Расчёт теплообменного аппарата 2

Московский Государственный технический университет
им. Н. Э. Баумана
Калужский филиал
Расчетно-пояснительная записка
по курсовому проекту
«Расчёт теплообменного аппарата»
Калуга 2008
Содержание:
КНИРС
Исходные данные
Тепловой расчёт подогревателя
Прочностной расчёт деталей подогревателя
Краткое описание работы подогревателя
Список использованной литературы
Курсовая научно-исследовательская работа студентов
Необходимо аналитически исследовать влияние изменения величины давления пара на:
1. Температуру насыщения пара.
2. Средний коэффициент теплоотдачи.
3. Поверхность теплообмена.
Изменяем давление пара от 2,25 МПа до 3,5 МПа через 0,25 МПа.
Исходные данные:
1. Давление пара Pп, МПа 3
2. Температура пара tп, ºC 233,34
3. Расход питательной воды Gв, кг/с 41,67
4. Температура воды на входе t′в, ºC 155
5. Температура воды на выходе t″в, ºC 200
6. Давление воды на входе Pв, МПа 22
7. Скорость пара на входе ωп, м/с 20
8. Материал трубок Х18Н10Т
9. Диаметр трубок dн/dв, мм 30/25
10. Коэффициент теплоотдачи материала трубок λст, Вт/М∙К 16,3
11.Толщина отложений hотл, м 0
12. Тип трубок U-образные
13. Тип перегородок сегментные
14. Шаг треугольной разбивки трубок t, мм 40
15. Гидравлическое сопротивление по воде ∆Pв, КПа 20
Расчёт:
1. Средний температурный напор:
/>ºC;
2.Средняя температура питательной воды:
/>ºC
/>/>/>/>[1]
Принимаем />
3.Тепловая нагрузка:
/>
4. Расход греющего пара:
/>
5.Число трубок:
/>
6. Коэффициент наполнения трубного пучка:
/>
7. Диаметр трубного пучка:
/>
8. Ширина прохода трубного пучка при набегании парового потока:
/>
9. Коэффициент сужения фронтального сечения:
/>
10.Площадь проходного сечения для пара:
/>
11.Высота парового отсека:
/>
12.Средняя длина трубки между перегородками:
/>
13.Число Прандтля воды:
/>
14.Число Рейнольдса воды:
/>
15. Коэффициент теплоотдачи к воде:
/>
16.Температурный напор между паром и наружной стенкой трубки:
/>Принимаем />ºC;
17. Средняя температура конденсатной плёнки:
/>ºC;
/>[1]
18. Коэффициент теплоотдачи от неподвижного пара при ламинарном течении конденсатной плёнки:
/>
19. Число Рейнольдса конденсатной плёнки:
/>
20. Коэффициент, учитывающий волновое течение конденсационной плёнки:
/>
21. Величина />:
/>
/>
Отсюда следует, что течение конденсата ламинарное;
22. Коэффициент теплоотдачи при конденсации неподвижного пара:–PAGE_BREAK–
/>
23. Средняя скорость пара:
/>
24. Скоростной коэффициент:
/>
25. Коэффициент теплоотдачи при конденсации движущегося пара:
/>
26. Суммарное термическое сопротивление стенки трубки, отложений и воды:
/>
27. Коэффициент теплопередачи:
/>
28. Удельный тепловой поток:
/>
29. Температурный напор между паром и наружной стенкой трубки:
/>
30. Поверхность теплообмена:
/>
31. Длина трубок:
/>
32. Геометрическая характеристика трубного пучка:
/>
33. Число отсеков по пару:
/>
33.Коэффициент сопротивления трения по воде:
/>
34. Гидравлическое сопротивление по воде:
/>
Для того, чтобы начать чертить ПВД необходимо провести расчёты на прочность, а также некоторые конструктивные размеры.
/>
Расчёт на прочность деталей конструкции ПВД:
1. Толщина стенок паровой камеры:
/>/>/>
2. Толщина трубной доски:
/>
3. Размеры и количество болтов для фланцевых соединений:
/>
/>
/>
Краткое описание ПВД
На рисунке представлена конструкция подогревателя высокого давления. Подогреваемая вода, подаваемая из деаэратора, поступает во входной патрубок 1, через него попадает в водяную камеру 2, разделённую на 3 части перегородками. Далее через отверстия в трубной доске, выполненной за одно с водяной камерой, подогреваемая вода поступает в трубный пучок U-образной формы 3, омываемый греющим паром. Благодаря сегментным перегородкам 4 пар, подаваемый из отбора от ступени турбины, совершает продольно – поперечное обтекание трубного пучка, что улучшает подогрев воды, конденсируясь на стенках трубок. Пройдя 1 ход трубного пучка, подогретая вода снова попадает в водяную камеру, затем в следующий ход и так по всем ходам, а затем через выходной патрубок 8 к парогенератору. Сконденсировавшийся греющий пар скапливается в конденсатосборнике 5, расположенным в нижней части подогревателя, и удаляется через отверстие в днище. Далее конденсат подаётся в деаэратор. Контроль уровня конденсата в подогревателе производится с помощью водоуказательного прибора, для аварийного отключения подогревателя в случае превышения допустимого уровня конденсата производится уравнительным сосудом 6.
Конденсат удаляется из конденсатосборника через патрубок 7. Транспортируется подогреватель с помощью проушин 9, крепление на месте установки осуществляется с помощью упорных лап 10.Детали подогревателя изготовлены из нержавеющей стали.
Вывод
На основе представленных выше расчётов и построенных графиков, можно сделать следующие выводы о влиянии изменения величины давления пара на:
1. Температуру насыщения пара.
2. Средний коэффициент теплоотдачи.
3. Поверхность теплообмена.
А именно:
1. С увеличением давления пара температура насыщения увеличивается практически линейно.
2. С увеличением давления пара изменение величины поверхности теплообмена происходит приблизительно по экспоненциальному закону.
Главный вывод: с увеличением давления пара возрастает величина значения среднего коэффициента теплопередачи, таким образом – эффективность ПВД возрастает с увеличением давления пара.
Список использованной литературы:
1. С.Л. Ривкин, А.А. Александров Теплофизические свойства воды и водяного пара. М.: Энергия,1984 г.
2. А.М. Бакластов Проектирование, монтаж и эксплуатация теплоиспользующих установок. М.: Энергия, 1970 г.
3. Методическое указание по курсовому проектированию теплообменных аппаратов.