–PAGE_BREAK–1.5Термодинамические функции бинарных соединений (интерполяционная формула Лагранжа)
В литературе приводятся термодинамические данные далеко не для всех бинарных соединений, а некоторые из имеющихся констант нуждаются в уточнении и согласовании.
И. Г. Горичевым с помощью интерполяционной формулы Лагранжа, термодинамических соотношений эмпирической закономерности о постоянстве приведённого химического потенциала атомов кислорода в оксидах MeOxв некотором интервале х и уравнения Гиббса – Дюгема получена приближённая функциональная связь между стандартной энергией Гиббса образования оксидов металла из элементов и стехиометрическим составом оксидов:
().
Здесь iи j– степени окисленности оксидов металла, для которых существуют наиболее достоверные термодинамические данные, х – степень окисленности оксида, для которого производится прогнозирование энергии Гиббса образования. При расчётах по данной формуле следует иметь в виду, что величины должны быть выражены в Дж/г-атом О.
Данная формула может быть применена для оценки термодинамических свойств не только оксидов, но и других бинарных соединений металла с электроотрицательными атомами [].
В данной работе интерполяционная формула Лагранжа использована для оценки термодинамических свойств силицидов марганца.
1.6 Общие принципы термодинамического описания химической устойчивости металлов
Химическая устойчивость металлов в окислительной газовой среде, например, на воздухе, определяется их стойкостью к окислению кислородом. Лучшим способом представления термодинамической информации об окислении металлических материалов являются фазовые диаграммы состояния систем металл-кислород.
На фазовых диаграммах Ме-О представлены различные химические равновесия, играющие роль в процессе окисления металла. Они характеризуют растворимость кислорода в данном металле, состав оксидных форм, образующихся в результате окислении металла кислородом, и устойчивость фаз в зависимости от различных параметров системы: температуры, давления, состава и др.
Состав системы выражается содержанием металла и кислорода в атомных процентах, либо в процентах по массе.
Для более сложных систем, содержащих третий компонент- другой металл, существуют аналогичные диаграммы состояния Ме1-Ме2-О. Они позволяют разобраться в вопросах состава и структуры окалины (слоев окислов) на поверхности бинарных сплавов. В литературе накоплен огромный справочный материал по термодинамическим свойствам неорганических веществ, сформулированы общие принципы фазовых равновесий в гетерогенных системах (правило фаз Гиббса), предложены различные модели, интерполирующие свойства компонентов и металлических, и оксидных растворов (теории совершенных и «регулярных» растворов) и т.п. Все это позволило расчетным путем выявить вид и характерные особенности интересующих нас диаграмм состояния [6].
Согласно закону равновесия фаз — правилу фаз Гиббса, в трехкомпонентной системе при постоянных внешних параметрах (P,T=const):
f=3-Ф ()
где f- число термодинамических степеней свободы, или вариантность системы, то есть количество параметров (температура, давление, концентрации компонентов в фазах), которые являются независимыми,
Ф – количество фаз в системе, находящихся в равновесии.
Из физических соображений следует, что f0. Таким образом, в указанной системе возможны равновесия с участием одной, двух или максимум трех фаз:
— однофазные равновесия (f=2); отдельные фазы (вещества) термодинамически устойчивы в определенном интервале составов и, соответственно, парциальных давлений кислорода;
— двухфазные (моновариантные) равновесия (f=1);
— трехфазные (инвариантные) равновесия (f=0).
В условиях трехфазного равновесия система не имеет степеней свободы, т.е. данное состояние системы полностью описывается законами действующих масс гетерогенных химических реакций и условиями нормировки составов фаз. Для однозначного расчета составов фаз в условиях двухфазового равновесия необходимо задаваться одним из параметров системы.
Для записи законов действующих масс (выражений для констант равновесий) химических реакций необходимо определить активности компонентов в фазах. Активность кислорода в газовой фазе при давлении 1 атм может быть принята его парциальному давлению. Для конденсированных фаз в рамках модели регулярных растворов справедливо выражение:
; ()
где — активность компонента в растворе;
— мольная (атомная) доля компонента в растворе;
— энергия смешения компонентов при образовании раствора.
Формула применима к двухкомпонентным растворам.
Для конденсированных фаз в рамках модели идеального (совершенного раствора) .
Валовый состав тройной системы Ме1-Ме2-О можно записать как
;
где – атомная доля металла ;
— степень окисленности системы (.)
Тогда изотермические сечения диаграммы состояния этой системы удобно представить графически на плоскости в координатах .
В соответствии с теорией химического сродства Вант-Гоффа термодинамическим критерием возможности окисления элементов в сплаве служит стандартное изменение свободной энергии Гиббса для реакции:
; (1.24)
или давление кислорода . Эти показатели взаимосвязаны уравнением:
; (1.25)
Чем отрицательнее величина изобарно-изотермического потенциала реакции (1.24), или ниже , тем выше избирательность окисления данного металла.
Итак, представление фазовых диаграмм вида Ме-О, Ме1-Ме2-О может быть различно и зависеть от выбора термодинамических параметров как координат (Р, Т составов и др.) Но в любом случае эти диаграммы могут служить термодинамической основой при изучении вопросов об устойчивости систем, в частности, при рассмотрении вопросов об окислении металлов [7].
1.7 Фазовые диаграммы систем
Mn
–
O
и
Si
–
O
Фазовая диаграмма состояния системы Si-O
Диаграмма состояния O-Si построена в интервале концентраций 0-66,7 % (ат.) О на основе обобщения литературных данных. В системе существует обширная область расслаивания в жидком состоянии. Температура монотектической реакции отвечает 1703°С. При 1417°С происходит кристаллизация эвтектики Si + SiO2 (тридимит). Как следует из диаграммы, в системе образуется одна устойчивая оксидная фаза — SiO2 (кремнезем). Никаких других промежуточных фаз, кроме SiO2, в системе не обнаружено.
Растворимость кислорода в твердом Si была определена с помощью метода ИК-спектроскопии и представлена ниже:
При нормальном давлении устойчивы 4 полиморфные модификации SiO2: β-SiO2, α-SiO2, тридимит и кристобалит. Превращение α-SiO2 в SiO2 (коэзит) происходит при давлении 1,8-2,0 ГПа и температуре 500°С. Стишовит образуется при давлении 16-18 ГПа и температурах 1200-1400°С [2].
Рис.1.4. Диаграмма состояния системы Si-O.
Фазовая диаграмма состояния системы Mn-O.
Взаимодействие марганца с кремнием изучалось на основе оксидов: MnO, Mn3O4, Mn2O3, MnO2, Mn2O7. Методом оптической пирометрии определена температура плавления МnО, равная 1842±10°С, область гомогенности МnО находится в интервале 47,4-52,4 % (ат.) O. Температура плавления Мn3О4 равна 156714°С и область гомогенности находится в интервале 57-58,4 % (ат.) О. Соединение Мn3О4 существует в двух модификациях: β-Мn3О4 и α-Мn3О4. Соединение Мn2О3 существует при температуре не выше 900°С, в интервале температур 600-940°С Мn3О4 в присутствии О2 взаимодействует с МnО2 с образованием Мn2О3, при температуре выше 940°С Мn2О3 распадается на Мn3О4 и О2.
На рис. 1.5. приведена диаграмма состояния Mn-О при давлении 0,021 МПа.
Соединение МnО плавится конгруэнтно, а соединение β-Мn3О4 — инконгруэнтно при температуре 1567±4°С. Соединение α-Мn3О4 образуется по перитектоидной реакции при температуре -1190°С. При температуре 1160±5°С β-Мn3О4 распадается по эвтектоидной реакции [2].
Рис.1.5. Диаграмма состояния Mn-O.
2. Экспериментальная часть
2.1 Расчёт термодинамических функций силицидов марганца по формулам Миедемы и Истмена
Табл. 2.1 Данные, необходимые для расчётов по формулам Миедемы и Истмена [8,9]
R
P
Q
Φ
nws1/3
ρ, г/см3
V2/3
Si
2,1
12,3
9,4
4,7
1,5
2,33
4,2
Mn
14,2
9,4
4,45
1,61
7,562
3,8
Табл. 2.2 Рассчитанные характеристики силицидов марганца.
Аср.
Vср.
Тразл., К [7]
ρ
Mn11Si19
37,93
8,93
1423
4,25
Mn5Si3
44,87
8,01
1556
5,60
Mn5Si2
47,27
7,79
1123
6,07
Mn9Si2
50,09
7,57
1333
6,61
Mn3Si
48,23
7,71
1353
6,25
Расчеты провели по формулам (1.1) – (1.19).
Результаты расчетов представлены в табл. 2.3.
Табл. 2.3 Стандартные энергии Гиббса образования силицидов марганца.
хMn
хSi
xsMn
xsSi
f(x)
g
φ
ΔΗf°,
Дж/моль
S2980, Дж/моль*К
ΔS2980, Дж/моль*К
ΔG2980, Дж/моль
Mn11Si19
0,367
0,633
0,344
0,656
0,226
6,294
1,420
-485547
25,30
-683,23
-281944
MnSi*
–
–
–
–
–
–
–
-49680
45,42
-5,28
-48107
Mn5Si3*
–
–
–
–
–
–
–
-151842
238,83
23,05
-158711
Mn5Si2
0,714
0,286
0,693
0,307
0,213
6,078
1,292
-124289
29,86
-167,07
-74502
Mn0,85Si0,15
,85
0,15
0,837
0,163
0,137
5,989
0,819
-46627
33,16
-176,75
6045
Mn3Si*
–
–
–
–
–
–
–
-26693
103,83
-10,56
-23546
Mn9Si2
0,818
0,182
0,803
0,197
0,158
6,014
0,952
83007
28,20
-14,13
87218
2.2 Расчёт термодинамических функций силицидов марганца по интерполяционной формуле Лагранжа
Оценку энергий Гиббса образования силицидов марганца провели с использованием интерполяционной формулы Лагранжа. Для расчётов по формуле Лагранжа в качестве основы использовались энергии Гиббса двух силицидов. Но на основании результатов расчётов был сделан вывод о том, что полученные энергии Гиббса для каждого силицида сильно различались в зависимости от того, данные каких двух силицидов были взяты за основу. Поэтому возникла необходимость модифицировать формулу Лагранжа, чтобы появилась возможность в качестве основы брать энергии Гиббса не двух, а четырех силицидов.
Модификация формулы для расчёта произведена на основании предположения о наличии приближённой функциональной зависимости между приведённым химическим потенциалом атомов электроотрицательного элемента в бинарном соединении и общего вида интерполяционной формулы Лагранжа. Данная формула позволяет использовать в качестве исходных данных любое количество энергий Гиббса образования соединений.
Для вычислений по этой формуле нужны данные об энергиях Гиббса образования ряда бинарных соединений (М – металл, А – атом более электроотрицательного элемента, aiи bi– индексы при атомах М и А в соединении, соответственно). Кроме того, нужно знать формулу соединения, , энергию Гиббса образования которого нужно оценить. В этом случае формула принимает следующий вид:
()
Здесь n– количество энергий Гиббса образования бинарных соединений, принимаемых в качестве достоверных исходных данных. В данном случае все используемые значения энергий Гиббса должны быть выражены в Дж/моль.
Данная формула была использована для расчёта энергий Гиббса образования силицидов Mn5Si2, Mn9Si2 и Mn0,85Si0,15, для которых справочных термодинамических данных не имеется. Результаты расчётов представлены в таблице.
продолжение
–PAGE_BREAK–2.3 Справочные данные для расчётов системы Mn-Si-O
Существует множество справочных данных об энергиях Гиббса образования силикатов и силицидов марганца, поэтому нет однозначно верного значения ΔGобразования какого-либо соединения.
Наиболее достоверными следует считать данные источников [10] и [11], которые и были выбраны в качестве первого приближения для дальнейших расчётов.
Энергии Гиббса образования соединений, Дж/моль
Источник
Mn11Si19
MnSi
Mn5Si3
Mn5Si2
Mn3Si
Mn9Si2
Mn0,85Si0,15
MnSiO3
Mn2SiO4
-954878
-77932
-280518
–
-104397
–
–
-1240827
-1629818
-1671327
[10]
-892500
-76701
-278892
–
-107758
–
–
-1240552
-1632190
[11]
–
-59290
-207480
–
-72260
–
–
–
–
[9]
–
-92612
-343444
–
-141997
–
–
-1347490
-1779298
[12]
-998905
-965780
-947780
-935780
-758780
-344780
-997960
-979960
-967960
-790960
-376960
-78200
-76500
-68100
-93900
-74700
-62100
-78280
-95680
-69880
-76480
-63880
-284920
-273120
-257120
-230720
-317120
-243520
-280520
-264520
-238120
-324520
-250920
–
-103240
-104500
-107300
-134100
-144100
-104380
-107180
-133980
-143980
-222880
-16850
–
–
[13]
-281944
-48107
-158711
-74502
-23546
87218
6045
–
–
*
-892500
-76701
-278892
-207269
-107758
-230761
-17823
-1240552
-1632190
**
*. Расчёт по формулам Миедемы и Истмена.
**. Расчёт по интерполяционной формуле Лагранжа.
2.4 Моделирование фазовых равновесий в системе
Mn
–
Si
Для описания термодинамических свойств фаз переменного состава твердых растворов применялась обобщенная теория «регулярных» растворов в однопараметрическом приближении.
Уравнение реакции, соответствующее образованию R— фазы:
(1)
(2)
(3)
Энергии Гиббса реакций 2 и 3 описываются уравнениями температурной зависимости:
Энергия Гиббса реакции 1 может быть найдена комбинированием энергий Гиббса реакций 2 и 3:
***
Активности компонентов системы рассчитываем по формулам:
,
где .
«Кажущиеся» энергии смешения описываем уравнением температурной зависимости:
С учётом () уравнения () и () преобразуются:
*
**
Уравнение изотермы для химической реакции (1):
Константа равновесия реакции (1):
С учётом формул * и ** уравнение ***:
Пусть , тогда:
Преобразуем:
Задача сводится к нахождению неизвестных параметров уравнения Необходимые для расчетов мольные доли кремния, соответствующие равновесию α-фазы с Mn0,85Si0,15 при различных температурах получили из диаграммы состояния Mn– Si.
Табл. 2.5. Мольные доли кремния при различных температурах.
Таким образом, получается система из 10 уравнений с 4 неизвестными параметрами Учитывая, что Дж/моль, то вводится дополнительное 11 уравнение
Для решения этой системы использован метод Крамера. По данному методу для системы n линейных уравнений с n неизвестными
с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде
После решения данной системы найдены неизвестные параметры :
, , ,
Далее проведена подстановка полученных значений параметров в исходную систему уравнений и установлена адекватность полученных значений.
При Т=298 К определена точка предельной растворимости кремния в альфа-марганце:
По уравнениям ……находим активности компонентов системы в точке предельной растворимости кремния в альфа-марганце:
,
Таким образом, исходя из полученных результатов, можно прийти к заключению, что в области низких температур (вплоть до комнатной) кремний практически не растворяется в марганце.
2.5
. Расчет и построение диаграммы состояния
Mn
-Si-O при 250С. Анализ химической устойчивости
Как следует из экспериментальных данных по системе марганец-кремний (рис.1.1), кремний-кислород (рис.1.4) и марганец-кислород (рис.1.5) в системе Mn-Si-Oможно предположить существование областей, в которых присутствуют следующие фазы (поскольку химическое сродство кремния к кислороду выше, чем марганца, то вероятнее, что почти при любом составе сплава Mn-Si в первую очередь будет реализовываться равновесие сплав – SiO2):
1. Si(γ) – Mn11Si19 – SiO2; (I)
2. Mn11Si19 – MnSi –SiO2; (II)
3. MnSi – Mn5Si3 – SiO2; (III)
4. Mn5Si3 – Mn5Si2 – SiO2; (IV)
5. Mn5Si2– Mn3Si – SiO2; (V)
6. Mn3Si – Mn9Si2 – SiO2; (VI)
7. Mn9Si2 – R(Mn6Si) – SiO2; (VII)
8. R(Mn6Si) – α-фаза– SiO2; (VIII)
9. α-фаза– SiO2; (IX)
10. α-фаза––MnSiO3–SiO2; (X)
11. α-фаза––Mn2SiO4–MnSiO3; (XI)
12. α-фаза––MnO– Mn2SiO4; (XII)
13. MnO–Mn3O4– Mn2SiO4; (XIII)
14. Mn3O4– Mn2SiO4– MnSiO3; (XIV)
15. Mn3O4–Mn2O3– MnSiO3; (XV)
16. Mn2O3– MnSiO3–SiO2; (XVI)
17. Mn2O3–MnO2–SiO2; (XVII)
18. MnO2–Mn2O7–SiO2; (XVIII)
19. Mn2O7–SiO2–{O2}; (XIX)
Для того, чтобы однозначно определить инвариантное состояние системы, необходимо задать равновесные составы сосуществующих фаз и давление кислорода в газовой фазе, равновесной с конденсированными фазами.
Примеры расчета:
а) Фазовое равновесие V: Mn5Si2– Mn3Si– SiO2
Уравнение реакции, соответствующее данному равновесию:
(1)
Константа равновесия реакции (1):
; (2.1)
Мольные доли компонентов равны единице, поэтому выражение для константы равновесия упрощается:
; (2.2)
Уравнение изотермы химической реакции:
; (2.3)
Энергия Гиббса реакции (1) рассчитывается по формуле:
; (2.4)
С учетом уравнения (2.2):
б) Фазовое равновесие X:
α-фаза ––MnSiO3–SiO2 было описано независимыми реакциями образования SiO2 и MnSiO3 из компонентов α-фазы (Mn, Si) и компонентов газовой фазы O2:
(1);
(2) ;
Константы равновесия реакций 1 и 2:
; (2.3)
; (2.4)
Для определения состава α-фазы исключим из конечного термодинамического уравнения. Для этого возведем уравнение (2.3) в куб и поделим полученное на уравнение (2.4), получим:
продолжение
–PAGE_BREAK–