;;o;;;;;;o;;;;;;o;;;;;;;;;;;;;;;;;;;;;;;;-;;o;;;;;;o;;;;;;o;;;;;.;;.;;.;;.;;.;;.;;.;;.;;.;;;;;o;;;;;;o;;;;;;o;;;;;;;o;;;;;;o;;;;;;o;;;;;;;o;;;;;;o;;;;;;o;;;;;-;;o;;;;;;o;;;;;;o;;;;;;;o;;;;;;o;;;;;;o;;;;;;;;;;;;;;;;;;;;;;;;Министерство транспорта РФ
федеральное агентство железнодорожного транспорта
ГОУ ВПО «ДВГУПС»
Кафедра: «Информационные системы и технологии»
Курсовая работа
на тему: «Проект сети для кафедры информационных технологий и систем»
Выполнил: Козенко А. Ж.,
220 группа
Проверил: Файзулин Р.М,
Хабаровск 2007
Оглавление
Введение
Задание
План исходного здания
Распределение ПК по комнатам и отделам
Основные сведения о закладываемой ЛВ
Сетевая технология Token Ring (802.5)
Сетевая технология FDDI
Сетевая технология Ethernet
Параметры спецификаций сетевых архитектур
Выбор пассивного и вспомогательного оборудования сети
Схема размещения оборудования в шкафу
Выбор программного обеспечения
Структура сетевой операционной системы
Программное обеспечение ЛВС
Выбор протоколов и схемы адресации
Организация доступа в Интернет
Экономическая часть
Расчет затрат на внедрение вычислительной сети
Затраты на наладку, монтаж и пуск ЛВС
Заключение
Список литературы
Введение
В настоящее время, каждое предприятие стремится автоматизировать свое производство, создавая локальные вычислительные сети. С каждым годом количество ЛВС по всему миру возрастает, следовательно возрастает и потребность в высококлассных специалистах данного профиля.
Современные сетевые технологии способствовали новой технической революции. Создание ЛВС на предприятии, в учебном заведении, фирме способствует гораздо высокому процессу обмена данными, сведениями между различными объектами, ускорению документооборота, увеличению и ускорению передачи и обмену оперативной информацией.
При создании локально вычислительной сети принимают во внимание несколько фактов, вот основные из них:
производительность сети
надежность сети
степень информационной безопасности
требуемые аппаратные ресурсы
функциональная мощность
возможность объединения с другими ЛВС
стоимость
В процессе проектирования сети, необходимо также учитывать ряд требований прикладного характер, такие как: физическое расположение пользователей, количество оконченных систем, требования к передаче данных (типы данных, среднюю нагрузку), расстояние между оконечными системами, максимальная протяженность сети, показатель надежности сети в целом и отдельных ее частей. Проектирование ЛВС необходимо производить с учетом развития, принимая во внимание возможность увеличения числа рабочих станций в сети.
Исходные данные для проектирования ЛВС могут быть получены в ходе анализа прикладной области, для которой должна быть создана сеть. Данные затем уточняются в результате принятия решений на этапах проектирования ЛВС. На данном этапе необходимо определить цели создания сети, перечень требований и функций пользователей в сети для заданной предметной области.
Задание
Разработать сеть для кафедры информационных технологий и систем.
Организационно штатная структура подразделения:
Зав. Кафедрой – 1 рабочая станция
Зам. Зав.Кафедрой – 1 рабочая станция
Зав. Лабораторией – 1 рабочая станция
Лаборант техник – 1 рабочая станция
Преподаватели (10 штатный единиц) – 10 рабочих станций
Класс компьютерный – 21 рабочая станция
Лаборатория сетевых технологий – 12 рабочих станций
Теоретическая аудитория – 3 рабочих станции, предусмотреть возможность подключения проектора
Главной целью информатизации кафедры является:
Реализация учебного процесса на лабораторных, практических занятиях, выполнение курсового и дипломного проектирования
Обеспечение оперативного доступа студентов и преподавателей к максимально широкому кругу информационных ресурсов, в том числе использование удаленного доступа
Разработка методического обеспечения
Разработка и использование во время занятий электронных учебников, справочников, энциклопедий на CD-ROM
Средняя интенсивность трафика генерируемого одним ПЭВМ = 0,16
Трафик от групп к серверу составляет 60%
Назначение ЛАС: Информационная система для кафедры университета.
План исходного здания
/>
Распределение ПК по комнатам и отделам
Номер комнаты
Площадь помещения
Наименование отдела
Наименование пользователей в сети
Количество ПК (пользователей)
Кол-во возможных ПК
101
120,76
Компьютерный класс
101class–PAGE_BREAK–
21
26
102
82,137
Лаборатория сетевых технологий
102Lab
12
18
103
27,86
Зам. Кафедры
ZamKaf
1
4
104
16,13
Коммутационный узел
-/-
-/-
1
105
27,58
Зав. Кафедрой
ZavKaf
1
6
106
21,38
Зав. Лабораторией
ZavLab
1
4
107
88,91
Теоритическая аудитория
107aud
3+проектор
5
108
14,85
Лаборант техник
Laborant
1
3
109
59,45
Преподаватели
Prepod
10
13
Итог:
50
80
Трафик одного ПК в сети составляет:
Ci=K*Cмакс=0,16*100=16 Мбит/с
Определим суммарный трафик неструктурированной сети:
Cсум = N*M*Ci=1*50*16=800 Мбит/с
Определим коэффициент нагрузки неструктурированной сети:
Pн=Cсум/Cмакс=800/100=8
Проверим, выполняется ли условие допустимой нагрузки ЛВС (домена колизий): Pн≤Pethernet=0.35, 8>0,35 => необходимо сделать логическую структуризацию сети. Pдк=1*16/100=0,16
Во многих случаях потоки информации распределены таким образом, что сервер должен обслуживать многочисленных клиентов, поэтому он является «узким местом» сети. Для расчета ЛВС по этому критерию в задании задается, что трафики от групп к серверу и между группами составляют Кs % от суммарного трафика неструктурированной сети.
На основании чего определяем межгрупповой трафик и трафик к серверу:
См.гр.=Ссерв.=Ks*Ссум=0,6*800=480 Мбит/с
Определим коэффициент нагрузки по межгрупповому трафику и трафику к серверу:
Рмгр=Рсерв=Кs*Ссум/Смакс≤0,35
Смакс=1000 Мбит/с
Рмгр=480/1000=0,48>0,35
Трафик к серверу составляет 1 Gigabit/s.
Основные сведения о закладываемой ЛВС
Компонент / Характеристика
Реализация
Организационная структура:
Количество зданий
1
Количество этажей
1
Количество помещений
9
Количество отделов
9
Количество пользователей
50
Закладываемое расширение ПК (ограниченно площадью)
80
Максимальное расстояние между ПК (по плану здания)
72,22
Основные цели создания сети:
обеспечение оперативного доступа студентов и преподавателей к максимально широкому кругу информационных ресурсов, в т.ч. с использованием удаленного доступа
Расчет нагрузки сети
Коэффициент нагрузки неструктурированной сети
8
Коэффициент нагрузки структурированной сети для каждого сегмента
0,16
Количество логических сегментов
80
Количество ПК в каждом сегменте
1
Коэффициент нагрузки по трафику к серверу
0,048
Управление совместным использованием ресурсов
Централизованная сеть
Совместное использование периферийных устройств
Проектор, XDSL модем
Поддерживаемые сетевые приложения
Электронные учебники
Сетевая технология Token Ring (802.5)
Сети Token Ring, так же как и сети Ethernet, характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token). продолжение
–PAGE_BREAK–
Технология Token Ring был разработана компанией IBM в 1984 году, а затем передана в качестве проекта стандарта в комитет IEEE 802, который на ее основе принял в 1985 году стандарт 802.5. Компания IBM использует технологию Token Ring в качестве своей основной сетевой технологии для построения локальных сетей на основе компьютеров различных классов — мэйнфреймов, мини-компьютеров и персональных компьютеров. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60 % сетевых адаптеров этой технологии.
Сети Token Ring работают с двумя битовыми скоростями — 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается. Сети Token Ring, работающие со скоростью 16 Мбит/с, имеют некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мбит/с.
Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры — посланный кадр всегда возвращается в станцию — отправитель. В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а их устранение выполняется вручную обслуживающим персоналом.
Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса, Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, последний в работоспособном состоянии каждые 3 секунды генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 секунд, то остальные станции сети начинают процедуру выборов нового активного монитора.
Сетевая технология FDDI
Технология Fiber Distributed Data Interface— первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.
Попытки применения света в качестве среды, несущей информацию, предпринимались давно — еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет.
Работы по использованию света для передачи информации активизировались в 1960-е годы в связи с изобретением лазера, который мог обеспечить модуляцию света на очень высоких частотах, то есть создать широкополосный канал для передачи большого количества информации с высокой скоростью. Примерно в то же время появились оптические волокна, которые могли передавать свет в кабельных системах, подобно тому как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокнах были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам. Недорогие оптические волокна, обеспечивающие низкие потери мощности светового сигнала и широкую полосу пропускания (до нескольких ГГц) появились только в 1970-е годы. В начале 1980-х годов началось промышленная установка и эксплуатация оптоволоконных каналов связи для территориальных телекоммуникационных систем.
В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволокнных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации — ANSI, в рамках созданного для этой цели комитета X3T9.5.
Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 — 1988 годах, и тогда же появилось первое оборудование — сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.
В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости.
Стандарт FDDI определяет 100 Mb/сек. LAN с двойным кольцом и передачей маркера, которая использует в качестве среды передачи волоконно-оптический кабель. Он определяет физический уровень и часть канального уровня, которая отвечает за доступ к носителю; поэтому его взаимоотношения с эталонной моделью OSI примерно аналогичны тем, которые характеризуют IEEE 802.3 и IЕЕЕ 802.5.
Хотя она работает на более высоких скоростях, FDDI во многом похожа на Token Ring. Oбe сети имеют одинаковые характеристики, включая топологию (кольцевая сеть), технику доступа к носителю (передача маркера), характеристики надежности.
Одной из наиболее важных характеристик FDDI является то, что она использует световод в качестве передающей среды. Световод обеспечивает ряд преимуществ по сравнению с традиционной медной проводкой, включая защиту данных (оптоволокно не излучает электрические сигналы, которые можно перехватывать), надежность (оптоволокно устойчиво к электрическим помехам) и скорость (потенциальная пропускная способность световода намного выше, чем у медного кабеля).
FDDI устанавливает два типа используемoгo оптического волокна: одномодовое (иногда называемое мономодовым) и многомодовое. Моды можно представить в виде пучков лучей света, входящего в оптическое волокно под определенным углом. Одномодовое волокно позволяет распространяться через оптическое волокно только одному моду света, в то время как многомодовое волокно позволяет распространяться по оптическому волокну множеству мод света. Т.к. множество мод света, распространяющихся по оптическому кабелю, могут проходить различные расстояния (в зависимости от угла входа), и, следовательно, достигать пункт назначения в разное время (явление, называемое модальной дисперсией), одномодовый световод способен обеспечивать большую полосу пропускания и прогoн кабеля на большие расстояния, чем многомодовые световоды. Благодаря этим характеристикам одномодовые световоды часто используются в качестве основы университетских сетей, в то время как многомодовый световод часто используется для соединения рабочих групп. В многомодовом световоде в качестве генераторов света используются диоды, излучающие свет (LED), в то время как в одномодовом световоде обычно применяются лазеры.
Физические соединения
FDDI устанавливает применение двойных кольцевых сетей. Трафик по этим кольцам движется в противоположных направлениях. В физическом выражении кольцо состоит из двух или более двухточечных соединений между смежными станциями. Одно из двух колец FDDI называется первичным кольцом, другое — вторичным кольцом. Первичное кольцо используется для передачи данных, в то время как вторичное кольцо обычно является дублирующим.
«Станции Класса В» или «станции, подключаемые к одному кольцу» (SAS) подсоединены к одной кольцевой сети; «станции класса А» или «станции, подключаемые к двум кольцам» (DAS) подсоединены к обеим кольцевым сетям. SAS подключены к первичному кольцу через «концентратор», который обеспечивает связи для множества SAS. Концентратор отвечает за то, чтобы отказ или отключение питания в любой из SAS не прерывали кольцо. Это особенно необходимо, когда к кольцу подключен РС или аналогичные устройства, у которых питание часто включается и выключается.
На рисунке «Узлы FDDI: DAS, SAS и концентратор» представлена типичная конфигурация FDDI, включающая как DAS, так и SAS.
/>
Сетевая технология Ethernet
Сетевая технология Ethernetбыла разработана Робертом Меткалфом в 1976 году, была построена сеть пропускной способностью 2,94 Мбит/с.
Технология Ethernetпредполагает, что все узлы сети объединяются в единую среду передачи данных. В качестве физической среды передачи может использоваться проводная связь (медные или оптические кабели) или беспроводная (радиоволны). Чаще всего можно столкнуться с сетями Ethernetна медном кабеле – витой паре.
Для того, чтобы из отдельных компьютеров и кабелей образовать общую сеть используются специальные устройства – концентраторы, коммутаторы, маршрутизаторы, мосты и т.д.
/>
Объединяя концентраторы друг с другом можно строить сеть практически любой протяженности. При этом топология связей в сети будет древовидная на основе звезды.
/>
а основе стандарта Ethernetбыл разработан стандарт IEEE802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время как в стандарте IEEE802.3 различаются уровни MACи LLC, в оригинальном Ethernetоба эти уровня объединены в единый канальный уровень. В Ethernetопределяется протокол тестирования конфигурации (EthernetConfigurationTestProtocol), который отсутствует в IEEE802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.
В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации — 10Base-5, 10Base-2, 10Base-T, 10Base-F, 100 BaseT, 100 BaseTX, 100 BaseTU, 100 BaseFX. продолжение
–PAGE_BREAK–
Класс 10 Base 5
Сети этого стандарта используют топологию «обща шина» и создаются на основании коаксиального кабеля с волновым сопротивлением 50 Ом и пропускной способностью 10 Мбит/с. Общая шина локальной сети ограничивается с обеих сторон терминалами, однако помимо Т-коннекторов в подобных системах использовались специальные устройства, получившие общее название «трансиверы». Собственно, трансиверы являлись приемниками и передатчиками данных между работающими в сети компьютерами и самой сетью. Помимо функций собственно приемника-передатчика информации, трансиверы обеспечивали надежную электроизоляцию работающих в сети компьютеров, а также выполняли функции устройства, снижающего уровень посторонних электрических помех.
Максимальная длина коаксиального кабеля, протянутого между трансивером и сетевым адаптером компьютера в таких сетях может достигать 25 метров, максимальная длина одного сегмента сети – 500 метров, а минимальное расстояние между точками подключения – 2,5м. Всего в одном сегменте сети может работать не более ста компьютеров, при этом количество совместно работающих сегментов сети не должно превышать пяти.
Класс 10 Base 2
Локальные сети, относящиеся к этому классу, являются прямыми «наследниками» сетей 10Base5. Как и в предыдущем случае, для соединения компьютеров используется тонкий экранированный коаксиальный кабель с волновым сопротивлением 50 Ом, оснащенный Т-коннекторами и терминаторами, однако в такой конфигурации Т-коннекторы подключаются к разъему сетевой карты напрямую, без использования каких-либо промежуточных устройств. Соответственно, такая сеть имеет стандартную конфигурацию «общая шина». Максимальная длина одного сегмента может достигать 185 метров, при этом минимальное расстояние между точками подключения составляет 0,5 м. наибольшее число компьютеров, подключенных к одному сегменту такой сети, не должно превышать 30, максимально допустимое количество сегментов сети составляет 5. Пропускная способность данной сети составляет 10 Мбит/с.
Класс 10 Base T
Одним из наиболее распространенных сегодня классов локальных сетей Ethernet являются сети 10BaseT. Как и стандарт 10Base2, такие сети обеспечивают передачу данных со скоростью 10 Мбит/с, однако используют в своей архитектуре топологию «звезда» и строятся с применением специального кабеля – витая пара. Фактически витая пара представляет собой восьмижильный провод, в котором для обмена информации по сети используется лишь две пары проводников: одна – для приема сигнала, и одна для передачи. В качестве центрального звена в звездообразной структуре локальной сети 10BaseT применяется специальное устройство – концентратор. Для построения распределенной вычислительной системы, состоящей из нескольких сетевых сегментов, возможно подключение нескольких хабов в виде каскада, либо присоединение через хаб к сети 10BaseT локальной сети другого класса, однако следует учитывать то обстоятельство, что общее число точек подключения в такой системе не должно превышать 1024.
Максимально допустимое расстояние между узлами сети составляет 100 метров, но можно сказать, что это значение взято, скорее, из практики построения таких сетей, поскольку стандарт 10BaseT предусматривает иное ограничение: затухание мигнала на отрезке между приемником и источником не должно превышать порога 11,5 децибела.
Класс 10 Base F
К этому классу принято относить распределенные вычислительные сети, сегменты которых соединены посредствам магистрального оптоволоконного кабеля, длина которого может достигать 2км. Очевидно, что в силу высокой стоимости такие сети используются в основном в корпоративном секторе рынка.
Сеть имеет звездообразную топологию, которая, однако, несколько отличается от архитектуры, принятой для сети 10BaseT.
Компьютеры каждого сегмента такой сети подключаются к хабу, который в свою очередь, соединяется с внешним трансивером сети 10BaseF посредствам специального коммутационного шнура, подключаемого к 15-контактному разъему AUI. Задача трансивера состоит в том, чтобы, получив из своего сегмнта сети электрический сигнал, трансформировать его в оптический и передать в оптоволоконный кабель. Приемником оптического сигнала является аналогичное устройство, которое преобразует его в последовательность электрических направляемых в удаленный сегмент сети.
Преимущества оптических линий связи перед традиционными неоспоримы. Прежде всего диэлектрическое волокно, используемое в оптоволоконных кабелях в качестве волноводов, обладает уникальными физическими свойствами, благодаря которым затухание сигнала в такой линии крайне мало: оно составляет величину порядка 0,2 дБ на километр при длине волны 1,55 мкм, что потенциально позволяет передавать информацию на расстояние до 100 км без использования дополнительных усилителей и ретрансляторов. Кроме того, в оптических линиях связи частота несущего сигнала достигает 1014Гц, а это означает, что скорость передачи данных по такой магистрали может составлять 1012 бит/с. Если принять во внимание тот факт, что несколько световых волн может одновременно распространяться в световоде в различных направлениях, то эту скорость можно значительно увеличить, организовав между конечными точками оптоволоконного кабеля двунаправленный обмен данными. Другой способ удвоить пропускную способность оптической линии связи заключается в одновременной передачи по оптоволокну нескольких волн с различной поляризацией. Фактически можно сказать, что на сегодняшний день максимально возможная скорость передач информации по оптическим линиям пока еще не достигнута, поскольку достаточно жесткие ограничения на «быстродействие» подобных сетей накладывает конечное оборудование. Оно же «ответственно» и за относительно высокую стоимость всей системы в целом, поскольку диэлектрический кварцевый светодиод сам по себе значительно дешевле традиционного медного провода. В завершение можно упомянуть и тот факт, что оптическая линия в силу естественных физических законов абсолютно не подвержена воздействию электромагнитных помех, а так же обладает существенно большим ресурсом долговечности, чем линия, изготовленная из стандартного металлического проводника.
Класс100 Base T, 100 Base TX, 100 Base TU, 100 Base FX
Класс локальных сетей 100BaseT, называемый также Fast Ethernet, появился относительно недавно: он был создан в 1992 году. Фактически Fast Ethernet является «наследником» сетей стандарта 100BaseT, однако в отличие от них позволяет передавать данные со скоростью до 100 Мбит/с. Так же как и стандарт 10BaseT, локальные сети Fast Ethernet имеют звездообразную топологию и могут быть собраны с использованием кабеля различных типов, наиболее часто применяемым из которых является витая пара. В 1995 году данный стандарт был одобрен институтом инженеров по радиотехнике и электронике и вошел в спецификацию IEEE 802.3 обрел тем самым официальный статус.
Поскольку класс сетей 100BaseT является прямым потомком класса 10BaseT, в таких системах используются стандартные для Ethernet протоколы передачи данных, а также стандартное прикладное программное обеспечение, предназначенное для администрирования локальных сетей, что значительно упрощает переход от одного типа сети к другому. Предполагается, что в не столь отдаленном будущем эта технология вытеснит большинство действующих на сегодняшний «устаревших» стандартов, поскольку в процессе разработки данной спецификации одной из основных задач являлось сохранение совместимости новой разновидности локальных сетей с различными типами кабеля, используемого в сетях старого образца, что создано несколько модификаций стандарта Fast Ethernet. Технология 100BaseTX подразумевает использование стандартной витой пары пятой категории, в которой задействовано только четыре проводника из восьми имеющихся: два для приема данных, и два для передачи. Таким образом, в сети обеспечивается двунаправленный обмен информацией и, кроме того, остается потенциальная возможность для дальнейшего наращивания производительности всей распределительной вычислительной системы. В сетях 100BaseT4 также используется витая пара, однако в ней задействованы все восемь жил проводника: одна пара работает только на прием данных, одна – только на передачу, а оставшиеся две обеспечивают двунаправленный обмен информацией. Поскольку технология 100BaseT4 подразумевает разделение всех анодируемых по сети на три независимых логических канала (прием, передача, прием-передача), пропорционально уменьшается частота сигнала, что позволяет прокладывать такие сети с использованием менее качественного и, следовательно, более дешевой категории 3 или 4, наконец, последний стандарт в семействе Fast Ethernet носит название 100BaseFX. Предназначен он для работы с оптоволоконными линиями связи.
Максимальная длина одного сегмента в сетях 100BaseT не превышает 100 м, в качестве конечного оборудования используются сетевые адаптеры и концентраторы, поддерживающие этот стандарт. Существуют также универсальные сетевые адаптеры 10BaseT/100BaseT. Принцип их работы состоит в том, что в локальных сетях этих двух классов используются одинаковые линии связи с одним и тем же типом разъемов, а задача автоматического распознавания пропускной способности каждой конкретной сети (10 Мбит/с или 100 Мбит/с) возлагается на протокол канального уровня, являющийся частью программного обеспечения самого адаптера.
Несмотря на все преимущества спецификации 100BaseT, такие сети по сравнению с более старыми реализациями Ethernet не лишены и ряда недостатков, унаследованных ими от своего прародителя – стандарта 10BaseT. Прежде всего в моменты пиковой нагрузки, то есть в случае возникновения ситуации, при которой к ресурсам сети обращается более 50% всех узлов, на линии образуется хорошо знакомый пользователям 10BaseT «затор» — другими словами, сеть начинает заметно «тормозить». И во-вторых, если в распределенной вычислительной системе применяется комбинированная технология сети работает со стандартом 10BaseT, другая – со стандартом 100BaseT, высокая скорость соединения будет возможна только на участке, поддерживающем пропускную способность в 100 Мбит/с. Поэтому даже если компьютер оснащен сетевым адаптером 100BaseT, при обращении к удаленному узлу, оборудованному сетевой картой 10BaseT, скорость соединения не превысит 10 Мбит/с.
Из всех перечисленных сетевых технологий выбираем Ethernet, так как она очень распространена и легка в настройке. Будем использовать стандарт 100BaseTX для соединения компьютеров с сетевыми коммутаторами и коммутационным шкафом.
Параметры спецификаций сетевых архитектур
Характеристика
Стандарты сетевых архитектур
Ethernet
Token Ring
ArcNet и ArcNet Plus продолжение
–PAGE_BREAK—-PAGE_BREAK—-PAGE_BREAK—-PAGE_BREAK—-PAGE_BREAK—-PAGE_BREAK—-PAGE_BREAK—-PAGE_BREAK–
192.168.0.20/24
101class_20
192.168.0.21/24
101class_21
102
192.168.0.27/24
102Lab_1
192.168.0.28/24
102Lab_2
192.168.0.29/24
102Lab_3
192.168.0.30/24
102Lab_4
192.168.0.31/24
102Lab_5
192.168.0.32 /24
102Lab_6
192.168.0.33/24
102Lab_7
192.168.0.34/24
102Lab_8
192.168.0.35/24
102Lab_9
192.168.0.36/24
102Lab_10
192.168.0.37/24
102Lab_11
192.168.0.38/24
102Lab_12
103
192.168.0.45/24
ZamKaf
105
192.168.0.49/24
ZavKaf
106
192.168.0.55/24
ZavLab
107
192.168.0.59/24
107aud_1
192.168.0.60/24
107aud_2
192.168.0.61/24
107aud_3
108
192.168.0.64/24
Laborant
109
192.168.0.67/24
Prepod_1
192.168.0.68/24
Prepod_2
192.168.0.69/24
Prepod_3
192.168.0.70/24
Prepod_4
192.168.0.71/24
Prepod_5
192.168.0.72/24
Prepod_6
192.168.0.73/24
Prepod_7
192.168.0.74/24
Prepod_8
192.168.0.75/24
Prepod_9
192.168.0.76/24
Prepod_10
104
192.168.0.80/24
Fail_Server
192.168.0.81/24
Internet_Server (шлюзпоумолчанию)
Организация доступа в Интернет продолжение
–PAGE_BREAK–
Для подключения локальных сетей к глобальным связям используются специальные выходы (WAN-порты) маршрутизаторов, а также аппаратура передачи данных по длинным линиям — модемы (при работе по аналоговым линиям) или же устройства подключения к цифровым каналам (TA — терминальные адаптеры сетей ISDN, устройства обслуживания цифровых выделенных каналов типа CSU/DSU и т.п.).
В глобальной сети строго описан и стандартизован интерфейс взаимодействия пользователей с сетью — User Network Interface, UNI. Это необходимо для того, чтобы пользователи могли без проблем подключаться к сети с помощью коммуникационного оборудования любого производителя, который соблюдает стандарт UNI.
При передаче данных через глобальную сеть маршрутизаторы работают точно так же, как и при соединении локальных сетей — если они принимают решение о передаче пакета через глобальную сеть, то упаковывают пакеты принятого в локальных сетях сетевого протокола (например, IP) в кадры канального уровня глобальной сети (например, frame relay) и отправляют их в соответствии с интерфейсом UNI ближайшему коммутатору глобальной сети через устройство DTE. Каждый пользовательский интерфейс с глобальной сетью имеет свой собственный адрес в формате, принятом для технологии этой сети.
Маршрутизаторы с выходами на глобальные сети характеризуются типом физического интерфейса (RS-232, RS-422, RS-530, HSSI, SDH), а также поддерживаемыми протоколами территориальных сетей — протоколами коммутации каналов для телефонных сетей или протоколами коммутации пакетов для компьютерных глобальных сетей.
При организации доступа в Internet в офисе или предприятии встает проблема «сетефикации» — контроль прав доступа пользователей, дабы нерадивые сотрудники не «сидели» в Internet постоянно. Proxy-серверы — это программы-посредники, которые устанавливаются на компьютере-шлюзе, их задача — ретранслировать пакеты соответствующей службы (например, FTP или HTTP) в Internet и проверять (а при необходимости — ограничивать) права доступа клиента. Заметим, что для всех популярных служб Internet существуют свои proxy-серверы. Кроме того, создан один универсальный proxy-сервер, называемый Socks. С его помощью можно подключить к Internet такие программы, как ICQ, IRC и др. В данном случае при настройке компьютеров-клиентов во вкладке Подключение диалогового окна свойств браузера необходимо указать IP-адрес proxy-сервера HTTP ( адрес компьютера с Proxy) и номер порта.
Однако установка и настройка такого выделенного сервера это дополнительные расходы, в случае с NT стоимость компьютера, операционной системы, специализированной программы и услуг по конфигурированию. Другим решением для небольшого офиса или предприятия является применение специализированного Internet Serverа. Большинство компаний, занимающихся сетевым оборудованием, имеют в своем арсенале подобные продукты. По своей сути это маршрутизатор, т. е. специализированный мини-сервер, реализующий передачу IP-пакетов из одной подсети в другую. Обычно он представляет собой компактное устройство, оснащенное одним или двумя последовательными портами для подсоединения модема и портом Ethernet для включения в локальную сеть. Большинство Internet-серверов поддерживают работу с выделенной линией. Типичный набор функций, реализуемых IS, выглядит как работа с большинством Internet-протоколов (HTTP, FTP, NAT, PPP, PAP/CHAT, Telnet, ARP, ICMP, DHCP), обеспечение функций firewall для локальной сети и поддержка таблицы маршрутизации, практически полноценный proxy-сервер с достаточной для большинства пользователей функциональностью.
Технология подключения к Internet.
Технология подключения
Скорость передачи
Тип линии
Число одновременных подключений
Традиционный телефонный сервер
28,8-56 Кбит/с
Аналоговая коммутируемая линия
1 — 10
ISDN
64 Кбит/с – 2,04 Мбит/с
Цифровая коммутируемая линия
10 — 500
VSDL, VSDL 2
13 Мбит/с– 55 Мбит/с
Ассиметричная коммутируемая линия
10 — 500
HDSL, SDSL, SHDSL
1544 Кбит/с–
2048 Кбит/с
Симметричная коммутируемая линия
10 — 500
ADSL, RADSL,
ADSL G.Lite, ADSL 2
64 Кбит/с– 12 Мбит/с
Ассиметричная коммутируемая линия
10 — 500
Проведя анализ исходных данных, принимаем решение об установке DSL модема Cisco SOHO 97 ADSL Router, 1х RJ-11, 4х RJ-45, 10/100BASE-TX, который производит подключение к интернету по технологии ADSL.
Для разграничения пользователей к подключению к Internet, организуем прокси-сервер UserGate 4.0, который ведет точный учет трафика, имеет встроенный межсетевой экран, систему интернет статистики.
Выбор Internet оператора
Доступ в глобальную сеть Internet будет представлять ОАО «Дальсвязь». Подключение к данному провайдеру обойдется в 1550 рублей, не включая стоимость модема. Тариф выбран безлимитный, абонентская плата в месяц составляет 1500 руб.
Экономическая часть
Расчет затрат на внедрение вычислительной сети
Затраты на внедрение вычислительной сети рассчитываются по следующей формуле:
К=Као+Кпо+Кпл+Кмн
где:
Као – стоимость аппаратного обеспечения ВС
Кпо– стоимость программного обеспечения ВС
Кпл – стоимость дополнительных площадей
Кмн– единовременные затраты на наладку, монтаж и пуск ВС.
Затраты на приобретение недостающего для организации локальной информационной сети оборудования и программного обеспечения были приведены ранее в таблицах.
Рассчитаем затраты на наладку, монтаж и пуск ЛВС, сведя все данные в таблицу, а затем рассчитаем затраты на внедрение вычислительной сети, по формуле приведенной ранее.
Затраты на наладку, монтаж и пуск ЛВС.
№
Перечень выполняемых работ
Ед.изме-рения
Цена за ед. руб.
Количество
Стоимость, руб.
1
Трассировка кабеля
метр
6,2
2670
16554
2
Тестирование кабельной системы
порт
155,3
80
12424
3
Монтаж пластикового канала
метр
46,6
267 продолжение
–PAGE_BREAK–
12442,2
4
Монтаж розетки
штука
28,5
80
2280
5
Монтаж шкафа
штука
286
1
286
6
Монтаж патч-панели
штука
33,6
2
67,2
7
Подключение розетки RJ-45
штука
31
80
2480
8
Разделка патч-панели, кроссовой панели
порт
31
80
2480
9
Маркировка розеток, патч-панелей
порт
13
160
2080
10
Подключение ПК к ЛВС
штука
258,8
50
12940
11
Подключение телефона к УАТС
штука
51,8
1
51,8
12
Подключение интернета
штука
1550
1
1550
Итог:
65635,2 руб.
Откуда общие затраты на внедрение:
К=(222218+110223,97)+47934+0+65635,2=446011,17 руб.
После расчета общих затрат на внедрение определим затраты на одно рабочее место:
Кна одно место=446011,17 /50=8920,22 руб.
/>
Заключение
В ходе выполнения курсовой работы был выбран комплекс технических средств, соответствующий постановленной задачи, с учетом приобретения нового оборудования как пассивного, так и активного и вспомогательного. Так же были выбраны два сервера: файловый сервер, который выполняет и функции сервера приложений, и интернет сервер. Для серверов также было выбрано программное обеспечение. Выполнена трассировка кабеля, произведен расчет кабелепроводов.
Хотелось бы отметить, что для многих информационных систем изначально не преследуется цель сокращения рабочих мест, экономии средств, отводимы на трудовой процесс, а установка вычислительной сети проводится с целью повышения качества принимаемых решений, установки единого регламента деловых процессов, повышения качества обслуживания клиентов, обеспечить коллективную работу как служащих, так и обучающихся.
Список литературы
В.Г. Олифер, Н.А. Олифер «Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов» 2-е издание – СПБ.: Питер, 2003
www.offt.ru
www.microsoft.com
www.publish.khv.ru
www.planetashop.ru
www.dcom.com
www.colan.ru