1. Характеристики закрученных потоков 2. Формирование закрученных течений 3. Топки, горелки и циклоны 4. Характерные особенности закрученных потоков 5. Изменение структуры потока с увеличением закрутки 6. Структура рециркуляционной зоны 7. Вихревые горелки, прецессирующее вихревое ядро в потоке с горением 8. Горение в закрученном потоке 9. Пределы срыва и устойчивость пламени 28 10.
Проектирование вихревых горелок 11. Список использованной литературы 1. ХАРАКТЕРИСТИКИ ЗАКРУЧЕННЫХ ПОТОКОВ Сильное влияние закрутки на инертные и реагирующие течения хорошо известно и изучается на протяжении многих лет. Когда эффект закрутки оказывается полезным, конструктор старается создать закрутку, наиболее подходящую для решения его задач; если же подобные эффекты нежелательны, конструктор предпринимает усилия для регулирования или устранения закрутки.
Закрученные течения имеют широкий диапазон приложений. В случае отсутствия химических реакций сюда относятся, например, течения в вихревых реакторах, циклонных сепараторах и трубах Ранка – Хилша, при срыве вихревой пелены с крыльев самолета, в водоворотах и торнадо, в устройствах для распыления аэрозолей в сельском хозяйстве, в теплообменниках, струйных насосах, а также теория бумеранга и полета пчелы. В течениях с горением широко используется сильное благоприятное
влияние закрутки инжектируемых воздуха и горючего на улучшение стабилизации высокоинтенсивных процессов горения и при организации эффективного чистого сгорания во многих практических устройствах: в бензиновых и дизельных двигателях, в газовых турбинах, промышленных печах, бойлерах и других технических нагревательных аппаратах. В последнее время усилия исследователей были направлены на понимание и описание аэродинамики закрученных течений с процессами горения газообразных, жидких и твердых топлив. Экономичное конструирование и экологичность работы технических устройств с горением могут быть значительно улучшены дополнительными экспериментами и модельными исследованиями. При этом экспериментальная и теоретическая аэродинамика течений с горением используется вместе со сложными методами вычислительной гидродинамики. Развитие и совершенствование этих методов позволят значительно снизить затраты времени и средств на программы развития новых устройств.
Закрученные течения являются результатом сообщения потоку спирального движения с помощью закручивающих лопаток, при использовании генераторов закрутки с осевым и тангенциальным подводом или прямой закруткой путем тангенциальной подачи в камеру с формированием окружной компоненты скорости (называемой также тангенциальной или азимутальной компонентой скорости). Экспериментальные исследования показывают, что закрутка оказывает крупномасштабное влияние на поле
течения: на расширение струи, процессы подмешивания и затухания скорости в струе (в случае инертных струй), на размеры, форму и устойчивость пламени и интенсивность горения (в случае реагирующих потоков). На все эти характеристики влияет интенсивность закрутки потока. Интенсивность закрутки обычно характеризуется параметром закрутки, представляющим собой безразмерное отношение осевой компоненты потока момента количества движения к произведению осевой компоненты потока
количества движения и эквивалентного радиуса сопла, т. е.