Ряды динамики 8

Введение.

Важным направлением в исследовании массовых явлений и процессов выступает изучение основной или общей тенденции их развития (тренда). Многочисленные факторы, под действием которых формируются и изменяются уровни рядов динамики, изучаемых явлений, неоднократны по силе, направлению и времени их действия.
Поставленные действующие факторы оказывают на изучаемые явления определяющее влияние и формируют в рядах динамики основную тенденцию развития (тренд). Воздействие других факторов проявляется периодически и вызывает повторяемые во времени колебания уровней рядов динамики (так называемые сезонные колебания). Действия разовых факторов отображаются случайными (кратковременными) изменениями уровней рядов динамики.
Как показывает практика, в одних рядах основная тенденция развития проявляется достаточно четко на основе анализа статических показателей направления и интенсивности развития (тестов роста, прироста, изменения уровней, средних величин), в других ряда она может быть выявлена с использованием специальных методов анализа рядов динамики. Выбор конкретных методов статистики для этой цели зависит от характера исходной информации и предопределяется задачами анализа.
В данной работе будут рассмотрены основные методы преобразования рядов динамики, позволяющие обнаружить и обосновать основную тенденцию в развитии явления (тренд).

1. Понятие о рядах динамики и их роль.

Важное место в современной жизни занимает описание изменений показателей во времени или динамике. Ряд динамики образуется в результате сводки и обработки показателей периодического статистического наблюдения.

Ряд динамики — это числовые значения статистических показателей, изменяющихся во времени и расположенных в хронологической последовательности.

Ряды динамики включает два обязательных элемента:

1) период времени, за который или по состоянию на который приводятся цифровые значения (показатель времени t);

2) конкретные числовые значения показателя, характеризующие изучаемы объект или явление (уровни ряда y).

 Существуют различные ряды динамики. Их можно квалифицировать по:

1) форме представления уровней- ряды абсолютных, относительных или средних величин;

2) интервал времени или расстоянию между уровнями- равномерные или неравномерные (полные и неполные);

3) по наличию основной тенденции изучаемого процесса- стационарные и нестационарные ряды;

4) показателю времени- моментные и интервальные.

Если уровни ряда характеризуют изучаемое явление на определенный момент времени, то имеет место моментальный ряд динамики.

Пример: Количество рабочих на предприятии.

 t

 y

01.01.2005

357

01.01.2006

401

01.01.2007

459

01.01.2008

505

Если уровни ряда характеризует изучаемое явление за определенный период времени, имеет место интервальный ряд динамики (за временной период).

Пример: Общее количество выпускников ВУЗов

t

y

2005

915

2006

1115

2007

1700

2008

1913

Для наглядного представления процесса развития явлений и процессов во времени широко используют графическое изображение изменения уровней временного ряда. Ряды динамики могут графически быть изображены линейно, столбиковой, секторной, полосовой, фигурной и т.д. диаграммами.

Важнейшим условием правильного построения рядов динамики, получения правильных выводов при анализе и прогнозировании его уровней

является сопоставимость уровней, образующих ряд. Статистические данные должны быть сопоставимы: по кругу обхватываемых объектов, времени регистрации, территории, идеологии расчета и цены.

1. Сопоставимость по кругу охватываемых явлений означает сравнение совокупностей с равным числом элементов, которые должны быть однородны по экономическому содержанию и границам объекта. Несопоставимость может возникнуть в результате перехода ряда объектов из одного подчинения в другое.

2. Сопоставимость по времени регистрации для интервальных рядов обеспечивается равенством периодов времени, за которые получают данные. Для приведения рядов динамики к сопоставимому виду выделяют среднедневные показатели по декадам, кварталам, месяцам, которые затем сравнивают. Для моментальных рядов динамики показатели следует проводить на одну и ту же дату.

3. Сопоставимость по территории предполагает одни и те же территориальные границы. Данные по странам и регионам, границы которых изменились, должны быть пересчитаны в старых пределах.

4. Сопоставимость по методологии расчетов характеризуется тем, что при определении уровней динамического ряда необходимо использовать единую методологию их расчета.

5. Сопоставимость по ценам. При приведении к сопоставимому виду продукции, которая была измерена в стоимостных показателях, трудность заключается в том, что, во-первых, с течением времени происходит непрерывное изменение цен, а во-вторых, существует несколько видов цен. Поэтому на практике количество продукции, произведенную в разные периоды, оценивают в ценах одного и того же базисного периода, которые называют неизменными или сопоставимыми ценами.

1.1 Статистическое изучение сезонных колебаний

При изучении многих социально-экономических явлений и процессов часто обнаруживаются определенные, повторяющиеся колебания. Этим колебаниям свойственны более или менее устойчивые изменения уровней ряда на протяжении изучаемого периода: из года в год в определенные месяцы уровень явления повышается, а в другие — снижается.

Колебания особенно заметны в явлениях сезонного характера и являются результатом влияния социальных и естественно климатических причин, общих экономических факторов, а так же многочисленных и разнообразных факторов, которые часто являются регулируемыми. В статистике данные колебания принято называть «сезонными».

Сезонные колебания (сезонная неравномерность) чаше всего происходят в добывающих и перерабатывающих отраслях- сельском хозяйстве, рыбной и лесной промышленности, а так же на транспорте, в строительстве, торговле, туризме и т.д.

Погодные изменения влияют на бытовое потребление топлива и электроэнергии, на ассортимент обуви, верхней одежды (зимняя, весенне-осенняя, летняя), фруктов, овощей и многих других товаров. В строительстве наибольшее оживление деятельности проявляется летом; в этот же период года наблюдается максимальный наплыв туристов. Сезонность может проявляться не только к месячным, но и к дневным, недельным данным. Так, кафе, рестораны, театры испытывают подъем спроса к концу недели.

Влияние сезонных колебаний полностью устранить невозможно, но некоторые предприятия пытаются его снизить, принимая меры рационального сочетания отраслей, механизации трудоемких процессов и т.д. Вот по этой причине сезонные колебания, отраженные в рядах динамики, необходимо изучать и измерять.

Разрабатываются приемы количественного измерения анализа сезонности. По своему существу все методы анализа сезонности делятся на две группы. К первой группе относятся методы, с помощью которых определяется и измеряется сезонность непосредственно из эмпирических данных, без особой предварительной их обработки,- метод простой средней, метод относительных чисел У.Персона.

Суть методов второй группы заключается в предварительном определении и исключении общей тенденции развития и в последующем исчислении и количественном измерении сезонных колебаний. К методам анализам сезонности данной группы можно отнести метод аналитического выравнивания и метод скользящей (подвижной) средней.

Метод простой средней применяется для анализа сезонности явлений, уровни которых не имеют резко выраженной тенденции увеличения или уменьшения. Сущность этого метода заключается в определении сезонной волны или индекса сезонности. Способы определения индексов сезонности различны, они зависят прежде всего от характера общей тенденции ряда динамики.

Метод относительных чисел применяется для анализа сезонности тех рядов динамики, развитие общей тенденции которых происходит равномерно. Основной недостаток — механическое внесение относительно единственной поправки в анализируемые отрезки времени, которая означает признание равномерного развития уровней явления.

2. Методы анализа основной тенденции (тренда) в рядах динамики.

Одна из важнейших задач статистики — определение в рядах динамики общей тенденции развития.

Основной тенденцией развития называется плавное и устойчивое изменение уровня во времени, свободное от случайных колебаний. Задача состоит в выявлении общей тенденции в изменении уровней ряда, освобожденной от действия различных факторов.

Изучение тренда включает два основных этапа:

· ряд динамики проверяется на наличие тренда;

·производится выравнивание временного ряда и непосредственно выделение тренда с экстраполяцией полученных результатов.

С этой целью ряды динамики подвергаются обработке методами укрупнение интервалов, скользящей средней и аналитического выравнивания:

1. Метод укрупнения интервалов.

Одним из наиболее элементарных способов изучения общей тенденции в ряду динамики является укрупнение интервалов. Этот способ основан на укрупнении периодов, к которым относятся уровни ряда динамики. Например, преобразование месячных периодов в квартальные, квартальных в годовые и т.д.

2. Метод скользящей средней.

Выявление общей тенденции ряда динамики можно произвести путем сглаживания ряда динамики с помощью скользящей средней.

Скользящая средняя — подвижная динамическая средняя, которая рассчитывается по ряду при последовательном передвижении на один

интервал, то есть сначала вычисляют средний уровень из определенного числа первых по порядку уровней ряда, затем — средний уровень из такого же числа членов, начиная со второго. Таким образом, средняя как бы скользит по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий.

При этом посредством осреднения эмпирических данных индивидуальные колебания погашаются, и общая тенденция развития явления выражается в виде некоторой плавной линии (теоретические уровни). И так, суть метода заключается в замене абсолютных данных средними арифметическими за определенные периоды.

Скользящая средняя обладает достаточной гибкостью, но недостатком метода является укорачивание сглаженного ряда по сравнению с фактическим, что ведет к потери информации. Кроме того, скользящая средняя не дает аналитического выражения тренда.

Период скользящей может быть четным и нечетным. Практически удобнее использовать нечетный период, так как в этом случае скользящая средняя будет отнесена к середине периода скольжения.

Особенность сглаживания по четному числу уровней состоит в том, что каждая из численных (например, четырехчленных) средних относится к соответствующим промежуткам между смежными периодами. Для получения значений сглаженных уровней соответствующих периодов необходимо произвести центрирование расчетных средних.

Недостатком способа сглаживания рядов динамики является то, что полученные средние не дает теоретических рядов, в основе которых лежала бы математически выраженная закономерность.

3. Метод аналитического выравнивания.

Более совершенным приемом изучения общей тенденции в рядах динамики является аналитическое выравнивание. При изучении общей

тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями. Вид уравнения определяется характером динамики развития конкретного явления. Логический анализ при выборе вида уравнения может быть основан на рассчитанных показателях динамики, а именно:

если относительно стабильны абсолютные приросты (первые разности уровней приблизительно равны), сглаживание может быть выполнено по прямой;

если абсолютные приросты равномерно увеличиваются (вторые разности уровней приблизительно равны), можно принять параболу второго порядка;

при ускоренно возрастающих или замедляющихся абсолютных приростах — параболу третьего порядка;

при относительно стабильных темпах роста — показательную функцию.

Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей: прямая (линейная), парабола второго порядка, показательная (логарифмическая) кривая, гиперболическая.

Цель аналитического выравнивания — определение аналитической или графической зависимости. На практике по имеющемуся временному ряду задают вид и находят параметры функции, а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости; линейная, параболическая и экспоненциальная.

После выяснения характера кривой развития необходимо определить ее параметры, что можно сделать различными методами:

1) решением системы уравнений по известным уровням ряда динамики;

2)методом средних значений (линейных отклонений), который заключается в следующем: ряд расчленяется на две примерно равные части,

и вводятся преобразования, чтобы сумма выровненных значений в каждой части совпала с суммой фактических значений,

3) выравниванием ряда динамики с помощью метода конечных разностей;

4) методом наименьших квадратов: это некоторый прием получения оценки детерминированной компоненты, характеризующих тренд или ряд изучаемого явления.

Во многих случаях моделирование рядов динамики с помощью полиномов или экспоненциальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции. В таких случаях следует использовать гармонический анализ.

Заключение.

Всякий ряд динамики теоретически может быть представлен в виде составляющих:

1) тренд – основная тенденция развития динамического ряда (к увеличению или снижению его уровней);

2) циклические (периодические колебания, в том числе сезонные);

3) случайные колебания.

С помощью рядов динамики изучение закономерностей развития социально – экономических явлений осуществляется в следующих основных направлениях:

1) Характеристика уровней развития изучаемых явлений во времени;

2) Измерение динамики изучаемых явлений посредством системы статистических показателей;

3) Выявление и количественная оценка основной тенденции развития (тренда);

4) Изучение периодических колебаний;

5) Экстраполяция и прогнозирование.

Список литературы.

Афанасьев В.Н., Юзбашев М.М., Гуляева Т.И. Эконометрика: Учебник. М.: Финансы и статистика, 2006.

Елисеева И.И., Юзбашев М.М. Общая теория статистики./Под общей редакцией члена корреспондента Российской Академии наук И.И.Елисеевой. 5-ое изд. Перераб. и доп. — М.: Финансы и статистика, 2006.

Ефимова М.Р., Петрова Е.В. Общая теория статистики: учебник. 2004г.

Сергеева И.И., Тимофеева С.А., Чекулина Т.А. Статистика: учебник. 2008г.

Бородич С.А. Эконометрика. Учеб. Пособие. Минск: Новое знание, 2006.

Статистика. Все, что вы хотели узнать о статистических исследованиях allstats.ru (21/03/11)

Е – колледж www.e-college.ru (21/03/11)

Все для учебы StudFiles www.studfiles.ru (24/03/11)

Свободная Энциклопедия Википедия ru.wikipedia.org (24/03/11)