ЗАЩИТА ОТ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ
Бурное развитие машиностроительных отраслей народного хозяйства привело к использованию в некоторых производствах электромагнитных волн. Причем в ряде случаев человек оказывается подвержен их воздействию. Электромагнитные волны, взаимодействуя с тканями тела человека, вызывают определенные функциональные изменения. При интенсивном облучении эти изменения могут оказать вредное воздействие на организм человека. Знание природы воздействия электромагнитных волн на организм человека, норм допустимых облучений, методов контроля интенсивности излучений и средств защиты от них является совершенно необходимым для специалистов машиностроения в их многогранной практической деятельности.
Электромагнитное поле — это особая форма материи, представляющая собой взаимосвязанные электрическое и магнитное поля.
Энергия электромагнитного поля может переходить в другие формы энергии. Фактически само существование жизни на Земле обусловлено преобразованием электромагнитной энергии (энергии солнечных лучей) в тепловую, химическую и другие виды энергии.
Действие электромагнитного излучения на организм человека в основном определяется поглощенной в нем энергией. Известно, что излучение, попадающее на тело человека, частично отражается и частично поглощается в нем. Поглощенная часть энергии электромагнитного поля превращается в, тепловую энергию. Эта часть излучения проходит через кожу и распространяется в организме человека в зависимости от электрических свойств тканей (абсолютной диэлектрической проницаемости, абсолютной магнитной проницаемости, удельной проводимости) и частоты колебаний электромагнитного поля.
Существенные различия электрических свойств кожи, подкожного жирового слоя, мышечной и других тканей обусловливают сложную картину распределения энергии излучения в организме человека. Точный расчет распределения тепловой энергии, выделяемой в организме человека при облучении, практически невозможен. Тем не менее, можно сделать следующий вывод: волны миллиметрового диапазона поглощаются поверхностными слоями кожи, сантиметрового — кожей и подкожной клетчаткой, дециметрового — внутренними органами.
Кроме теплового действия электромагнитные излучения вызывают поляризацию молекул тканей тела человека, перемещение ионов, резонанс макромолекул и биологических структур, нервные реакции и другие эффекты.
Из сказанного следует, что при облучении человека электромагнитными волнами в тканях его организма происходят сложнейшие физико-биологические процессы, которые могут явиться причиной нарушения нормального функционирования как отдельных органов, так и организма в целом.
Люди, работающие под чрезмерным электромагнитным излучением, обычно быстро утомляются, жалуются на головные боли, общую слабость, боли в области сердца. У них увеличивается потливость, повышается раздражительность, становится тревожным сон. У отдельных лиц при длительном облучении появляются судороги, наблюдается снижение памяти, отмечаются трофические явления (выпадение волос, ломкость ногтей и т. д.).
Нормы допустимого облучения устанавливаются для обеспечения безопасных условий труда обслуживающего персонала источников излучения и всех окружающих лиц.
Напряженность электромагнитных полей на рабочих местах не должна превышать:
1) по электрической составляющей: в диапазоне частот 60 кГц—3 МГц — 50. В/м; 3—30 МГц — 20. В/м; 30—50 МГц — 10 В/м; 50—300 МГц — 5 В/м;
2) по магнитной составляющей: в диапазоне частот 60 кГц— 1, 5 МГц — 5 А/м; 30 МГц—50 МГц — 0, 3 А/м.
Предельно допустимая плотность потока энергии электромагнитных полей в диапазоне частот 300 МГц — 300 ГГц и время пребывания на рабочих местах и в местах возможного нахождения персонала, связанного профессионально с воздействием полей (кроме случаев облучения от вращающихся и сканирующих антенн), взаимосвязаны следующим образом: пребывание в течение рабочего дня —до 0, 1 Вт/м2; пребывание не более 2ч— 0, 1—1 Вт/м2, в остальное рабочее время плотность потока энергии не должна превышать 0, 1 Вт/м2; пребывание не более 20 мин — 1—10 Вт/м2 при условии пользования защитными очками. В остальное рабочее время плотность потока энергии не должна превышать 0, 1 Вт/м2.
Напряженность электрического поля промышленной частоты (50 Гц) в электроустановках напряжением 400 кВ и выше для персонала, систематически (в течение каждого рабочего дня) обслуживающего их, не должна превышать при пребывании человека в электрическом поле: без ограничения времени—до 5 кВ/м; не более 180 мин в течение одних суток 5—10 кВ/м; не более 90 мин в течение одних суток 10—15 кВ/м; не более 10 мин
в течение одних суток 15-30 кВ/м; не более 5 мин в течение суток 20-25 кВ/м. Остальное время суток человек должен I находиться в местах, где напряженность электрического поля не превышает 5 кВ/м.
Если облучение людей превышает указанные предельно допустимые уровни, то необходимо применять защитные средства.
Защита человека от опасного воздействия электромагнитного облучения осуществляется рядом способов, основными из которых являются: уменьшение излучения непосредственно от самого источника, экранирование источника излучения, экранирование рабочего места, поглощение электромагнитной энергии, применение индивидуальных средств защиты, организационные меры защиты.
Для реализации этих способов применяются: экраны, поглотительные материалы, аттенюаторы, эквивалентные нагрузки и индивидуальные средства.
Экраны предназначены для ослабления электромагнитного поля в направлении распространения волн. Степень ослабления зависит от конструкции экрана и параметров излучения. Существенное влияние на эффективность защиты оказывает также .материал, из которого изготовлен экран.
Толщину экрана, обеспечивающую необходимое ослабление, можно рассчитать. Однако расчетная толщина экрана обычно мала, поэтому она выбирается из конструктивных соображений. При мощных источниках излучения, особенно при длинных волнах, толщина экрана может быть принята расчетной.
Толщина экрана в основном определяется частотой и мощностью излучения и мало зависит от применяемого металла.
Очень часто для экранирования применяется металлическая сетка. Экраны из сетки имеют ряд преимуществ. Они просматриваются, пропускают поток воздуха, позволяют достаточно быстро ставить и снимать экранирующие устройства.
Экранированию подлежат генераторы, фидерные линии, элементы высоковольтных электроустановок, разъемы рабочих контуров, индукционные катушки, рабочие конденсаторы, смотровые окна и установки в целом. Конструкция экрана в каждом отдельном случае должна обеспечивать наибольший эффект экранирования. Приведем несколько примеров.
Для экранирования индукционной катушки применяется цилиндрический экран. Устанавливается он так, как показано на рис. 1, а. Излучение при этом происходит через открытые концы цилиндра. Эффективность такого экрана Э, т. е. величина, показывающая, во сколько раз экран ослабляет поле на рабочем месте, может быть определена по формуле
Э = е3,6l / D (1)
где l — расстояние от катушки до краев цилиндра; D — диаметр цилиндра.
Из формулы (1) видно, что более длинный цилиндр дает лучший эффект.
На рис. 1, б показана конструкция экрана рабочего конденсатора высокочастотной установки, применяемого, как и индукционная катушка, для термической обработки изделий. Он представляет собой отрезок прямоугольной трубы.
Расстояние между экраном и конденсатором должно быть не менее расстояния между обкладками. Эффективность такого экрана может быть определена по формуле
Э = еpl / a (2)
где l — расстояние от конденсатора до конца экрана; а — ширина экрана.
Более длинный экран в этом случае дает лучший результат.
При экранировании ослабление излучения осуществляется за счет отражения части энергии от экрана. Следовательно, в тех случаях, когда отраженная энергия может представлять опасность или вносить помехи, применять экранирование нецелесообразно.
Поглотительный материал осуществляет защиту путем превращения энергии электромагнитного поля в тепловую. В качестве поглотительного материала применяют каучук, пенополистирол, ферромагнитный порошок со связывающим диэлектриком, волосяные маты, пропитанные графитом, и другие материалы.
Для повышения поглотительной способности материала ему придают такую форму, чтобы волны испытывали многократное отражение (рис. 2). Это приводит к неоднократному прохождению электромагнитных волн через поглотительный материал, что обеспечивает хорошее поглощение при незначительной толщине материала. Кроме того, многократное отражение волн приводит к взаимному их уничтожению. Использование таких материалов особенно эффективно в диапазонах высоких и сверхвысоких частот излучения.
Для того, чтобы значительная часть энергии не отражалась от поглотительного материала, его волновое сопротивление должно быть близким к волновому сопротивлению воздуха Z0. Это возможно при условии
(3)
где mп, eп — соответственно магнитная и электрическая проницаемость поглотительного материала.
Если условие (3) не выполняется, то поглотительный материал покрывается согласующим слоем диэлектрика. Волновое сопротивление согласующего слоя должно удовлетворять условию
где Z п — волновое сопротивление поглотительного материала.
Хорошие результаты дает совместное применение экрана и поглотительного материала. Поглотительный материал наносится на металлический лист, выполняющий роль экрана. Эта конструкция обеспечивает двукратное прохождение электромагнитной волны через поглотительный материал. Если толщину поглотительного материала выбрать соизмеримой с четвертью длины волны, то прямая и отраженная волны будут иметь сдвиг по фазе 180° и взаимно уничтожаются. Недостатком этой конструкции является то, что она эффективна только в узком диапазоне частот.
Индивидуальные средства предназначены для защиты человека или отдельных его органов при работе в сильных электромагнитных полях. Они применяются в тех случаях, когда другие меры защиты не могут быть использованы или не обеспечивают необходимого ослабления излучения. К индивидуальным средствам относятся защитные халаты, комбинезоны, очки. Все эти средства защиты являются своеобразными экранами. Их защитные свойства определяются степенью отражения волн.
В качестве материала для защитных халатов и комбинезонов используется специальная ткань, в структуре которой тонкие металлические нити скручены с хлопчатобумажными нитями, что придает ткани плотность, эластичность и теплозащитные свойства. Защитные свойства такой ткани следующие:
Длина волны, см …………….0,8 3,2 10 50
Ослабление излучения, дБ……………20 28 38 40
Индивидуальные средства защиты должны применяться в исправном состоянии, а их защитные свойства периодически проверяться.
Организационные меры защиты должны быть направлены на обеспечение безопасных условий труда при использовании электромагнитной энергии. Они должны учитываться прежде всего при организации производства, рабочего места и режима труда. Наибольшее значение при этом необходимо уделять выбору расстояния от источника излучения до рабочего места и сокращению времени пребывания человека в электромагнитном поле. Эти меры иногда называются соответственно “защита расстоянием” в “защита временем”.
С учетом эффективности защиты расстоянием санитарными нормами установлено, что на каждую действующую установку в закрытом помещении мощностью до 30 кВт должно приходиться не менее 25 м2 площади и не менее 40 м2 для установок большей мощности. Для вновь монтируемых установок площади должны быть предусмотрены в 1,5—2 раза больше
Эффективность защиты временем не вызывает сомнения. Однако применять ее следует только в тех случаях, когда другие меры и средства не обеспечивают безопасных условий труда. Это объясняется тем, что сокращение времени нахождения на рабочем месте под облучением практически всегда ведет к снижению производительности труда. Защита временем может осуществляться путем смены работающих, частичной автоматизацией процессов, дистанционным управлением установкой, перерывом в работе и т. и.
Контроль уровней облучения должен производиться путем измерения нормируемого параметра электромагнитного поля на рабочем месте не реже двух раз в год, а также при вводе в действие новых источников излучения при реконструкции действующих установок, после ремонтных работ; при опытных и исследовательских работах уровни облучения необходимо проверять при каждом изменении условий труда.
Измерения в каждой выбранной точке производятся не менее трех раз. Результат каждого измерения фиксируется в протоколе. За уровень электромагнитного облучения в данной точке принимается среднеарифметическое трех измерений. Измерения производятся специально разработанными для этой цели приборами ИЭМП (диапазон высоких частот), ПО-1 (диапазон сверхвысоких частот), ПЗ-1 (промышленная частота) и др.
ЗАЩИТА ОТ ЭЛЕКТРОСТАТИЧЕСКИХ РАЗРЯДОВ НА ПРОИЗВОДСТВЕ
При статической электризации во время технологических процессов, сопровождающихся трением, размельчением твердых частиц, пересыпанием сыпучих тел, переливанием жидкостей-диэлектриков на изолированных от земли металлических частях производственного оборудования возникает относительно земли электрическое напряжение порядка десятков киловольт.
Так, при движении резиновой ленты транспортера и в устройствах ременной передачи на ленте (ремне) и на роликах (шкивах) возникают электростатические заряды противоположных знаков большей величины, а потенциалы их: достигают 45 кВ. Основную роль при этом играют влажность и давление воздуха и состояние поверхностей лент (ремней) и роликов (шкивов), а также скорость относительного движения (пробуксовки). Аналогично происходит электризация: и при сматывании тканей, бумаги, пленки и. др.
При относительной влажности воздуха 85% и более электростатических зарядов обычно не возникает.
В аэрозолях электрические заряды образуются от трения частиц пыли друг о друга и о воздух.
Причинами электризации пыли могут быть непосредственная адсорбция заряда из окружающего воздуха вместе с адсорбируемым газом. Потенциалы заряженных частиц пыли могут достигать значений: до 10 кВ в зависимости от концентрации пыли в воздухе, размера и скорости движения частиц пыли и относительной влажности воздуха.
Применяемое на электроподстанциях минеральное (трансформаторное) масло в процессе его переливания (например, слив из цистерны в бак) также подвергается электризации. В случае, если металлическая емкость или автоцистерна не заземлены, то в процессе налива они окажутся электрически заряженными.
Электрические заряды на частях производственного оборудования могут взаимно нейтрализоваться при некоторой электропроводности влажного воздуха, а также стекать в землю по поверхности оборудования. Но в отдельных случаях; когда электростатические заряды велики, а влажность воздуха незначительна, может возникнуть быстрый искровой разряд между частями оборудования или разряд на землю.
Энергия такой электрической искры может оказаться достаточно большой для воспламенения горючей или взрывоопасной смеси. Например, для многих паро- и газовоздушных взрывоопасных смесей требуется сравнительно небольшая энергия воспламенения, всего лишь около (0,2—0,5)10-3 Вт.с.
Практически при напряжении 3000 В искровой разряд может вызвать воспламенение почти всех паро- и газовоздушных смесей, а при 5000 В воспламенение большей части горючих пылей и волокон.
Таким образом, возникающие в производственных условиях электростатические заряды могут служить импульсом, способным при наличии горючих смесей вызвать пожар и взрыв. В ряде случаев статическая электризация тела человека и затем последующие разряды с тела человека на землю или заземленное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека на землю могут вызывать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого движения человека, в результате которого он может получить ту или иную механическую травму (ушибы, ранение).
Устранение опасности возникновения электростатических зарядов достигается следующими мерами: заземлением производственного оборудования и емкостей для хранения легковоспламеняющихся и горючих жидкостей; увеличением электропроводности поверхностей электризующихся тел путем повышения влажности воздуха или применением антистатических примесей к основному продукту (жидкости, резиновые изделия и др.); ионизацией воздуха с целью увеличения его электропроводности.
Каждая система аппаратов и трубопроводов, заполняемых электризуемыми жидкостями, должна быть в пределах цеха заземлена не менее чем в двух местах. Автоцистерны во время налива или слива горючих жидкостей должны быть заземлены.
Эффективным методом для устранения электризации нефтепродуктов является метод введения в основной продукт специальных антистатических веществ (присадок).
Кроме того, для уменьшения статической электризации при сливе нефтепродуктов и других горючих жидкостей необходимо избегать падения и разбрызгивания струи с высоты, поэтому сливной шланг (рукав) следует опускать до самого дна цистерны или другой какой-либо емкости. Металлические наконечники этих сливных шлангов во избежание проскакивания искр на землю или заземленные части оборудования следует заземлять гибким медным проводником.
В качестве присадки для увеличения электропроводности нефтепродуктов применяют в количестве около 0,001—0,003% олеат хрома, что практически не влияет на их физико-химические свойства.
Антистатические вещества (графит, сажа) вводят и в состав резинотехнических изделий, что повышает их электропроводность. Так, резиновые шланги для налива и перекачки легковоспламеняющихся жидкостей изготовляют из маслобензостойкой электропроводящей резины, что в значительной степени снижает опасность воспламенения этих жидкостей при переливании их в передвижные емкости (автоцистерны, железнодорожные цистерны).