Теория припекания порошковых слоев в двухпараметрическрй модели вязко пористой среды

ВВЕДЕНИЕ.
Научный анализ проблемы повышения надежности и долговеч­ности машин показывает, что в настоящее время крайне нежелатель­но решать вопросы увеличения срока службы путем применения для изготовления деталей дорогих высоколегированных материалов.
Основной путь обеспечения повышенных свойств деталей – со­здание материалов, которые способны противостоять эксплуатаци­онному воздействию при минимальных износах или изменениях пара­метров, которые влияют на функциональное назначение деталей.
Долгое время для изготовления деталей применялись легирую­щие добавки. В последнее время развивается технология изготов­ления деталей с покрытиями. Покрытия позволяют увеличить срок службы изделий, позволяют заменить дорогие и дефинитные матери­алы более простыми и доступными, без снижения их эксплуатацион­ных свойств.
Методы и материалы порошковой металлургии приобретают все большее значение в развитии научно-технического прогресса в промышленно развитых странах. Они проникают во все отрасли народ­ного хозяйства и во все большей мере помогают решать сложнейшие проблемы развития новой техники.
Новые материалы, создаваемые методами порошковой металлур­гии, являются в ряде случаев основой коренного улучшения суще­ствующих и создания новых технологических процессов в машиностро­ении, металлургии, химической и других отраслях промышленности.
Основными методами получения покрытий из порошковых мате­риалов являются: наплавка, газотермическое напыление, а также припекание.
Получение спеченного слоя на поверхности детали, прочно присоединенного к основе, называется припеканием.
Важнейшей технологической операцией в порошковой металлур­гии, которая определяет структуру и свойства порошковых матери­алов, является спекание. Прогресс в области создания научных основ и технологии спекания определяет уровень эксплуатацион­ных свойств ряда огнеупорных, жаропрочных, конструкционных и других материалов, которые играют важную роль в развитии на­учно-технического прогресса в целом.
Наука о спекании развивается по таким основным напрвлениям: активизация процесса введением специальных малых добавок металлов и соединений, спекание под давлением, спекание с по­мощью электронагрева и электроразрядное.
Основными видами порошковых материалов и изделий массового производства являются конструкционные, антифрикционные, высоко­пористые. Но появляются и самостоятельные научные и технологи­ческие направления создания новых материалов, таких как инстру­ментальные, аморфные, материалы с ультрадисперсной структурой и др.
Открытие аморфных металлических сплавов – одно из самых значительных событий в материаловедении нашего столетия. Метал­лические сплавы в стеклообразном состоянии обладают рядом уникальных свойств, которые не могут быть обеспечены металлами в кристаллическом состоянии: высокой прочностью и твердостью в сочетании с удовлетворительной пластичностью, высокой коррози­онной и радиационной стойкостью и рядом других свойств.
Чтобы на поверхности детали получить прочный слой, кото­рый имел бы хорошее сцепление с основой, необходимо активиро­вание поверхности детали, порошка или того и другого вместе. Технологически наиболее доступным и эффективным следует считать следующие процессы активирования:
1) Химическое – введение специальных добавок, которые уменьшают окисление и разрушают окисные пленки;
2) температурное – ускоренный нагрев, введение присадок, которые снижают температуру плавления на контактах;
3) силовое – необходимое для получения надежного контактирования и ускорения процесса спекания по­рошка .
При химическом активировании в шихту вводятся активные при­садки, в основном в виде дисперсного порошка, чтобы небольшое по объему и весу количество его наиболее равномерно распредели­лось во всей порошковой системе. В качестве присадок часто ис­пользуют бор, фосфор, никель и др.
Силовое активирование необходимо во всех случаях, так как без надлежащего контакта частиц друг с другом и с поверхностью детали отсутствуют условия припекания, потому что нагрев раз­розненных или находящихся в недостаточно тесном контакте час­тиц не обеспечивает получение спеченной системы. Силовое ак­тивирование в значительной степени ускоряет диффузионные про­цессы и наряду с температурным фактором является главным для получения необходимых физико-механических характеристик слоев.
Температурное активирование заключается в ускоренном на­греве, который сопровождается повышением активности диффузион­ных процессов, в создании на некоторое время локальных темпе­ратур, повышающих температуру плавления и в снижении температуры появления жидкой фазы (прослойки).
Теоретическим подходом при анализе путей образования по­крытий из порошков явилось использование методов термодинами­ки необратимых процессов и физической кинетики.
Кинетика уплотнения припекаемых покрытий изучена в рабо­тах [3-7].
Для теоретического анализа проблемы уплотнения припекае­мых покрытий в условиях постоянной и переменной температур спе­кания порошка важно располагать наиболее хорошо согласующуюся с опытом моделью процессов.
Такая модель была предложена в работах [3,6,8]. Она использует идеи теории вязкого течения компактного материала порошкового слоя, разработанную в [5], но в отличие от этих работ предполагается учет структурной перестройки припекаемого порошка.
Модель хорошо зарекомендовала себя при анализе изотерми­ческих процессов спекания. Однако в рамках этой модели было недостаточно учтено влияние температуры. Не был детально изу­чен и процесс уплотнения слоя при нагреве его с некоторой ско­ростью с учетом структурной перестройки среды.
Исходя из всего этого, в работе поставлена следующая за­дача: провести исследование кинетики уплотнения припекаемых покрытий в условиях нагрева с постоянной скоростью с учетом структурной перестройки материала порошка.
Для проведения конкретных расчетов использована трехпараметрическая модель вязкой пористой среды.
ГЛАВА I. ТЕОРИЯ ПРИПЕКАНИЯ ПОРОШКОВЫХ СЛОЕВ В ДВУХПАРАМЕТРИЧЕСКОЙ МОДЕЛИ ВЯЗКОЙ ПОРИСТОЙ СРЕДЫ.
§ 1. Двухпараметрическая модель припекаемой системы.
Рассмотрим одну из возможных моделей припекаемой системы, в которой с течением времени происходит перестройка, сопровождающаяся понижением активности. Эта модель для случая жидкофазных прослоек была предложена в работе [4], а в более общем случае рассматривалась в [8].
Предположим, что система в каждый момент времени припекания представляет из себя «раствор» двух подсистем различной активности, которые характеризуются кинетическими константами и в зависимости
(1)
Обозначая через объем компактного вещества подсистемы I и соответственно, через объем компактного металла подсистемы II, положим:
(2)
Это неравенство, вообще говоря, может быть не очень сильным.
Введем объемные доли подсистем в «растворе»
;
и (3)

Компактное вещество подсистем II, I будем принимать в нашей модели несжимаемым. Предполагается, что изменение объема более активной подсистемы I с течением времени происходит согласно простейшему уравнению:
(4)
Отсюда следует, что
(5)
Здесь – начальная объемная доля подсистемы I в «растворе».
Таким образом, получим для объемных долей подсистемы соотношения:
; (6)
Введено характерное время существования (время жизни) подсистемы I
(7)
В простейшем случае можно предположить, что и тогда
; (8)
Дальнейшие рассуждения связаны с рассмотрением диссипативной функции «раствора», которую, очевидно, можно представить в виде суперпозиции диссипативных функций подсистем.
(9)
Используя следующие приближение:
, (10)
будем иметь:
(11)
Приняли касательное напряжение в «растворе» одинаковым для всех подсистем.
Переходя к усредненным по объему всей системы параметрам, находим:
(12)
Если положить , то для кинетической константы «раствора» будем иметь уравнение:
(13)
в случае (14)
Проинтегрируем правую часть

с учетом уравнения (13) и соотношений (8).
Получим:
(15)
Из общего уравнения (15) имеем приближенные уравнения для начальной и конечной стадии процесса:
(16)
(17)
Проанализируем влияние скорости нагрева на процесс припекания, используя результаты работы [10].
Положим скорость нагрева
(18)
и примем кинетическую константу в виде:
(19)
где упрощено представлена энергия активизации высокотемпературной ползучести в виде:
(20)
Интегрируя кинетическое уравнение, сделав замену переменной, согласно
(21)
получим:

(22)
Учитывая определение
,
и выполняя в (22) замену переменной, находим:

(23)
Для области можно воспользоваться приближенным представлением [2, 3]:
(24)
Получится следующее уравнение процесса припекания слоя:
(25)
Поскольку , второе слагаемое в скобках справа можно опустить.
Тогда уравнение упростится:
(26)
Из анализа (26) следует, что для получения заданной пористости покрытия необходимо согласовывать величину среднего активирующего давления со скоростью нагрева, и более высокие значения требуют больших, активирующих процесс припекания, давлений.
Величину активирующего давления следует ограничивать значениями 30-40 Мпа. Нагрев необходимо проводить с уменьшенной скоростью.
§ 2. Метод вычисления средних по объему.
Рассмотрим метод вычисления по объему порошкового слоя, значение его величины в соответствии с [5]. Причем выражено она будет через усредненные по объему параметры вязкости порошковой системы, внешние силы, приложенные к границам слоя, и геометрические параметры границ.
Имеем по определению:
(1)
Интеграл в (1) взят по всему объему V пористой среды. С другой стороны у нас
(2)
Поэтому выражение (1) приводится к виду
(3)
Здесь – среднее значение функции в объеме пористого слоя.
Запишем граничные условия в виде:
(4)
где – компонента единичного вектора внешней нормали в декартовых координатах х1, х2, х3, а – компоненты внешней силы, отнесенные к единице площади граничной поверхности .
Введем в рассмотрение тензор 3-го ранга:
(5)
В силу обобщенной теоремы Гаусса-Остроградского, имеем:
(6)
Здесь вектор площадки на границе можно представить согласно
(7)
С другой стороны, имеем для интеграла слева в (6) выражение, вытекающее из определения:
(8)
Как и в [5] примем сначала, что можно пренебречь силами инерции в слое, а также предположим, что нет массовых сил:
.
Тогда имеем уравнение равновесия слоя:
(9)
и
(10)
Это уравнение получено посредством (6) и (8).
Подставляя этот результат в (3), получаем, положив :
(11)
Таким образом, среднее значение величины

выражено через кинетическую константу

процессов в компактном материале слоя, усредненную функцию пористости , внешние силы и геометрические параметры границы.
§ 3. Кинетика припекания слоя в жесткой пресс-форме.
Внешнее давление приложено вдоль оси OZ.

, все , кроме . (12)
Далее имеем

(13)

Вычисляем поверхностный интеграл, учитывая граничные условия в (13)

(14)
При вычислении (14) заменили средне по области границ значение величины на . Подставляя результат (14) в (11), получим:
(15)
Отсюда следует кинетическое уравнение припекания:
(16)
В дальнейшем будем опираться на это уравнение.
Если проинтегрировать (16) при , то получим
(17)
Использовались соотношения:
(18)
(19)
(20)
(21)
ГЛАВА II. ТЕОРИЯ ПРОЦЕССОВ ПРИПЕКАНИЯ С ПОСТОЯННОЙ СКОРОСТЬЮ НАГРЕВА СЛОЯ.
§ 1. Спекание с
Используя материал главы I, рассмотрим процессы припекания в условиях переменной температуры.
Положим
(1)
Тогда уравнение (16) главы I с учетом соотношений (18-21) примет вид:
(2)
Здесь
(3)
причем,
,
, (4)
Функция пористости имеет вид:
(5)
Рассмотрим влияние температуры на кинетические константы в модели двухпараметрической кинетики неоднородной среды.
Для этой цели используется семейство изотерм спекания порошка ПГ-СР4, полученных в лабораториях износостойких покрытий ИНДМАШ АН БССР при МПа и температурах спекания К (рис.1).
Рассмотрим зависимости:

(6)
для четырех изотерм в функции величины .
Теоретически должна иметь место линейная зависимость от .
Результаты сопоставления с экспериментом представлены на рис. 3.1 и 3.2. На рисунке 3.2 заметен явный выброс одной точки из общего расположения остальных точек вдоль одной прямой. Причинами такого выброса могут быть:
1) Ошибка экспериментаторов при снятии кривых (рис.1), использованных в данных расчетах;
2) Наличие малого количества точек (всего 4) для построения графика, вследствие чего возможно лишь предполагать, что есть тенденция к линейной зависимости.
Анализ прямых (рис.3) говорит о том, что с ростом температуры припекания существенно возрастают кинетические константы и и ускоряется кинетика уплотнения процесса.
На рис.2 представлены экспериментальные зависимости пористости образцов из порошка ПГ-СР4 при его припекании со скоростью нагрева к/с в диапазоне давлений МПа.
В теоретическом анализе проблемы нагрева образцов с постоянной скоростью с помощью дифференциального уравнения (15), рассматривается несколько случаев.
Ввели наиболее простую модель:
(7)
т.е. полагается, что вид зависимости Т кинетической константы процесса спекания не меняется во всем диапазоне температур.
В этом случае имеем: (см.§1 гл.I)
(8)
Здесь интегральная показательная функция
(9)
для случае можно воспользоваться приближенным представлением
(10)
Тогда с учетом обстоятельства и условия (10), имеем:
(11)
или
(12)
Здесь коэффициент включен в константу .
На рис.4 представлена зависимость от по экспериментальным данным (кривая 2 на рис.2).
На графике виден некоторый излом при переходе от одного диапазона температур к другому.
Отклонение графика от теоретической зависимости (12) обусловлено, по всей вероятности, перестройкой в спекаемом порошке ПГ-СР4 за счет которой происходит изменение кинетической константы.
§ 2. Постановка задачи в более общем случае (модель припекаемой системы с тремя параметрами).
Произведем расчет кинетики припекания слоя в предположении, что в диапазоне температур
(1)
структурная перестройка незначительна и можно положить в этом диапазоне
(2)
Полагая, что
, (3)
Имеем согласно сказанному выше:
(4)
В диапазоне температур
, (5)
где
, (6)
имеем
, (7)
где и • (8)
То есть, мы учитываем структурную перестройку. Время t здесь отсчитывается от момента достижения слоем порошка температуры .
Полное прекращение функции пористости за все время припекания мы получим согласно:
(9)
Учитывая, что согласно (6)
, (10)
имеем приближенные значения кинетических констант и :
, (11)
Мы использовали в (11) разложение:
, (12)
где 1, 2
Теперь можно записать:

(13)
Здесь положено:
, ; (14)
, , (15)
Имея ввиду замену переменных в интеграле справа в (9) имеем:

(16)
Окончательный результат: 1-е слагаемое в (16) отвечает вкладу в припеканию с нагревом в интервале (5), обусловленному активной подсистемой в нашей модели; 2-е и 3-е слагаемое ответственны за припекание с кинетической константой . Полное изменение функций прироста согласно (4) и (16) суть:
(17)
Отметим, что температура для данного порошка может зависеть от приложенного извне давления, как это видно из рисунка 2: с уменьшением давления, увеличивается. Для порошка ПГ-СР4, как видно из эксперимента кривых (рис.2).
Кл (18)

Рис.3.1
Зависимость кинетической константы от температуры при давлении Р = 30 МПа

МАТЕРИАЛЫ РАБОТЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ
ВНЕ­КЛАССНОЙ РАБОТЫ СО СТАРШЕЛАССНИКАМИ.
Мы знаем, что разные детали, механизмы изнашиваются в про­цессе работы, и для того, чтобы их отремонтировать и снова пус­тить в эксплуатацию, тратятся большие средства. Надо, чтобы при изготовлении машин затрачивалось как можно меньше материала, и чтобы изделие было качественным, подольше служило людям. Од­ну из этих проблем и решает порошковая металлургия.
При рассмотрении изношенных деталей можно видеть, что из­нашиванию подвержена не вся деталь, а лишь ее поверхность, т.е. то, что соприкасается с другими механизмами в процессе работы.
Таким образом, чтобы продлить жизнь детали, надо как мож­но лучше обработать ее поверхность, т.е. состояние поверхност­ного слоя и определяет работоспособность и срок службы деталей. Для того, чтобы обеспечить эти свойства, создаются материалы, которые способны противостоять различным воздействиям и обеспе­чить небольшой износ. Долгое время для изготовления деталей ис­пользовались разные легирующие добавки. В настоящее время раз­вивается технология изготовления деталей нанесением покрытий различного назначения на их поверхность. Покрытие предотвращает или замедляет взаимодействие основы материала с окружающей сре­дой, защищая его от износа, окисления при высоких температурах, и других видов разрушения. Разработка составов и методов нанесения защитных покрытий различного назначения на изделия из металлических материалов рассматривается сейчас как одно из наиболее важных направлений материаловедения, развитие которо­го позволит существенно поднять технико-экономическую эффек­тивность производства и уровень многих отраслей современной техники. Эта проблема актуальна сейчас и будет актуальна в XXI столетии.
Разработка и применение покрытий вызваны следующими при­чинами. В ряде случаев задача защиты детали вообще не может быть решена без использования покрытий. Например, нельзя ис­пользовать детали из тугоплавких металлов (молибдена, вольфра­ма) и сплавов на их основе при высоких (1070 К) температурах в окислительных средах без защиты их поверхности от разрушения. Кроме того, покрытия позволяют существенно увеличить срок служ­бы изделий. А также позволяют заменить дорогие и дефицитные материалы более доступными и простыми без снижения их эксплуа­тационных свойств.
Кроме специфических требований, обусловленных условиями эксплуатации, есть ряд общих требований, которые предъявляют­ся почти ко всем типам покрытий. К ним относятся плотность и сплошность покрытий, предотвращение проникновения жидкой или газовой агрессивной среды к поверхности защищаемого материала, совместимость с материалом основы.
Основными методами получения покрытий из порошковых мате­риалов являются наплавка, напыление, припекание.
Напыление – это процесс получения покрытий путем нагрева частиц материала до высокопластического или расплавленного состояния и переноса их горячей струёй газа на обрабатываемую по­верхность.
В зависимости от источника энергии существующие методы и аппараты для напыления можно разделить на газопламенные, плаз­менные, электродуговые и др. Достоинства напыления: почти пол­ное отсутствие термодеформаций и искажения геометрических раз­меров заготовки, простота нанесения покрытий на конструкции сложной конфигурации, малый вес и небольшие размеры оборудова­ния и др.
Для нанесения толстых (от долей до нескольких миллиметров) покрытий применяют наплавку. Для нее характерно то, что поверх­ностный слой покрываемого изделия расплавляется на определенную глубину и смешивается с наплавленным материалом. Преимущества наплавки – широкий ассортимент применяемых материалов, высокая производительность, возможность получения толстых покрытий, что важно для восстановления деталей с большим допустимым износом. Недостатком является разупрочнение материала основы в результа­те проплавления на большую глубину, что очень нежелательно.
Припекание – процесс получения покрытий из металлических порошков, который заключается в нанесении на поверхность дета­ли порошкового слоя и нагрева его до температуры, обеспечиваю­щей спекание порошкового материала и образование прочной диффу­зионной связи с деталью. Принципиально важно, что покрытие в процессе нанесения практически не расплавляется.
Остановимся подробно на методе припекания.
Когда материал подвергается нагрузке, в нем происходит диффузия, тем более активная, чем выше температура. Металл сос­тоит из зерен, которые деформируются под действием силы. В лю­бом кристалле содержатся дефекты в виде вакансий.
Текучесть жидкости объясняется тем, что жидкость пронизана вакансиями и, прилагая к жидкости силу, заставляем диффузию протекать: атомы занимают вакансии, которые перемещаются соот­ветственно. Происходит это в направлении силы и во всем объеме.
В результате приложения силы к металлу, возникает ускорен­ная диффузия между источниками и стоками вакансий (т.е. между теми местами, где вакансий много и теми где их мало). Такими источниками являются границы зерна. Единого потока диффузии, как в жидкости нет, так как каждое зерно деформируется по-сво­ему. Поэтому коэффициент вязкости металла зависит не только от коэффициента диффузии, но и от структуры металла. Если зерно крупное, то – увеличивается, если зерно мелкое, то -уменьшается ( – коэффициент вязкости). Итак, в результате протекания множества диффузионных микропотоков, порошок припе­кается к поверхности детали.
Процессы припекания очень неоднородны во времени и в про­странстве.
На протяжении процесса изменяется, так как структура металла нестабильна, т.е. зерна меняют свою конфигурацию – мел­кие зерна поглощаются крупными.
Чтобы на поверхности детали получился прочный слой, хорошо сцепленный с основой, необходимо активирование поверхности де­тали, порошка или того и другого вместе.
Технологически наиболее доступными и эффективными счита­ются следующие процессы активирования:
химическое – введение специальных добавок, уменьшающих окисление и разрушающих окисные пленки;
температурное – ускоренный нагрев, введение присадок, сни­жающих температуру плавления на контактах;
силовое – необходимое для получения надежного контактиро­вания.
Температурное активирование заключается в ускоренном нагре­ве, который сопровождается повышением активности диффузионных процессов, в создании на некоторое время локальных температур, превышающих температуру плавления, и в снижении температуры появления жидкой фазы за счет присадок.
Теория процессов спекания и припекання активно развивает­ся вот уже около 40 лет, совершенствуются порошковые технологии. За ними большое, перспективное будущее.
ВЫВОДЫ
1. Систематизирован материал по литературным источникам по­следних лет по температурному активированию припекания порошковых покрытий.
2. Построена 3-х параметрическая модель припекаемой вязкой пористой среды.
3. Выполнены приближенные расчеты кинетики припекания поро­шкового слоя в рамках построенной модели; результаты при­ведены в соответствие с экспериментами ИНДМАШ АН Беларуси для порошка ПГ-СР4.
4. Полученное уравнение кинетики припекания может служить основой дальнейших экспериментов по температурному акти­вированию процессов припекания различных порошков.
ЛИТЕРАТУРА
1. Ландау Л.Д., Лифшиц Е.М. Теория упругости. – М., Наука, 1965.
2. Алинзаде Ю.А. Теория упругости. – М., Высшая школа, 1976.
3. Дорожкин Н.Н., Абрамович Т.М., Жорник А.И. Получение пок­рытий методом припекания. – М., Наука и техника, 1980.
4. Ковальченко М.С., Теоретические основы горячей обработки пористых материалов давлением. – Киев, Наукова думка, 1980.
5. Скороход В.В. Реологические основы теории спекания. – Киев, Наукова думка, 1972.
6. Дорожкин Н.Н., Абрамович Т.М., Кашинын Л.П. Теоретические основы получения деталей с припеченным слоем. – Докл. АН БССР, 1974, т. 18, № 5.
7. Абрамович Т.М., Меленевский И.П., Ройзенвассер Л.С., Ста­ровойтова Л.А. Исследование кинетики уплотнения припекае­мых покрытий из металлических порошков. – В кн. Повышение надежности и долговечности деталей машин, механизмов и свар­ных конструкций. – Мн, Бел. НИИНТИ, 1982.
8. Дорожкин Н.Н., Абрамович Т.М., Ярошевич В.К. Импульсные методы нанесения порошковых покрытий. – Мн., Наука и тех­ника, 1985.
9. Федорченко И.М. Современные тенденции в развитии порошковой металлургии. – Порошковая металлургия, 1985.
10. Абрамович Т.М., Симонов Ю.А., Дорожкин Н.Н., Дьяченко О.В. Кинетика уплотнения плазменно напыленного порошка системы Fe-Cr-B-Si оплавленного лазерным лучом. – Сборник научных трудов 9 Международной конференции «Математические модели физических процессов», Таганрог, изд. ТГПИ, 2003 г.