Ймовірнісний зміст нерівності Йєнсена

Реферат на тему: Ймовірнісний зміст нерівності Йєнсена. Нові інформаційні технології в освіті неможливі без нової інформації в конкретних навчальних дисциплінах. В останні роки невпинно зростає кількість прихильників виховання ймовірнісного світогляду школярів і студентів, що вивчають математичні дисципліни. При цьому дуже важливу роль відіграють приклади проникнення ймовірнісних ідей, методів і результатів у неймовірнісні розділи математики. Про один з таких прикладів йде мова у цій роботі. Нерівністю Йєнсена в математиці називають нерівність: , (1) де – опукла на проміжку функція, а – довільні числа з цього проміжку, при цьому нерівність перетворюється в рівність у випадках, коли і коли – лінійна функція. Якщо функція угнута в , то нерівність Йєнсена записують так: , (2) де – середнє арифметичне чисел ; – середнє арифметичне чисел . В загальному вигляді нерівність Йєнсена містить замість середніх арифметичних середні зважені. Тобто , (3) , (4) де і (5) Треба підкреслити, що нерівність Йєнсена має багато важливих застосувань [1-5]. Зауважимо, що в дискретній формі нерівність була встановлена О.Гельдером (Hцlder, 1889), а інтегральна нерівність – Й.Йєнсеном (Jensen, 1906). Інтегральну нерівність для угнутої функції записують так: , (6) де на і . (7) Нагадаємо, що функція називається опуклою (угнутою) в , якщо , (8) (9) для довільних , ; при цьому рівність у співвідношеннях досягається у випадках, коли і коли – лінійна функція. Треба зауважити, що є різні способи доведення (обґрунтування) нерівності Йєнсена. Так, в [1, 2] використовується метод Коші; доведення в [3] спирається на фізичне поняття центра мас системи матеріальних точок; в [4] нерівність Йєнсена отримана з формули Тейлора за умови, що функція має в другу похідну; в [5] запропоновано доведення нерівності Йєнсена при умові, що опукла (угнута) в функція диференційована в цьому проміжку. Цікаво встановити ймовірнісний зміст нерівності Йєнсена. Зрозуміло, що ми маємо справу з випадковими величинами вже в означеннях для опуклої (8) та угнутої (9) функцій. Фактор випадковості обумовлений довільністю вибору точок , на проміжку . Таким чином, можна вважати , що – випадкова величина, – функція випадкового аргумента. При цьому для вибірки без повторень з об’ємом дискретний розподіл має вигляд: (10) З точки зору теорії ймовірностей в означеннях (8) і (9) порівнюються математичне сподівання (вибіркове середнє) функції і значення функції від математичного сподівання аргумента (рис.1). Рис.1. До означення опуклої (а) та угнутої (б) функцій. Для опуклої функції будь-яка точка дуги розташована вище відповідної точки хорди , для угнутої функції – навпаки. Якщо функція лінійна, то математичне сподівання функції співпадає з функцією математичного сподівання випадкового аргумента, а точка відповідає середині відрізка . Таким чином, рівність у співвідношеннях (8) і (9) досягається у двох випадках: коли і коли – лінійна функція. У роботі [5] другий випадок лишився поза увагою автора. Будь-яка нелінійність порушує пропорційну залежність між і . Так, для опуклої функції збільшується множина значень, які перевищують , для угнутої функції – навпаки. Це вагомий аргумент на користь кусково-лінійної інтерполяції функцій. З точки зору фізики це означає, що для опуклої дуги центр ваги матеріальних точок і завжди лежить під дугою. Ця властивість центра ваги двох матеріальних точок виконується для будь-якого числа матеріальних точок, що лежать на опуклій кривій . В цьому випадку крива апроксимується сукупністю прямолінійних відрізків, і ми одержуємо шукане узагальнення. Дискретний розподіл для вибірки без повторень з об’ємом має вигляд: … … … Математичне сподівання аргументу визначається так: Математичне сподівання функції . Зрозуміло, що в цьому випадку краще скористатися процедурою групування вибірки і, спираючись на попередній результат, довести нерівність Йєнсена для опуклої (1) та угнутої (2) функцій. Перейдемо до вибірки з повтореннями. Нехай значення аргументу повторюється разів, а – разів, – об’єм вибірки. Дискретний розподіл має вигляд: Тут і – відносні частоти повторень значень і . Нерівність Йєнсена в цьому випадку має вигляд: для опуклої функції , (11) для угнутої функції , де і . (12) Рівність в (11) і (12) досягається коли , а також коли – лінійна функція, причому другий випадок є найбільш змістовним. Якщо , нерівність Йєнсена виконується за означенням опуклої (8) і угнутої (9) функції. Цікаво з’ясувати, що зміниться у ймовірнісній схемі доведення нерівності Йєнсена, якщо . В лівих частинах нерівностей (11) і (12) під знаком стоїть математичне сподівання випадкового аргумента: , в правих частинах маємо математичне сподівання функції випадкового аргумента: . Порівнюючи математичне сподівання функції випадкового аргумента і значення функції від математичного сподівання аргумента, неважко встановити, що (11) і (12) – це узагальнені означення опуклої і угнутої функції відповідно (рис.2). Рис.2. Узагальнення означення опуклої (а) та угнутої (б) функцій . Цей випадок відрізняється від симетричного лише тим, що точка не співпадає із серединою відрізка , тому що математичне сподівання аргумента визначається не арифметичним середнім, а зваженим середнім, де , – вагові коефіцієнти. При цьому зберігається пропорція у приростах аргументу і лінійної на функції: . Будь-яка нелінійність порушує пропорцію у приростах функції. Математичному сподіванню аргумента тепер відповідає значення функції , і якщо функція опукла, то , а для угнутої – навпаки . З фізичної точки зору розглянутий випадок означає, що маси матеріальних точок і неоднакові. Така дискретизація застосовується при визначенні координат центра ваги неоднорідного стержня. Тепер, спираючись на узагальнені означення опуклої (11) і угнутої (12) функцій, неважко довести нерівність Йєнсена з математичними сподіваннями (3) і (4). При цьому дискретний розподіл має вигляд: … … … Відносні частоти , , , причому не всі рівні між собою. Вибірку зручно розбити на групи (краще по дві варіанти), визначити для кожної групи середні зважені значення абсцис і ординат вузлових точок. Якщо на опукла (угнута), то всі нерівності Йєнсена на проміжках мають однаковий зміст. Об’єднуючи відрізки в ансамбль і виконуючи усереднення групових середніх, отримаємо кінцевий результат, який полягає у тому, що точка з координатами лежить нижче дуги кривої (якщо функція опукла) або вище дуги (якщо функція угнута). Інтегральна нерівність Йєнсена (6) може бути доведена за допомогою граничного переходу в дискретній нерівності. або узагальненої теореми про середнє в інтегральному численні. Нам лишається навести ймовірнісний коментар до формули (6). Варто звернути увагу на те, що в формулах (6) і (7) функція має властивості щільності розподілу випадкової величини . В лівій частині (6) під знаком записано математичне сподівання випадкової величини , що розглядається на проміжку : . В правій частині (6) маємо математичне сподівання функції випадкового аргумента : . До речі, в математичному аналізі до цих самих результатів приводить узагальнена теорема про середнє в інтегральному численні. Важливо підкреслити, що при будь-якому законі розподілу ймовірностей точка . Точка належить хорді, що з’єднує кінці дуги і , тому для опуклої функції , для угнутої . В теорії ймовірностей такий незбіг функції середнього і середнього функції називають "парадоксом оцінювання" [6]. Дослідження парадоксів – кращий спосіб досягти взаєморозуміння фахівців в різних областях науки. Спроби вивчати будь-яку область математики за допомогою парадоксів допомагають розвинути справжню інтуїцію, а ймовірнісні підходи сприяють зворотньому руху [7] конструктивних ідей із теорії ймовірностей до математичного аналізу та інших розділів математики. Використана література Невяжский Г.Л. Неравенства. Пособие для учителей. – М.: ГУПИ МП РСФСР, 1947. Каплан Я.Л. Математика. Посібник для підготовки до конкурсних екзаменів до вузів. – К.: Вища школа, 1971. Ижболдин О., Курляндчик Л. Неравенство Иенсена // Квант. №5. – М.: Наука, 1990. – С.57-62. Беккенбах Э., Беллман Р. Неравенства. – М.: Мир, 1965. Вороний О. Нерівність Йєнсена // У світі математики. – Т.6. – Вип.2. – К.: "ТВІМС", 2000. – С.9-13. Секей Г. Парадоксы в теории вероятностей и математической статистике. – М.: Мир, 1990. Скороход А.В. Особливий характер теорії ймовірностей в математичних науках // У світі математики. – Т.3. – Вип.2 – К.: "ТВІМС", 1997. – С.2-4.