножая эти неравенства на положительный множитель , получим неравенства, равносильные исходному:
.
Тогда вероятность найдем следующим образом:
.
Значение функции  находится по таблице(см. приложение2).

Примеры

№20.Вероятность того, что деталь не стандартна, p=0,1. Найти вероятность того, что среди случайно отобранных 400 деталей относительная частота появления нестандартных деталей отклонится от вероятности p=0,1 по абсолютной величине не более, чем на 0,03.

Решение. n=400; p=0,1; q=0,9; =0,03. Требуется найти вероятность. Пользуясь формулой
,
имеем

.
По таблице приложения2 находим . Следовательно, . Итак, искомая вероятность равна 0,9544.

№21.Вероятность того, что деталь не стандартна, p=0,1. Найти, сколько деталей надо отобрать, чтобы с вероятностью, равной 0,9544, можно было утверждать, что относительная частота появления нестандартных деталей(среди отобранных) отклонится от постоянной вероятности pпо абсолютной величине не более чем на 0,03.

Решение.По условию, p=0,1; q=0,9; =0,03; . Требуется найти n. Воспользуемся формулой
.
В силу условия

Следовательно,

По таблице приложения 2 находим . Для отыскания числа nполучаем уравнение . Отсюда искомое число деталей n=400.

№22.Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти, какое отклонение относительной частоты появления события от его вероятности можно ожидать с вероятностью 0,9128 при 5000 испытаниях.

Решение. Воспользуемся той же формулой, из которой следует:
.

Литература

1.Гмурман Е.В. «Теория вероятностей и математическая статистика», Москва, «Высшая школа»2003.

2.Гмурман Е.В. «Руководство к решению задач по теории вероятностей и математической статистике», Москва «Высшая школа»2004.

3.Гнеденко Б.В. «Курс теории вероятностей», Москва, «Наука»1988.

4.Колемаев В.А., Калинина В.Н., Соловьев В.И., Малыхин В.И., Курочкин А.П. «Теория вероятностей в примерах и задачах», Москва, 2001.

5.Вентцель Е.С. «Теория вероятностей», Москва, «Высшая школа»1998.

Приложения

Приложение1
Таблица значений функции

1

2

3

4

5

6

7

8

9

1.6

1109

1092

1074

1057

1040

1023

1006

0989

0973

0957

1.7

0940

0925

0909

0893

0878

0863

0648

0833

0818

0804

1.8

0790

0775

0761

0748

0734

0721

0707

0694

0681

0669

1.9

0656

0644

0632

0620

0608

0596

0584

0573

0562

0551

2,0

0540

0529

0519

0508

0498

0488

0478

0468

0459

0449

2.1

0440

0431

0422

0413

0404

0396

0387

0379

0371

0363

2.2

0355

0347

0339

0332

0325

0317

0310

0303

0297

0290

2.3

0283

0277

0270

0264

0258

0252

0246

0241

0235

0229

2,4

0224

0219

0213

0208

0203

0198

0194

0189

0184

0180

2.5

0175

0171

0167

0163

0158

0154

0151

0147

0143

0139

2.6

0136

0132

0129

0126

0122

0119

0116

0113

0110

0107

2,7

0104

0101

0099

0096

0093

0091

0088

0086

0084

0081

2,8

0079

0077

0075

0073

0071

0069

0067

0065

0063

0061

2.9

0060

0058

0056

0055

0053

0051

0050

0048

0047

0043

3,0

0044

0043

0042

0040

0039

0038

0037

0036

0035

0034

3,1

0033

0032

0031

0030

0029

0028.

0027

0026

0025

0025

3,2

0024

0023

0622

0022

0021

0020

0020

0019

0018

0018

3,3

0017

0017

0016

0016

0015

0015

0014

0014

0013

0013

3,4

0012

0012

0012

0011

0011

0010

0010

0010

0009

0009

3,5

0009

0008

0008

0008

0008

0007

0007

0007

0007

0006

3,6

0006

0006

0006

0005

0005

0005

0005

0005

0005

0004

3,7

0004

0004

0004

0004

0004

0004

0003

0003

0003

0003

3,8

0003

0003

0003

0003

0003

0002

0002

0002

0002

0002

3,9

0002

0002

0002

0002

0002

0002

0002

0002

0001

0001

Приложение2
Таблица значений функции

x

x

x

x

0900

0,0000

0,32

0,1255

0,64

0,2389

0,96

0,3315

0,01

0,0040

0,33

0,1293

0,65

0,2422

0,97

0,3340

0,02

0,0080

0,34

0,1331

0,66

0,2454

0,98

0,3365

0,03

0,0120

0,35

0,1368

0,67

0,2486

0.99

0,3389

0,04

0,0160

0,36

0,1406

0,68

0,2517

1,00

0,3413

0,05

0,0199

0,37

0,1443

0,69

0,2549

1,01

0,3438

0,06

0,0239

0,38

0,1480

0,70

0,2580

1,02

0,3461

0,07

0,0279

0,39

0,1517

0,71

0,2611

1,03

0,3485

0,08

0,0319

0,40

0,1554

0,72

0,2642

1,04

0,3508

0,09

0,0359

0,41

0,1591

0,73

0,2673

1,05

0,3531

0,10

0,0398

0,42

0,1628

0,74

0,2703

1,06

0,3554

0,11

0,0438

0,43

0,1664

0,75

0,2734

1,07

0,3577

0,12

0,0478

0,44

0,1700

0,76

0,2764

1,08

0,3599

0,13

0,0517

0,45

0,1736

0,77

0,2794

1.09

0,3621

0,14

0,0557

0,46

0,1772

0,78

0,2823

1.10

0,3643

0,15

0,0596

0,47

0,1808

0,79

0,2852

3665

0,3665

0,16

0,0636

0,48

0,1844

0,80

0,2881

3686

0,3686

0,17

0,0675

0,49

1879

0,81

0,2910

1,13

0,3708.

0,18

0,0714

0,50

0,1915

0,82

0,2939

1,14

0,3729

0,19

0,0753

0,51

0,1950

0,83

0,2967

1,15

0,3749

0,20

0,0793

0,52

0,1985

0,84

0,2995

1,16

0,3770

0,21

0,0832

0,53

0,2019

0,85

0,3023

1,17

0,3790

0,22

0,0871

0,54

0,2054

0,86

0,3051

1,18

0,3810

0,23

0,0910

0,55

0,2088

0,87

0,3078

1,19

0,3830

0,24

0,0948

0,56

0,2123

0,88

0,3106

1,20

0,3849

0,25

0,0987

0,57

0,2157

0,89

0,3133

1.21

0,3869

0,26

0,1026

0,58

0,2190

0,90

0,3159

1,22

0/3883

0,27

0,1064

0,59

0,2224

0,91

0,3186

1,23

0,3907

0,28

0,1103

0,60

0,2257

0,92

0,3212

1.24

0,3925

0,29

0,1141

0,61

0,2291

0,93

0,3238

1,25

0,3944

0,30

0,1179

0,62

0,2324

0,94

0,3264

0,31

0,1217

0,63

0,2357

0,95

0,3289

    продолжение
–PAGE_BREAK–