–PAGE_BREAK–2. Типы моделей управления запасами
Обобщенная модель управления запасами, описанная выше выглядит довольно простой. Чем же тогда объясняется столь большое разнообразие моделей этого класса и методов решения соответствующих задач, базирующихся на различном математическом аппарате: от простых схем дифференциального и интегрального исчисления до сложных алгоритмов динамического и других видов математического программирования? Ответ на этот вопрос определяется характером спроса, который может быть детерминированным (достоверно известным) или вероятностным (задаваемым плотностью вероятности). На рисунке 2 приведена схема классификации спроса, обычно принимаемая в моделях управления запасами. Детерминированный спрос может быть статическим, в том смысле, что интенсивность потребления остаётся неизменной во времени, или динамическим, когда спрос известен достоверно, но изменяется в зависимости от времени. Вероятностный спрос может быть стационарным, когда функция плотности вероятности спроса неизменна во времени, и не стационарным, когда функция плотности вероятности спроса изменяется во времени.
В реальных условиях случай детерминированного статистического спроса встречается редко. Такой случай можно рассматривать как простейший. Так, например, хотя спрос на такие продукты массового потребления, как хлеб, может меняться от одного дня к другому, эти изменения могут быть столь незначительными, что предположение статичности спроса несущественно искажает действительность.
Рисунок 2.
Наиболее точно характер спроса может быть, возможно, описан посредством вероятностных нестационарных распределений. Однако с математической точки зрения модель значительно усложняется, особенно при увеличении рассматриваемого периода времени. Рисунок 2 иллюстрируют возрастание математической сложности модели управления запасами при переходе от детерминированного статического спроса к вероятностному стационарному спросу. По существу, классификацию рисунка 2 можно считать представлением различных уровней абстракции описания спроса.
На первом уровне предполагается, что распределение вероятности спроса стационарно во времени. Это означает, что для описания спроса в течение всех исследуемых периодов времени используется одна и та же функция распределения вероятностей. При таком предположении влияние сезонных колебаний спроса в модели не учитывается.
На втором уровне абстракции учитывается изменение спроса от одного периода к другому. Однако при этом функции распределения не меняются, а потребности в каждом периоде описываются средней величиной спроса. Это упрощение означает, что элемент риска в управлении запасами не учитывается. Однако оно позволяет исследовать сезонные колебания спроса, которые вследствие аналитических и вычислительных трудностей нельзя учесть вероятностной модели. Другими словами, здесь возникает определенный компромисс: можно использовать, с одной стороны, стационарные распределения вероятностей, а с другой – переменную, но известную функцию спроса при допущении «определённости».
На третьем уровне упрощения исключаются как элементы риска, так и изменения спроса. Тем самым спрос в течение любого периода предполагается равным среднему значению известного (по предположению) спроса по всем рассматриваемым периодам. В результате этого упрощения спрос можно оценить его постоянной интенсивностью.
Хотя характер спроса является одним из основных факторов при построении модели управления запасами, имеются другие факторы, влияющие на выбор типа модели. К их числу относятся:
1. Запаздывание поставок или сроки выполнения заказов. После размещения заказов он может быть поставлен немедленно или потребуется некоторое время на его выполнение. Интервал времени между моментом размещения заказа и иго поставкой называется запаздыванием поставки, или сроком выполнения заказа. Эта величина может быть детерминированной или случайной.
2. Пополнение запаса. Хотя система управления запасами может функционировать при запаздывании поставок, процесс пополнения запаса может осуществляться мгновенно или равномерно во времени. Мгновенное пополнение запаса может происходить при условии, когда заказы поступают от внешнего источника. Равномерное пополнение может быть тогда, когда запасаемая продукция производится сомой организацией. В общем случае система может функционировать при положительном запаздывании поставки и равномерном пополнении запаса.
3. Период времени определяет интервал, в течение которого осуществляется регулирование уровня запаса. В зависимости от отрезка времени, на котором можно надёжно прогнозировать рассматриваемый период принимается конечным или бесконечным.
4. Число пунктов накопления запаса. В систему управления запасами может входить несколько пунктов хранения запаса. В некоторых случаях эти пункты организованны таким образом, что один выступает в качестве поставщика для другого. Эта схема иногда реализуется на различных уровнях, так что пункт – потребитель одного уровня может стать пунктом – поставщиком на другом. В таком случае принято говорить о системе управления запасами с разветвленной структурой.
5. Число видов продукции. В системе управления запасами может фигурировать более одного вида продукции. Это фактор учитывается при условии наличия некоторой зависимости между различными видами продукции. Так, для различных изделий может использоваться одно и то же складское помещение или же их производство может осуществляться при ограничениях на общие производственные фонды.
продолжение
–PAGE_BREAK–3. Детерминированные модели
Чрезвычайно трудно построить обобщенную модель управления запасами, которая учитывала бы все разновидности условий, наблюдаемых в реальных системах. Но если бы и удалось построить достаточно универсальную модель, она едва ли оказалась аналитически разрешимой. Представление в этом разделе модели соответствуют некоторым системам запасами. Маловероятно, что эти модели могут точно подойти для реальных условий, однако они приведены с целью различных подходов к решению некоторых конкретных задач управления запасами.
В этом разделе обсуждается пять моделей. Большинство из них однопродуктовые, и только в одной из них учитывается влияние нескольких «конкурирующих» видов продукции. Основное различие между моделями определяется допущением о характера спроса (статический или динамический). Важным фактором с точки зрения формулировки и решения задачи является также вид функции затрат. Используются различные методы решения, включающие классическую схему оптимизации, линейное и динамическое программирование. Эти примеры наглядно показывают, что при решении задач управления запасами следует применять различные методы оптимизации.
3.1. Однопродуктовая статическая модель
Модель управления запасами простейшего типа характеризуются постоянным во времени спросом, мгновенным пополнением запаса и отсутствием дефицита. Такую модель можно применять в следующих типичных ситуациях:
1. Использование осветительных ламп в здании;
2. Использование таких канцелярских товаров, как бумага, блокноты и карандаши, крупной фирмой;
3. Использование некоторых промышленных изделий, таких, как гайки и болты;
4. Потребление основных продуктов питания (например, хлеба и молока).
На рисунке 3 показано изменение уровня запаса во времени. Предполагается, что интенсивность спроса (в единицу времени) равна b
.Наивысшего уровня запас достигается в момент поставки заказа размером у (предполагается, что запаздывание поставки является заданной константой.) Уровень запаса достигает нуля спустя у/bединиц времени после получения заказа размером у.
Рисунок 3
Чем меньше размер заказа у, тем чаще нужно размещать новые заказы. С другой стороны, с увеличением размера заказа уровень запаса повышается, но заказы размещаются реже (рисунок 4). Так как затраты зависят от частоты размещения заказов и объема хранимого запаса, то величина у выбирается из условия обеспечения сбалансированности между двумя видами затрат. Это лежит в основе построения соответствующей модели управления запасами.
Рисунок 4.
Пусть К – затраты на оформление заказа, имеющие место всякий раз при его размещении и предположении, что затраты на хранение единицы заказа вединицу времени равны hследовательно, суммарные затраты в единицу времени TCU(y)как функцию от у можно представить в виде:
TCU(y)= Затраты на оформление заказа в единицу времени
+ Затраты на хранение запасов в единицу времени =
= .
Как видно из рисунка 3, продолжительность цикла движения заказа составляетt0=y/bи средний уровень запаса равен y/2.
Оптимальное значение у получается в результате минимизации TCU(y)по у. Таким образов, в предположении, что у – непрерывная переменная, имеем:,
откуда оптимальное значение размера заказа определяется выражением:.
(Можно доказать, что y*доставляет минимум TCU(y), показав, что вторая производная в точке у*строго положительна). Полученное выше выражение для размера заказа обычно называют формулой экономичного размера заказа Уилсона.
Оптимальная стратегия модели предусматривает заказ у*единиц продукции через каждые t0*=y*/
bединиц времени. Оптимальные затраты TCU(y*), полученные путем непосредственной подстановки составляют.
Для большинства реальных ситуаций существует (положительный) срок выполнения заказа (временное запаздывание) Lот момента размещения заказа до его действительной поставки. Стратегия размещения заказов в приведенной модели должна определять точку возобновления заказа. Рисунок 5 иллюстрирует случай, когда точка возобновления заказа должна опережать на Lединиц времени ожидаемую поставку. В практических целях эту информацию можно просто преобразовать, определив точку возобновления заказа через уровень запаса, соответствующий моменту возобновления заказа. На практике это реализуется путем непрерывного контроля уровня запаса до момента достижения очередной очки возобновления заказа. Возможно, по этой причине модель экономичного размера заказа иногда называют моделью непрерывного контроля состояния заказа. Следует заметить, что с точки зрения анализа в условиях стабилизации системы срок выполнения заказа Lможно всегда принять меньше продолжительности цикла t0*.
продолжение
–PAGE_BREAK–Рисунок 5
Принятые в рассмотренной выше модели допущения могут не соответствовать некоторым реальным условиям в следствие вероятстного характера спроса. На практике получил распространение приближенный метод, сохраняющий простоту модели экономичного размера заказа и в то же время в какой-то мере учитывающий вероятностный характер спроса. Идея метода чрезвычайно проста. Она предусматривает создание некоторого (постоянного) буферного запаса на всем горизонте планирования. Размер резерва определяется таким образом, чтобы вероятность истощения запаса в течение периоды выполнения заказа Lне превышало наперед заданной величины. Предположим, чтоf(x)– плотность распределения вероятностей спроса в течение этого срока. Далее предположим, что вероятность истощения запаса в течение периода Lне должна превышать a. Тогда размер резервного запаса Bопределяется из условия: , где L
bпредставляет собой потребление в течение времени L.Изменение запаса при наличии резерва показано на рисунке 6.
Рисунок 6
продолжение
–PAGE_BREAK–3.2. Однопродуктовая статическая модель с «разрывами» цен
В моделях предыдущего полраздела не учитывается удельные затраты на приобретение товара, т.к. они постоянны и не влияют на уровень запаса. Однако не редко цена единицы продукции зависит от размера закупаемой партии. В таких случаях цены меняются скачкообразно или предоставляются оптовые скидки. При этом в модели управления запасами необходимо учитывать затраты на приобретение.
Рассмотрим модель управления запасами с мгновенным пополнением запаса при отсутствии дефицита. Предположим, что цена единицы продукции равна с1 при y
и равна с2 при y>=q, где с1>c2иq – размер заказа, при превышении которого предоставляется скидка. Тогда суммарные затраты за цикл помимо издержек оформления заказа и хранения запаса должны включать издержки приобретения.
Суммарные затраты на единицу времени при y
равны
.
При y>=qэти затраты составляют
.
Графики этих двух функций приведены на рисунке 7. Пренебрегая влиянием снижения цен, обозначим через ymразмер заказа, при котором достигается минимум величин TCU1и TCU2. Тогда . Из вида функции затрат TCU1и TCU2, приведенных рисунке 7 следует, что оптимальный размер заказа y*зависит от того, где по отношению к трем показанным на рисунке зонам I, II иIII находится точка разрыва цены q. Эти зоны находятся в результате определения q1(>ym
)из уравнения TCU1(ym)=TCU2(q1)
.
Рисунок 7
Так как значение ymизвестно (=),то решение уравнения дает значение величины q1. Тогда зоны определяются следующим образом:
Зона I: 0q,
Зона II: ym,
Зона III:q>=q1.
На рисунке 8 приведено графическое решение уравнения для рассматриваемого случая, зависящее от того, где находится qпо отношению к зонам I, II и III. В результате оптимальный размер заказа y*определяется следующим образом:
Алгоритм определения y*можно представить в следующем виде:
1. Определить ym=. Если q(зона I), то y*=ymи алгоритм закончен. В противном случае перейти к шагу 2.
2. Определить q1из уравнения TCU1(ym)=TCU2(q1)
и установить, где по отношению к зонам II и IIIнаходится значение q.
а. Если ym(зона II), то y*=q.
б. Если q>=q1(зона III), то y*=ym
.
Рисунок 8
продолжение
–PAGE_BREAK–